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1. Introduction 
Mathematical modeling and analysis of signal transduction networks plays an important role 

in systems biology. Models of signal transduction networks generally consist of nonlinear 
differential equations (Schoeberl et al., 2002; Singh et al., 2006) with a large number of 
parameters whose values are not precisely known and only a portion of which can be estimated 
from experimental data.  

Sensitivity analysis techniques are commonly used to determine the key parameters of a 
model. Sensitivity values are used to rank the importance of the effect of changes in parameter 
values on the output. However, for a dynamic system the sensitivity is a function of time and 
lumping the effect over time into a scalar value only provides partial information about the 
importance of a parameter. One reason for this is that parameters which have similar cumulative 
effects may still cause very different dynamic changes of the outputs. It has been recognized that 
distinct temporal activation profiles of the same signaling proteins result in diverse physiological 
responses (Marshall, 1995; Hoffmann et al., 2002; Kholodenko 2006) and, therefore, 
categorizing the dynamic effects of parameters is of great importance. 

The aim of this work is to use the entire time-dependent sensitivity profile of parameters for 
ranking the importance of parameters of signal transduction networks but also to determine 
which parameters have similar dynamic sensitivity profiles that cannot be distinguished from 
one another. A technique based on parameter clustering of the sensitivity profiles is developed to 
rank the parameters. A similarity measure is defined to quantify correlations among the effects 
that changes in parameters have on the measurements. If the similarity measure has a value of 
unity then the effects of two parameters cannot be distinguished from one another, i.e., the effect 
caused by changes in one of the parameters can be compensated by changing the other one. If 
the similarity is zero then the two parameters have distinct effects. The parameters can be 
grouped by a clustering algorithm based upon their sensitivity profile. Since parameters in a 
group have correlated effects, the magnitude of the sensitivity vector can be used to rank the 
parameters in a group. The parameter with the longest sensitivity vector in each group can be 
selected as the representative parameter of that group. Thus, the technique identifies the 
important parameters of the signal transduction network as the representative parameters for 
each of the groups.  

The advantage of this technique over conventional methods is that the parameters are ranked 
by their dynamic effects rather than the cumulative effects only. This allows to not only 
determine a set of parameters that are important for the signal transduction network but also to 
characterize the effect that changes in parameters have on the output. As a result it is possible to 
view each cluster of parameters as a set of parameters where uncertainty in the value of any of 
the parameters can be compensated by the values of other parameters. For illustration purposes 
this technique is applied to the Jak/STAT and MAPK/NF-IL-6 signal transduction network 
stimulated by interleukin 6. 
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2. Background 
Successful parameter estimation depends, among other things, on parameter identifiability. 

Parameter identifiability can be determined either analytically, also called structural 
identifiability, or numerically, also called practical identifiability (Walter 1987; Walter and 
Pronzato, 1997; Ljung, 1999). Analytical identifiabilty investigates uniqueness of the solution 
derived from parameter estimation while the numerical identifiability focuses on the stability of 
the solution. Additionally, analytical identifiabilty can be either global or local. While global 
identifiability includes local identifiability as a special case, it is significantly more difficult to 
determine global identifiability (Ljung and Glad, 1994) as approaches based upon Taylor series 
approximations and similarity transformations (Chappell et al., 1990) are restricted to small 
systems. Local identifiability on the other hand is relatively straightforward to test as the rank of 
the parameter output sensitivity matrix determines local identifiability. As the techniques 
introduced in this work are based upon these concepts, the definitions of identifiability as 
presented in Rothenbe (1971) are briefly reviewed next. 
 
Definition 1: A parameter point θ0 is said to be locally identifiable if there exists an open 
neighborhood of θ0 containing no other θ which produces the identical observations y. 
 
Condition 1: Let θ0 be a parameter point and the sensitivity matrix T( ) = ∂ ∂S θ y θ  has constant 
rank in a neighborhood of θ0. Then θ0 is locally identifiable if and only if S(θ0) is nonsingular. 

 
It should be noted that the sensitivity matrix having constant rank is a necessary condition. If 

this condition is removed then the nonsingularity of the sensitivity matrix is just a sufficient 
condition for local identifiability, or, in other words, a rank-deficient sensitivity matrix does not 
imply that the parameters are not locally identifiable. The condition of constant rank has to be 
checked analytically and evaluating this condition for one nominal value of the parameters is 
insufficient. 

