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Introduction 

 The introduction of mathematical software packages such as Excel1, MATLAB2 and 
Polymath3 into the field of engineering problem solving has brought the benefits of higher 
speed and precision in obtaining the results. However, numerical solution techniques have also 
introduced some new sources of errors. These errors may often pass undetected because of 
the lack of experience in the use of the new computational tools. A few examples of errors 
originating from numerical sources follow. 
 1. Regression and Analysis of Data 
The most common errors in regression of data are originated from the use of regression 
models with too many or too few parameters[1], fitting polynomial models without proper scaling 
(standardization) of the temperature data, correlation of data when the model equations are 
improperly linearized[1]or when experimental design for obtaining the data is not satisfactory[3]. 
 2. Systems of Nonlinear Algebraic Equations (NLE) 
There are many examples in the literature showing that identification of good initial guesses 
and formulating the problem correctly for enabling convergence to a solution of an NLE system 
may represent a major challenge[4].  Even if the solution is found it may be infeasible in the 
physical sense (solution with negative concentrations, for example) or a false solution caused 
by improper variable and/or function scaling. 
 3. Ordinary Differential Equations (ODE) 
Indiscriminate use of default error tolerances of the ODE solver tools is the most common 
source of errors in solving ordinary differential equations[5]. Failure to use the proper integration 
algorithm (stiff vs. non-stiff), carelessly rounding numbers in the model equations, using the 
model outside the domain of its validity and the use of inadequate resolution in presenting the 
results have been documented[1],[2] as additional common sources of errors in solving ODEs. 
 Being aware of potential causes to errors in numerical problem solving is a preliminary 
requirement to detection and prevention of such errors. In this paper three potential causes of 
errors are described and demonstrated. Means to prevent these errors are proposed.  
 
No Consideration Given to Problem Parameter Uncertainties  
 The importance of the analysis of the sensitivity of the problem solution to small changes 
in the parameter values has been recognized, long ego, in the field of optimization. Edgar et al. 
(2001), for example, wrote "You should always be aware of the sensitivity of the optimal 
answer … Parameter values usually contain errors or uncertainties. Information concerning the 
sensitivity of the optimum to changes or variations in a parameter is therefore very important in 
optimal process design." However, sensitivity analysis is rarely carried for other types of 
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problems. In this section the importance of the sensitivity analysis in solving systems of 
nonlinear algebraic equations will be demonstrated. 
 The example considered was originally published by Froment and Bishoff (1990) and its 
solution using Mathcad is presented by Parulekar (2006).  The reaction considered is the 
catalytic hydrogenation of olefins (component A) in an isothermal CSTR. Differential mass 
balance on component A yields 
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where CA0 is the inlet concentration of A (mol/L), 0/ vV=τ  is the space time (s), V is the reactor 

volume  (L), v0 is the inlet flow rate (L/s) and rA is the reaction rate per unit reactor volume 
(mol/L·s): 
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 The concentration of A at steady-state is sought for the operating conditions: CA0 = 13 
mol/L; V = 10 L; and v0 = 0.2 L/s.  Finding the steady-state solution requires solving the 
nonlinear algebraic equation f(CA) = 0 where  
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 In Figure 1 f(CA) is plotted versus CA in the region 0 ≤ CA ≤ 10. Observe that in this region 
there are three real solutions. The solutions as obtained by the Polymath 6.1 software package 
are: CA

* = [0.7515358, 2.130933, and 8.117532]. Polymath displays the results showing 7 
significant digits. Mathcad displays the same results with 20 significant digits (Parulecar, 2006). 
The discrepancy between the number of significant digits in the CSTR parameters (one or two) 
and the number of those digits reported in the solution (up to twenty) cannot be missed. The 
determination of the number of significant digits to be shown in the documentation of the 
problem solution should be based, in this particular case, on the uncertainty associated with 
the parameter values. 
 In Table 1 the values of CA at the solution are presented for various levels of uncertainty in 
the flow rate v0. Assuming uncertainty of 10-4 L/s (thus flow rate of 0.2001 L/s instead of 0.2 
L/s) yields solution values which match the base solution only in the first two digits. For 
uncertainty of 10-3 L/s there is only one correct digit in the first two roots and two correct digits 
in the largest root.  For uncertainty of 0.01 L/s there is not even a single correct digit in the first 
two roots and one in the largest root. Thus, any realistic estimate for the uncertainty in the 
value of the flow rate leads to the conclusion that the solutions for CA should be rounded up to 
two significant digits as all the additional digits are uncertain. It should be emphasized that this 
analysis applies only to physical quantities which obtained as the final results of the 
computation. There are other cases where rounding the numbers may lead to significant 
errors. This will be demonstrated in one of the following examples.  
 As the value of the flow rate is specified by one significant digit only one possible 
assumption regarding the uncertainty could be that the flow rate was measured (or controlled) 



