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Introduction 
 
 Equations of state may be used to calculate pure component vapor-liquid equilibrium 
properties such as vapor pressure, heat of vaporization, liquid density, and vapor density. The 
standard approach requires coupling the EOS with a phase equilibrium criterion such as free 
energy, chemical potential, or fugacity. The resulting equations are nonlinear and must be 
solved by numerical methods.  
 
 An alternative approach is applicable to cubic EOS such as the commonly used 
Soave-Redlich-Kwong and Peng-Robinson equations. Equilibrium properties may be explicitly 
expressed as power series in reduced temperature or related functions. These results are 
more convenient than numerical calculations, but the series diverge and become unbounded 
at low to moderate temperatures away from the critical point.  
 
 An alternative method was developed using a series expansion in a low temperature 
limit rather than the critical point limit. Although the limiting behavior itself was unphysical 
because it fell below the triple point of the substance, the expressions remained convergent 
over a very wide range of temperatures and they remained bounded over all temperatures 
from zero to the critical point. A second alternative method replaced the series expansions with 
closed form expressions which could be used up to reduced temperatures at least as high as 
0.814. Dimensionless results for equilibrium properties such as vapor pressure and liquid 
density were determined as general expressions of the acentric factor of a substance. The 
deviations between these results and the exact equilibrium property predictions from the EOS 
were quantitatively characterized and found to be less than seven percent in one version of the 
second alternative method which combined a quadratic liquid density estimate with a vapor 
phase fugacity correction. 
 
 
VLE from Cubic Equations of State 
 
 Cubic equations of state of the Van der Waals type are widely used in chemical 
engineering practice because they provide a reasonable balance between accuracy and 
simplicity.  Two common examples are the Soave-Redlich-Kwong [1] and Peng-Robinson [2] 
equations, shown below as Eqs. (1) and (2), 
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 In these equations, the attractive function aEQ(T) has the form 
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with the critical value of  
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and the acentric factor functions given by  
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The occupied volume parameter b is given by 
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Values of the dimensionless numerical constants in Eqs. (4) and (7) are a0,SRK = 0.42748, a0,PR 
= 0.45724, b0,SRK = 0.08664, and b0,PR = 0.07780. 
 
 Like many equations of state, SRK and PR may be used to calculate vapor pressure 
and other pure component vapor-liquid equilibrium properties.  Doing this requires coupling the 
EOS with a phase equilibrium criterion such as free energy, chemical potential, or fugacity.  
Eqs. (8) and (9) give expressions for the pure component fugacity coefficient for SRK and PR. 
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When an equilibrium state exists, Eq. (1) gives three real roots for volume from SRK.  The 
smallest and largest of these are liquid and vapor volumes, respectively.  The fugacity 
coefficients calculated by Eq. (8) will be equal when the liquid volume is substituted and when 
the vapor volume is substituted.  For PR, Eqs. (2) and (9) are used.  A numerical algorithm is 
required to solve either of these sets of nonlinear equations.  
 



Power Series Methods for Cubic Equation VLE 
 
 A formal procedure [3] is available to express results for phase densities and vapor 
pressure of coexisting liquid and vapor phases as analytic power series in temperature.  The 
approach begins by writing reduced deviation variables for phase densities (∆ρL and ∆ρV) and 
temperature (∆T) about the critical point.  These variables are defined as  
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with M representing either ρL, ρV, or T.  The resulting formal power series are 
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 After equilibrium constraints are applied to these series, the coefficients Aj and Bi are 
observed to be functions of the acentric factor function fEQ(ω) which depend upon the cubic 
EOS being applied.  They are substance-dependent since they contain the acentric factor 
function.  For SRK and PR, Aj is given by a polynomial of degree j in the acentric factor 
function, Bi is given by a polynomial of degree (i-1) in the acentric factor function for even i, 
and by a similar polynomial multiplied by the square root of (1+ fEQ(ω)) for odd i.  Expressions 
for these polynomials have been tabulated. [4,5] 
 
 The utility of this method stems from the convenience of direct computation of 
coexisting phase properties without need for auxiliary equilibrium criteria such as fugacities.  
The weaknesses of the method arise from being based upon a series expansion about the 
critical point.  In practice, the infinite series given by Eqs. (13) to (15) must be truncated.  Few 
terms are required near the critical point, but this is the situation where cubic EOS are least 
accurate.  At moderately high or moderate temperatures, where the equations have 
reasonable accuracy, many series terms are needed to prevent truncation error.  The 
magnitude of truncation error also depends upon the property (phase density or vapor 
pressure) and varies with acentric factor.  In general, truncation errors are largest for vapor 
density and smallest for liquid density, they are larger for the PR equation as compared to 
SRK, and they increase with increasing acentric factor. 
 