Analytical identifiability guarantees the existence of a unique solution in at least a small 
neighborhood of the nominal point. However, analytically identifiable of parameters does not 
guarantee accurate estimation in practice. If sensitivity matrix is not singular but is ill-
conditioned, then noise in the data will result in large variations of the estimated parameter 
values. To obtain an accurate estimate it is also required that the sensitivity matrix should not be 
ill-conditioned.  
 
3 Investigation of pairwise indistinguishable parameter sets 

As the number of parameters in many fundamental models far exceeds the number of 
parameters that can be accurately estimated from available data, it is necessary to determine a 
subset of parameters which can be estimated. Parameter selection can be viewed as a special 
case of model reduction as only the values for some parameters are determined from parameter 
estimation while all other parameters are assumed to remain at their constant value.  

This section presents two techniques for determining subsets of parameters to be estimated. 
The first technique is an analytical approach which derives the condition where the output of a 
system with fewer parameters is identical to the one for the entire parameter set. The second 
method is a numerical approach which does not focus on the outputs being identical but instead 
investigates the error bound that results from including fewer parameters whose values can 
change in a model. 

 
3.1 Analytical approach 

Determining which parameters can be lumped together in a model is a problem that is related 
to parameter identifiability. Each time a parameter is not locally identifiable, it is possible to 
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reduce the parameter by setting it to a constant value. If the effects that two parameters have on 
the output are identical then each parameter may be individually identifiable, however, only one 
of the two parameters needs to be considered and the other can be set to a constant value. The 
following definitions and propositions define this situation. 

 
Definition 2: A parameter set is said to be a pairwise indistinguishable set when any two 
parameters in the set are not locally identifiable. 

 
From Condition 1 it can be seen that if the two parameters are not locally identifiable then 

their sensitivity matrix is rank deficient. This implies that sensitivity vectors of two parameters 
are parallel and that the two parameters can be replaced by a linear combination of them, e.g., by 
setting one parameter to its nominal value and using only the other parameter. 

 
Proposition 1. 
Assume the output mR∈y  is an analytical function of the parameter nR∈θ  

( )=y f θ , (1)
and θ  is a nominal value of the parameter. If the sensitivity value of the output with respect to θi 
(i=1,…,r) is nonzero 
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where αi is a function of θ.  
 

Proposition 1 states that the effects that changes of the values of parameters in a pairwise 
indistinguishable set have on the outputs can be lumped together and the same changes can be 
expressed by any one parameter of the set. As a result of this, all other parameters can be fixed 
at their nominal values. Accordingly, the output function can be re-parameterized to have fewer 
parameters, where one possible re-parameterization is shown in Proposition 1.  

 
Illustrative example 
A simple nonlinear regression model is used to illustrate the presented analytical procedure.  
Let 

( ) ( )1 2 3
1 2 3 3

1 2 3

, , ,
θ θ θ

θ θ θ ψ θ
θ θ θ

+ 
= = 
 

f g , (5)

where it can easily be seen that a substitution 1 2ψ θ θ=  can be made. However, this result is 
derived here using the procedure presented above. 
The sensitivity vectors for θ1 and θ2 are computed to be 

2

2 31

θ
θ θθ
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1 32

θ
θ θθ
 ∂

=  ∂  

f . (6)

These two sensitivity vectors are parallel and are related by the following differential equation: 
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Equation (7) can be used to compute the re-parameterization of ψ . The characteristic ordinary 
differential equation is given by 

1 2

2 11
d dθ θ

θ θ
=
−

. (8)

which can be solved by separation of variables and the solution is 
1 2 Cθ θ = , (9)

where C is a constant and the first integral is 1 2ψ θ θ=  which is the new variable to re-
parameterize the model. 

 
3.2 Numerical approach 

The procedure presented in the last section results in a set of characteristic ordinary 
differential equations which needs to be solved. As it is rarely the case that this expression can 
be solved analytically, a numerical approach is presented here. This numerical approach does 
not require the sensitivity vectors to be parallel, however, the angle between the sensitivity 
vectors should be small. In this case the parameters can be viewed as being pairwise 
indistinguishable with a certain numerical precision. 