with such an accuracy, thus its value can vary in the range of  0.15 L/s ≤ v0 ≤ 0.24 L/s. In the 
last two rows of Table 1 the solutions for the two extreme values of v0 are shown. For v0 = 0.24 
L/s there is only one real root at CA = 9.36922 mol/L while for v0 = 0.15 L/s there is one real 
root at CA = 0.3419 mol/L. Thus, in these cases there is only one root instead of the three roots 
for the base value of v0 = 0.2 L/s, and the roots are completely different. 
 
Use of Inappropriate Statistics and Graphical Representations in Analysis of Regression 
Models 
 The use of inappropriate statistics and graphical representation may often lead to the 
acceptance unsatisfactory regression models. This phenomenon will be demonstrated by fitting 
the Clausius-Clapeyron equation to vapor pressure (PV) data of ethane. The vapor pressure 
data, containing N = 107 points, are available[8] in the temperature range of T = 92 K (PV = 1.7 
Pa) through T = 304 K (PV = 4.738*106 Pa). This range covers essentially the liquid phase 
region between the triple point temperature (= 90.352 K) and the critical temperature (TC = 
305.32 K) of ethane. The Clausius-Clapeyron equation is considered inappropriate for 
modeling vapor pressure for such a wide range of temperatures and we want to examine what 
kind of statistics and/or graphical representation can reveal this inappropriateness. 
The Clausius-Clapeyron equation is given by 
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where A and B are coefficients calculated by regression of experimental data. 
In Figure 2 ln(PV)exp is plotted versus 1/T. The straight line fitted to the data is also shown. The 
linear equation obtained is 
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where Tx /1= and calcPy V )ln(ˆ = . The correlation coefficient R2 is defined 
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where y  is the sample mean of the dependent variable. The value of R is bounded: 0 ≤ R ≤ 1. 

If R is close to 1, there is a strong correlation between the variables, whereas a value close to 
zero indicates a weak or no correlation. The R2 value in this case (as shown in Figure 2) is 
0.999, very close to 1. Thus, the plot of ln(PV)exp versus 1/T and the statistics R2 both indicate 
that the Clausius-Clapeyron equation represents the vapor pressure data adequately over the 
entire range from the triple point to TC. 
 Another widely used graphical representation for checking adequacy of a correlation is the 
plot of the calculated value of the dependent variable ŷ  versus the experimental value y. In 

case of a good fit a straight line should be obtained with the slope ~1.0. In Figure 3 ln(PV)calc 
(as calculated by the Clausius-Clapeyron equation) is plotted versus ln(PV)exp. Observe that the 
data points are aligned along a straight line with the slope of 0.9999 with only small deviations. 
Thus, this type of representation indicates also good fit between the Clausius-Clapeyron 
equation and the vapor pressure data over the entire range. However, comparing ln(PV)calc and 
ln(PV)exp at T = 92 K, for example, yields ln(PV)exp = 0.53; ln(PV)calc = 0.95, thus ~ 80 % 



difference. This definitely cannot be defined as adequate representation of the experimental 
data. 
 The proper graphical means to test the goodness of fit between a regression model and 

the data is the "residual" plot. The residual iε̂  is defined 
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A random distribution of the residuals around zero indicates that the regression model 
represents the data correctly. A definite trend or pattern in the residual plot may indicate either 
lack of fit of the model or that the assumed error distribution for the data (i.e. random error 
distribution in y) is incorrect. In Figure 4 the residual: ln(PV)exp - ln(PV)calc  is plotted versus 
ln(PV)exp. Observe that there is definite trend (curvature) in the residuals, indicating that the 
Clausius-Clapeyron equation cannot represent the data adequately. 
 
Careless rounding of model parameters. 
 