 
Low Temperature Limit Methods for Cubic Equation VLE 
 
 An alternative approach for prediction of pure component coexisting phase properties 
was proposed to overcome some of the shortcomings of the critical point power series, 
specifically the large truncation errors and subsequent poor convergence at low to moderate 
temperatures.  This new approach utilized expressions for density and vapor pressure that 



were asympotically correct in a low temperature limit yet still converged well at moderate to 
high temperatures.  Note that the zero temperature limit used is an unphysical limit from the 
standpoint of VLE, as liquid behavior does not persist below the triple point which typically falls 
near a reduced temperature of 0.3 to 0.4.  In the best case, the existing series about the critical 
point did not extrapolate accurately below a reduced temperature of approximately 0.58, and 
even that accuracy required j = 13 in the series expansion for SRK. 
 
 For the SRK equation, a relationship between reduced vapor pressure and reduced 
temperature was found in the mathematical (unphysical) zero temperature limit as the following 
truncated series in one-half powers of reduced temperature. [6] 
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This result was derived by substituting an expression for reduced liquid density ρr’ given by Eq. 
(22) into Eq. (8) to evaluate liquid fugacity coefficient.  (The prime in this definition is used to 
emphasize that this is not the standard reduced density determined by dividing by the critical 
density.)  A value of unity was assigned to the vapor fugacity coefficient, reflecting nearly 
perfect adherence to the ideal gas law at the extremely low vapor pressures corresponding to 
a low temperature limit, and liquid and vapor fugacity coefficients were equated to give Eqs. 
(16) to (21).   
 

2/3
3

,0

,0
2

,0

,0

))(1(
)(4

))(1(
2

1 r
SRKSRK

SRKSRK
r

SRKSRK

SRK
SRKr T

fa
bf

T
fa

b
b

ω
ω

ω
ρρ

+
−

+
−=≡′  (22) 

 
 Figure 1 shows results when vapor pressure predicted by Eq. (16) is compared to the 
exact result from the SRK equation.  The curves plotted in Figure 3 represent various acentric 
factors.  Since the coefficients in Eq. (16) were fit in the low temperature limit, the deviation 
between the predictions and the exact SRK result went to zero in that limit.  Behavior at 
increasing temperatures was interesting.  Although no additional corrections were made to the 
fit of the equation, the zero temperature limit equation was capable of tracking the exact vapor 
pressure from the SRK equation within an order of magnitude; in fact, within a factor of two, 
over the entire temperature range from zero to the critical point.  This was unlike the behavior 



observed with the truncated critical point series of Eq. (13), where the deviation caused by 
truncation error increased by polynomial or exponential order away from the critical point. 
 
 Results analogous to Eqs. (16) to (22) were also determined for the Peng-Robinson 
equation.  Details of those results and additional descriptions of the method used to derive 
these results for both SRK and PR will be given in a subsequent publication.   
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Figure 1.  Deviation Ratio Between Eq. (16) and Exact SRK Vapor Pressure. 
 
  It was noted that a principal source of the deviations shown in Figure 1 was the 
truncation error in the prediction of liquid density by Eq. (22).  To improve the predictions of the 
method, an alternative approach was developed for predicting liquid density.  A cubic EOS 
such as SRK or PR was written in dimensionless variables using the critical point to 
nondimensionalize temperature and pressure in the standard way, but nondimensionalizing 
density by multiplying it by the parameter b of the EOS as was done in Eq. (22).  The result for 
the SRK equation is shown as Eq. (23), where αSRK refers to the second factor in Eq. (3) which 
is shown here as Eq. (24). 
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 In the low temperature limit, it was observed that Pr approaches zero exponentially as 
Tr decreases.  Applying this observation to Eq. (23), the Pr terms were neglected to give a 
cubic equation with no constant term.  By factoring out the common factor of ρr’ from each 
term, a low temperature limit of the cubic EOS was written as a quadratic equation, Eq. (25). 
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 Eq. (25) could be solved easily by the quadratic formula for two roots of reduced 
density ρr’.  The larger of these was an approximation of the liquid reduced density, shown as 
Eq. (26) and the smaller was an approximation of the unphysical middle root from the cubic 
EOS.  The vapor reduced density root disappeared when the common factor of ρr’ was 
factored from Eq. (23).  This factoring process was equivalent to identifying an additional root 
of ρr’ equal to zero, which would be the ideal gas limit at the extremely low pressures of the 
zero temperature limit.  Note that the novelty was not merely in replacing a cubic polynomial 
with a quadratic polynomial as both may be solved for a closed form, but rather in eliminating 
Pr from the equation so that only one degree of freedom remained instead of two. 
 
 The same steps used in deriving Eqs. (16) to (21) from Eq. (8) were then applied, 
except that Eq. (26) was used to represent reduced liquid density instead of Eq. (22).  This 
gave a relatively simple closed form expression for Pr. 
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 The results of Eq. (27) had several interesting characteristics.  They did converge 
asymptotically to the exact vapor pressures generated by a numerical algorithm in the low 
temperature limit.  At higher temperatures, the deviation between Eq. (27) and the exact 
values was frequently less than for the more mathematically complex model given by Eqs. (16) 
to (21), especially for large values of the acentric factor; however, Eq. (27) could not be used 
beyond the reduced temperature where the discriminant (the quantity under the square root) in 
Eq. (26) became zero.  This occurred for reduced temperatures between 0.814 (for an acentric 
factor of -0.4) to 0.94 (for an acentric factor of +0.97).  Observed deviations were always 
negative, meaning that Eq. (27) underpredicted the exact SRK result, with the maximum 
negative deviation being 32 percent, occurring when the discriminant was zero. 
 