A similarity measure of the effect of two parameters on the output can be defined by  
T

2 2

cos i k
ik

i k

φ =
s s

s s
, (10)

where [ ]0, 2ikφ π∈  is the angle between sensitivity vector si and sk. The value of the similarity 
measure ranges from 0 to 1 where a value of one indicates that the two vectors are parallel to 
one another and that the two parameters cannot be distinguished. A value of zero, on the other 
hand, refers to the sensitivity vectors of the parameters being orthogonal and that the parameters 
have distinct effects on the output. It is should be noted that the absolute value is used for the 
similarity measure as it is of little important which direction the sensitivity vectors have.  

Based on the similarity measure, the parameters can be grouped by a clustering algorithms. 
Agglomerative hierarchical clustering is used here since from the hierarchical tree it is easy to 
determine how many groups the parameters should be clustered into and how the least similarity 
value is changed as the number of groups changed. However, other clustering algorithms (Duda 
et al., 2001; Theodoridis and Koutroumbas, 2006) could be used with little significant change in 
the outcome. 

This method forms groups by repeatedly merging different groups of parameters. Initially, 
each parameter is in a group by itself. In a second step, the two groups with the largest similarity 
measure are merged into a new group. The similarity within a group can be controlled by the 
number of groups that one chooses to have. 

Since the parameters in a numerical pairwise distinguishable set have similar effects on the 
output, a parameter in the set can be selected as the representative for the group. Parameter 
estimation is simplified due to this procedure as the number of parameters can be reduced to the 
number of groups. However, since the sensitivity vectors for the parameter in a group are not 
perfectly parallel, it has to be taken into account that there will be a discrepancy between the 
parameter-output effect of the original system and the one with a reduced number of parameters.  

This discrepancy can be measured by the prediction gap between the two functions 
( ) ( ) ( )

2
mind = −
ψ

θ f θ g ψ , (11)
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where f is the original output function and g is derived from f when only one parameter per 
group is considered and all other ones are fixed at their nominal values. The individual 
parameter of ψ  are the representative parameters for each group and are a subset of θ . The 
prediction gap indicates how well the model with a reduced parameter set can approximate the 
behavior of the original model. 

It is non-trivial to compute this discrepancy for general nonlinear functions. Due to this an 
approximation of d based upon linearization is used in this work. The truncated Taylor series 
approximation of original function, f, with respect to the parameters is given by 

( ) ( ) ( )T

∂
≈ + −

∂
ff θ f θ θ θ
θ

, (12)

and the approximated Taylor expression of the function g is 

( ) ( ) ( )
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∂
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∂
∂
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gg ψ g ψ ψ ψ
ψ

ff θ
, (13)

where si is the index for the unfixed parameters. Then the discrepancy becomes 
( ) ( )− = −f θ g ψ Sx Ty , (14)

where T

∂
=
∂ θ

fS
θ

, T

∂
=
∂ s θ

fT
θ

, = −x θ θ  and = − sy ψ θ . The discrepancy is dependent on the 

value of parameters and the worst case can be considered 

2
21

max mind
=

= −
yx

Sx Ty . (15)

Since the discrepancy may increase unbounded with increased of length of x, a constraint is 
placed on the length of x.  

The similarity of parameters within a group can be controlled by determining the number of 
groups for the parameter set. In the extreme case where each group only contains one parameter, 
the discrepancy is between the original function and the one with a reduced parameter set is zero 
as the two parameter sets are equal. However, the discrepancy will increase as fewer groups are 
used and the similarity within groups decreases. It will be shown in the following that the 
discrepancy can be bounded by a decreasing function of the least similarity value in a set. 
 
Proposition 2. Let sk be the k-th column vector of the matrix S. Then the discrepancy 

2
21

max min kyx
d y

=
= −Sx s  (16)

can be bounded by 
22
2

1 cos m i
i k

d φ
≠

≤ − ∑ s , (17)

where cos mφ  is the smallest similarity value in a group.  
 
Proposition 3. Let 

il
s  be the li-th column of the matrix S where l is the index of groups and i is 

the index of the sensitivity vector in a group. Then the discrepancy (Eq. 15) can be bounded by 
2
l

l
d d≤ ∑ , (18)

where dl is the discrepancy of the l-th group. 
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3.3 Application of determining pairwise indistinguishable parameter set for parameter 
estimation 

One important step for parameter estimation is to select the set of parameters to be estimated. 
It is possible to formulate the parameter set selection procedure as an optimization problem, 
such as 

( )
1

1

*

( , )
( , )

1 2

       arg max  log det ( )

s.t.  ( )  with  that 1,  1

       z

       z {0,1},  1

ns

n js

i i
i i j i s

n s

i

i z j n

z z n

i n
θ

θ

=

= = =

+ + + =

∈ =

z
z F z

F z FIM . (19)

where the decision vector {0,1}nθ∈z denotes whether a parameter is included in the selected 
parameter subset. If zi=1 then θi belongs to the selected subset with the size of ns. The matrix 
FIM is the Fisher information matrix of all parameters. F(z) is the Fisher information matrix of 
the parameters included in the selected subset and it is equal to the principal submatrix of FIM 
with the indices of the non-zero decision variables (the entries of column ij and row ik,  j, k = 
1…ns). 