 In the DIPPR database[9] the Riedel equation is recommended for modeling vapor 

pressure data. The Riedel equation can be written  
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where A,B,C,D and E are the parameters of the regression model. Usually the value of E is set 
at 2 to enable calculating the rest of the parameters by linear regression. Using the same 
vapor pressure data that were discussed in the previous section the DIPPR staff obtained the 
following parameter values: A = 5.1857E+01; B = -2.5987E+03; C = -5.1283E+00; and D = 
1.4913E-05. In Figure 5 the residual plot of ln(PV) calculated by the Riedel equation using the 
DIPPR parameter values is shown. Observe that the residuals in this case are smaller by at 
least one order of magnitude than the residuals obtained using the Clausius-Clapeyron 
equation. There are two separate regions. In the first one (up to ln(PV) ~ 12) the residuals are 
in the range of -0.04 to 0.02, not showing any particular trend. In the second region (ln(PV) > 
12)  there is an order of magnitude reduction in the residual values (all smaller in absolute 
value than 0.003), however there is some trend in the residual values in this region. To obtain 
perfectly random distribution of the residuals a different correlation should be used (the 
Wagner equation, for example). Improvement of the correlation by use of a different type of 
equation, however, is outside of the scope of the present paper. 
 The "copy and paste" facility is a very convenient and time saving option when transferring 
numerical and other data between various data-bases and software packages. We, for 
example, copied the Riedel equation constants for various compounds into an Excel 
spreadsheet. After pasting the parameter values into Excel they are stored with the exact same 
value as they appear in the DIPPR database, however they are displayed rounded to two three 
decimal digits: A = 5.19E+01; B = -2.60E+03; C = -5.13E+00; and D = 1.49E-05, if the default 
number display format is used. Copying these values from Excel and pasting it into a 
document or a different software package will results in losing the additional digits which were 
included in the DIPPR published values. 
 Calculating the vapor pressure using the rounded values of the parameters leads to 
significant errors in the calculated pressure values. The residual plots of PV calculated by the 
Riedel equation using exact and rounded parameter values are shown in Figure 6. Observe 
that the residual (error) in the highest pressure range is of the order of 2.5% when rounded 



parameter values are used in comparison to 0.3 % with exact parameter values. Thus, 
careless rounding of parameter values causes the prediction error to increase by almost one 
order of magnitude. 
 
Conclusions 
 
 Potential causes to errors in numerical problem solving have been demonstrated and 
means to detect and prevent such errors are suggested.  
 It was demonstrated that complete definition of a problem requires not only specification of 
the parameter values but also the specification of the uncertainty levels for these parameters. 
Specification of the uncertainty levels of the parameters enables determining the uncertainty of 
the solution, provides justification to number of significant digits to be used in documentation of 
the results and sometimes (as in the example presented) it may reveal that the proposed 
process cannot be implemented in practice because of too high levels of uncertainty. 
 Vapor pressure correlation with the Clausius-Clapeyron equation was used to demonstrate 
that the linear correlation coefficient ( R2) statistics, the plot of ln(PV)exp versus 1/T, and the plot 
of calculated values versus experimental values can be misleading in determining the 
goodness of the fit between the data and the regression model. The residual plot is the most 
reliable means for examining the goodness of the fit. 
 Transferring numerical data between various databases, documents and programs by 
"copy and paste" may result in losing significant digits of the numbers transferred. It was 
demonstrated that rounding the parameter values of the Riedel equation (by using "copy and 
paste") caused considerable increase of the vapor pressure prediction errors, especially in the 
higher temperature range.  
 Paying attention to the potential causes of errors that were presented here and in previous 
publications[1],[2],[3],[4],[5] can improve considerably the reliability of the results in numerical 
problem solving and in the modeling of data by regression. 
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Table 1. Isothermal CSTR solutions for various levels of uncertainty in the flow rate v0.  

 Feed flow rate (v0) L/s 

 0.2 0.2001 0.201 0.21 0.24 0.15 

CA, 1st Root 0.751536 0.7533915
†
 0.7707207 1.162332 - 0.341902 

CA, 2nd Root 2.130933 2.124481 2.066326 1.311824 - - 

CA, 3rd Root 8.117532 8.122128 8.162953 8.525843 9.369219 - 

         
†
Correct digits are shown in bold 
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Figure 1. Plot of f(CA) versus CA for v0 = 0.2 L/s 
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Figure 2. Plot of ln(PV)exp versus 1/T  for ethane between the triple point and TC 
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Figure 3. Plot of ln(PV)calc, calculated by the Clausius-Clapeyron equation, versus ln(PV)exp for ethane 
between the triple point and TC 
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Figure 4. Residual plot for ln(PV) calculated by the Clausius - Clapeyron equation for ethane between the 
triple point TC 
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Figure 5. Residual plot for ln(PV) calculated by the Riedel equation for ethane between the triple point and 
TC 
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Figure 6. Residual plot for PV , calculated by the Riedel equation, for ethane between the triple point and 
the TC 

 

 