 One of the most interesting and unexpected observations was that the deviation 
between Eq. (27) and the exact SRK vapor pressure predictions, which appeared to be a 
function of two parameters (Tr and ω), could be written as a function of a single parameter.  



This parameter was an expression containing both Tr and ω and it was identified as the 
discriminant of Eq. (26).  This result was verified empirically and a master graph of the 
deviation versus the discriminant was produced, shown as Figure 2.  The combination of this 
figure with Eqs. (26) and (27) allows essentially exact estimation of an SRK vapor pressure at 
any reduced temperature below the point at which the discriminant of Eq. (26) becomes zero. 
 
 Results analogous to Eqs. (23) to (27) were also determined for the Peng-Robinson 
equation, including the characteristics discussed above.  Again, the maximum negative 
deviation observed was 32 percent.  Details of those results and additional descriptions of the 
method used to derive these results for both SRK and PR will be given in a subsequent 
publication.   
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Figure 2.  Log Deviation Ratio Between Eq. (27) and Exact SRK Vapor Pressure.   
  
 Work continues on characterizing the empirical function of Figure 2 with a functional 
expression and understanding the mathematical basis for the empirical result that the deviation 
between Eq. (27) and the exact SRK vapor pressure depends on the single parameter which is 
the discriminant of Eq. (26).   
 
 In deriving the previous results, the vapor phase fugacity coefficient was always 
assumed equal to unity (ln φV = 0).  An additional enhancement to the method was made by 
making a first order correction.  The SRK equation was expressed in a virial expansion and the 
second virial coefficient term was used to correct the vapor fugacity coefficient.  When the 
liquid and vapor fugacity coefficients were equated, the result was a quadratic equation which 
could be directly solved for reduced pressure Pr. 
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As was the case with Eq. (27) above, the value of reduced liquid density ρr’ from Eq. (26) is 
used in evaluating Eq. (28).  Like Eq. (27), Eq. (28) asymptotically converged in the low 
temperature limit to the exact SRK vapor pressure.  Furthermore, the deviations between 
vapor pressures found by solving Eq. (28) and exact SRK vapor pressures were quite small 
even at higher temperatures, less than seven percent for all acentric factors between -0.4 and 
+0.97.  As with Eq. (27), the method could not be used at reduced temperatures very close to 
the critical point where the discriminant in Eq. (26) became negative.  Unlike Eq. (27), the 
deviations between Eq. (28) and exact SRK vapor pressures could not be expressed as a 
function of the discriminant as a single parameter, but had to be given as functions of the two 
parameters Tr and ω. 
 
 Results analogous to Eqs. (28) were also determined for the Peng-Robinson equation, 
with the maximum negative deviation observed being 1.4 percent.  Details of those results and 
additional descriptions of the method used to derive these results for both SRK and PR will be 
given in a subsequent publication.   
 
Conclusions 
 
 Methods for explicit estimation of vapor pressure from cubic EOS were presented.   
The methods relied upon expressions which were asymptotically correct in the zero 
temperature limit.  These approaches were shown to reproduce, with reasonable accuracy, the 
vapor pressure determined by combining the EOS with a phase equilibrium constraint such as 
fugacity.  The methods were applicable for reduced temperatures from zero up to at least 
0.814 and in some cases as high as 0.94.  Deviations from the exact SRK vapor pressure 
were less than 32 percent for an approach which used a quadratic density estimate and less 
than 7 percent for a modified approach which added a vapor phase fugacity correction.  The 
methods also were applicable to the PR equation with similar accuracy.   
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Nomenclature 
 
Aj temperature coefficients in Eq. (13) for reduced pressure 
aEQ(T) energy parameter in attractive term 
ac,EQ energy parameter in attractive term at the critical point 
a0,EQ dimensionless numerical coefficient of energy parameter  



Bi temperature coefficients in Eqs. (14) and (15) for reduced density deviation variables 
bEQ excluded volume parameter in equation of state 
b0,EQ dimensionless numerical coefficient of excluded volume parameter 
Ci coefficients in Eq. (16), vapor pressure equation at low temperature limit 
fEQ(ω) quadratic function of acentric factor 
h ratio of excluded volume parameter to molar volume 
M general thermodynamic state property (T, ρL or ρV) in Eq. (12)  
P absolute pressure 
R gas constant 
T absolute temperature 
V molar volume 
z compressibility 
 
Greek letters 
 
ΔM reduced deviation variable of state property M (T, ρL or ρV) defined by Mr – 1 
ρ molar density 
ρr’ reduced molar density of liquid defined by convention of Eq. (22) 
φEQ fugacity coefficient for equation of state 
ω acentric factor 
 
Subscripts 
 
c critical (temperature, pressure, or molar density) 
EQ parameter or coefficient applying to equation of state EQ (SRK or PR) 
r reduced (temperature, pressure, or molar density) 
  
Superscripts 
 
L liquid (molar density or molar volume) 
V vapor (molar density or molar volume)  
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