The optimization problem given by equation (19) is nontrivial to solve as the number of 
possible combinations of parameters grows exponentially with the number of parameters in the 
problem. Reducing the number of parameters to be considered can significantly reduce the 
computational burden. The parameter clustering algorithm can be used as described in the 
previous subsection. Since only one parameter per can be reliable estimated from data, it is 
unnecessary to consider all parameters for the parameter set selection problem.  

 
Algorithm of parameter selection base on parameter clustering 
Step 1. Calculate the sensitivity vectors of the output with respect to the parameters. 
Step 2. Determine ns, the number of parameters per set, by singular value decomposition 

of the sensitivity matrix or the methods of forward selection. 
Step 3. Set parameters whose sensitivity vectors have small length (e.g., less than 5% of 

the largest one) to their nominal values. 
Step 4. Cluster the parameters into ng (ng≥ns) groups with the similarity measure (Eq. 10) 

by hierarchical clustering. 
Step 5. Select the parameter which has the largest sensitivity vector in a group as the 

representative of the group. 
Step 6. Select ns parameters from ng representatives to optimize the criterion function by 

solving the optimization problem given by equation (19). 
 

Different approaches exist for calculating the parameter sensitivity in Step 1. One commonly 
used technique is to calculate the sensitivity value T( )t∂ ∂y θ by solving the system equations 

( )

( )

, ,

 , ,

d
dt

=

=

x f x u θ

y h x u θ
, (20)

and the sensitivity equations simultaneously 
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where x, u, y, θ are states, inputs, outputs, and parameters, respectively. The sensitivity vector 
consists of the sensitivity values at different time points 

TT T T
1 2( ) ( ) ( )i i i n it t tθ θ θ = ∂ ∂ ∂ ∂ ∂ ∂ s y y y , (22)

where si is the sensitivity vector with respect to the parameter θi. 
The number of parameters per set from Step 2 can be determined by the rank of the 

sensitivity matrix. Each column of the sensitivity matrix is a sensitivity vector of a parameter. 
The number of columns is equal to the number of parameters. However, due to correlation 
between parameters, the sensitivity matrix may be ill-conditioned. The rank of the sensitivity 
matrix can be determined by the number of singular values greater than a certain threshold. Step 
3 represents a simple methodology for reducing the parameter set as no parameter with a small 
length of the sensitivity vector needs to be considered. Step 4 performs clustering of the 
remaining parameters into groups and the parameter with the largest sensitivity vector for each 
group is chosen as the representative of this group in Step 5. Step 6 selects the parameters to be 
considered for solution of the optimization problem from equation (19) by taking one parameter 
per cluster as described in Step 5. 

The presented technique can significantly reduce the computational burden for solving the 
optimization problem given by equation (19) as the computational effort for solution of this 
problem grows exponentially with the number of parameters to be considered. 

 
4 Case study 

Modeling signal transduction networks is one important component of systems biology. 
Signal transduction networks are biochemical reaction networks that can contain a large number 
of proteins and the number of parameters in a model usually exceeds the number of proteins. 
Since it is not possible to determine the majority of parameters from experimental data, some 
form of parameter set selection has to take place before parameter estimation is performed 
(Gadkar et al., 2005; Yue et al., 2006; Jaqaman and Danuser 2006). 

To illustrate the technique presented in this work, a model of a signal transduction pathway 
for hepatocytes stimulated by Interleukin-6 is used (Singh et al., 2006). The model, shown in 
Figure 1, contains two pathways: Janus-associated kinases & signal transducers and 
transcription factors are activated in one pathway while the other pathway involves the 
activation of mitogen-activated protein kinases. This model consists of 66 nonlinear ordinary 
differential equations and includes 115 parameters. The state variables are the concentrations of 
the proteins in the pathway and the input variable is the concentration of Interleukin-6 outside of 
the cell that initiates signal transduction. The output variable is the concentration of (STAT3N*)2 
(dimer of activated STAT3 in the nucleus) as this transcription factor can be indirectly measured 
using a green fluorescent protein (GFP) reporter system. A detailed description of the original 
version of the model and the nominal values of the parameters can be found in the literature 
(Singh et al., 2006; Chu et al., 2007), however, the model has been updated to describe the 
mechanism that SOCS3 and SHP2 compete for the same binding site on the receptor (Huang et 
al., 2007). 

The Fisher information matrix is computed in a first step. The sensitivity value is sampled 
every minute during the time interval from 0 to 12 hr to form the sensitivity vector. Singular 
value decomposition of the sensitivity matrix determines that the 9th through 115th singular 
values are close to zero. Accordingly, a parameter set consisting of 8 parameters will be 
selected. In a second step, the lengths of the sensitivity vectors are analyzed. 70 of the 
parameters have sensitivity vectors with a length that is less than 5% of the length of the largest 
sensitivity vector. These 70 parameters will be set to their nominal values and not considered 
further. The problem to be solved turns into a problem where a combination of 8 parameters 
needs to be chosen from a set of 45 parameters such that the D-optimality criterion is 
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maximized. If an exhaustive search were to be performed then the number of possible parameter 
sets that would have to be evaluated would be ~ 82 10× . For the purpose of comparison, the 
forward selection (the orthogonalization method), a solution of the optimization problem via 
genetic algorithm, and the clustering method introduced in this paper are applied and discussed 
in the following.  
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Figure 1. Model of the Interleukin-6 signaling pathway 

Figure 2 shows the dendrogram of hierarchical clustering of parameters. It can be concluded 
that the similarity values between some of the parameters is very high as their sensitivity vectors 
are almost parallel. The diagram also illustrates how the selection of the similarity value 
influences the number of group. For example, if 11 groups are used then the smallest similarity 
value is equal to 0.941 which is illustrated by the dashed line. An increase in the number of 
groups leads to an increase of the lowest similarity value of the system.  

Reducing the parameter space via parameter clustering can be viewed as one type of model 
reduction. The discrepancy between the original model and the reduced model is important as it 
indicated how many groups need to be selected to appropriately represent the original model. As 
discussed in Proposition 2 and Proposition 3, the model discrepancy can be bounded by the least 
similarity measure. At the same time, the smallest similarity measure can be determined by 
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choosing the number of groups from the dendrogram in Figure 2. Therefore the number of 
groups can be determined by assuming the discrepancy to be less than a certain threshold value. 
Table 1 lists the least similarity measure and the discrepancy value for different number of 
groups. If the parameters are clustered into more groups, then the least similarity measure is 
increased and the discrepancy value is decreased. In this case the number of groups is 
determined to be equal to 11 as the discrepancy value drops below 0.05. 
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Figure 2. Dendrogram of hierarchical clustering of parameters 

 
The parameter with the largest sensitivity vector in each group is chosen as the 

representative parameters for the group. The parameters selected for estimation are now chosen 
from the set of 11 representative parameters instead of the original 45 parameters. The 
optimization problem has reduced to determining a set of 8 parameters out of 11 possible 
parameters to maximize the D-optimality criterion of the Fisher information matrix, as compared 
to the original problem that involved choosing a set of 8 parameters out of 45 parameters. The 
computational effort decreases significantly, from ~ 82 10×  possible combinations to 165, due to 
this reduction in the number of parameters that need to be considered.  

 
Discussions 

The phenomenon of highly correlated parameters is an important feature of the complex 
biochemical network. It has been demonstrated that the phenomenon is universe in the existing 
models in systems biology via analysis of the eigenvalue of the Hessian matrix (Gutenkunst et 
al., 2007). Similar inferences were also made by global inversion of a metabolic model (Piazza 
et al., 2008). The parameter clustering method developed and applied to the signal transduction 
network in this work supports the inference from another perspective. Some parameters are 
highly correlated parameters and have very high value of the similarity measure. 

The effect of the correlated parameters on estimation is two folds. On one side the correlated 
parameters result in an ill-conditioned problem for finding the optimal parameter value. Over-
fitting occurs and the estimation which is sensitivity to the noise deteriorates the predictability of 
the model. On the other side, correlated parameters have the overlapping effects on the output 
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and it is unnecessary to estimate all parameters accurately to generate an accurate prediction. 
Parameter selection is both a procedure to overcome the over-fitting by controlling the model 
complexity and an approach to simplify the parameter optimization by reducing the dimension 
of the decision variables. 

Analysis of the highly correlated parameters is essential to not only estimation of the 
dynamic model but also investigation of the underlying mechanism in a biochemical network. 
The hierarchy tree clustered provides a clear map of the parameter relationship. Sensitivity 
analysis is a widely used technique to identify the important parameters. For dynamic system the 
parametric sensitivity is a function of time and is recorded as a sensitivity vector by sampling at 
specified time points. The length of the sensitivity vector which represents the accumulative 
effect of a parameter is often used to rank a parameter. However, it is the whole sensitivity 
profile that records all the information of dynamic effects of a parameter rather than the 
accumulative sensitivity value. The parameters which have the distinct sensitivity profiles may 
have the similar accumulative sensitivity value (Chu and Hahn, 2007). It has been recognized 
that distinct temporal activation profiles of the same signaling proteins result in diverse 
physiological responses (Marshall, 1995; Hoffmann et al., 2002; Kholodenko 2006) and, 
therefore, discriminating the dynamic effects of the parameters is of great importance.  

Clustering of parameters provide a new approach to investigate the importance of a 
parameter taking the dynamic information into account. Since the importance of a parameter will 
change with time not all parameters are comparable. However, for the correlated parameters 
since their sensitivity profiles are similar the parameter which has large accumulative sensitivity 
value is more important than the parameter which has small sensitivity value. So in a group the 
representative parameter selected for estimation which has the largest sensitivity value is also 
the most important parameter in the group. Parameters from different groups have to be 
investigated separately since their sensitivity profiles are different. 

It should be noted that some groups only contain one parameter, such as kf16, kf25 in the 
shown example. These parameters have distinct sensitivity profiles and their effects cannot be 
compensated for by other parameters. These parameters reveal some key parts in the signal 
transduction pathway. The parameter kf16 is in the reaction where the transcription factor enters 
the nucleus. The parameter kf25 controls the reaction where the mRNA leaves the nucleus and the 
mRNA initiates the down regulating via activating the suppressor SOCS3.  

For groups containing multiple parameters it is interesting to know if the parameters in a 
group are close to each other or distributed around the pathway. From the results in the case 
study, the answer is that both situations exist. The parameters represented by kf21 are all in the 
down regulating reactions associated with suppressor PP2 in the nucleus while the parameters 
represented by kf27 are all in the down regulating reactions associated with suppressor SOCS3. 
However, the parameters in the group represented by kf7 are distributed more widely. The group 
contains parameters from both JAK/STAT pathways and MAPK pathway. This provides the 
insight into the coupling of the two pathways and presents the clue for further study.  

Investigation of correlated parameters is also very helpful to analyze the robustness with 
variations of parameter value. It is well known that robustness is a common property of 
biological networks, e.g., resilience to perturbations in current conditions (Stelling et al., 2004). 
The kinetic parameters in a biochemical network can change due to alteration of enzyme activity 
caused by a mutation or a disease. However, biological networks have a certain tolerance 
regarding variations in kinetic parameters while still being able to maintain their functions. One 
important reason for robustness is redundancy built into a network (Chen et al., 2005). As some 
components of a network may fail, there are other components that have a similar effect which 
allows the network to function properly. Parameter clustering can reveal some of these 
redundancies inherent to a system. The variations of some parameters by the change of the 
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environment can be compensated by change of other parameters in the group via self 
regularization of the cell. 

 
Conclusion 

The great number of correlated free parameters contrasted with the limited number of noisy 
experimental data is the main difficulty in estimation of a complex network. The model is too 
complex to fit the data and over-fitting will occur. A method of parameter selection via 
parameter clustering to improve model predictability is developed. The hierarchical clustering 
method is used to group parameters according to their effects on the output. The parameters in a 
group have similar effects on the output and the effect of a parameter can be compensated by 
another. The representative parameters from every group are the parameters selected for 
estimation. The parameter selection circumvents the over-fitting. It results in slightly larger 
value in the loss function, however, it produces a smaller mean squared error and also a much 
more accurate prediction outside the experimental conditions for estimation. Parameter 
clustering also sheds insights into the relationship among parameters and provides a very useful 
tool for analysis of the biochemical network. 
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