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Modeling and simulation of polymerization reactions range from studies of elemental kinetic 
phenomena to real-time plant simulations. Where formerly monomer conversion and property 
averages had been studied, now product properties like full molecular weight distributions, 
copolymer composition, branching degree and network densities are under consideration. 

Because of the numerical complexity of the underlying mathematical equations, even off-line 
optimization and optimal control of such properties is still challenging. An optimal control problem 
for polymerization might consist of several objectives and controls requiring the solution of high-
dimensional population balances. For example, a typical task is to produce a certain shape of the 
molecular weight distribution in optimal time and under some constraints regarding feed strategy 
and maximal temperature. If various controls like initial mixture, time-dependent feed rates, reactor 
cooling function and variable process time are to be identified in one single problem set-up, the 
number of variables can easily increase to several dozens. Apart from the pure technical and 
mathematical aspects to solve such a problem, in practice one has to follow a typical course of 
action. 

• Start with a well-tested, predictive model in a reliable simulation environment 

• Define appropriate objective functions and their relative weighting. For example, if one 
wants to minimize the difference between a property A of the model and the requirement 
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• Decide about the controls (number, constraints, further parameters) 

• Solve a nonlinear optimization problem 

• Analyze the results (optimality, uniqueness, problems) 

• Use the optimized model. 

It can always happen, that at intermediate steps the model has to be reformulated, requirements 
change etc. As a consequence the optimized model drifts apart from the original model and a new 
optimization has to be performed. At the same time, quite new optimization tasks arise such that a 
fixed user-interface will be at its limits soon. Here the basic technical aspects mix with ergonomic 
and software issues. It is required to have a modularized approach, where the simulation part is 
separated from the optimization tasks. Therefore a modular framework has to be developed, where 
simulation, preparations and parameter identification are separated. 

A simplified version of a classical optimal control problem often has the following structure: 
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Here the state variables are denoted by x(t) and the controls by u(t). For polymer systems 
describing a chain-length distribution, x(t) is a vector of formally infinite dimension, in practice 
including ten thousands or even more than one million single components. The control vector u(t) 
might consist of time-.dependent functions like feed rate per time and/or cooling temperature, but 
also of single parameters like initial mass of initiator. The right-hand side f(x(t),u(t)) summarizes all 
reactions and additional balances of a kinetic system. The setup of such systems is described in 
[1]. Among the state constraints there are conditions like a maximal temperature or heat production 
or an upper limit of feed rate. Moreover the process time T may be left open as another 
optimization variable in order to reach a “time optimal” control. 

The functions g and h in the objective function formally describe the deviation of the actual states 
and controls from some required values. For polymer systems the evaluation of these expressions 
can be very difficult. If the shape of a molecular weight distribution is prescribed (usually at the end 
of the process), its deviation compared to a simulated distribution has to be defined in a 
reasonable way. Scaling and weighting play a particular role in this context. 

 
Figure 1: Normalized comparison of shapes of molecular weight distributions, distribution from 
GPC (red) and from actual simulation (blue). 

A general approach to optimal control problems related to differential equations is to apply the 
Maximum principle to the Hamilton function of the system leading to a boundary value problem and 
implicit expressions for the controls. The related analytical preparations and distinction of cases 
are more or less prohibitive in the context if infinite-dimensional population balances. Therefore we 
pursue the so-called direct approach, where all controls are parameterized using certain basis 
functions (e.g. piecewise constant/linear functions, splines, polynomials etc.). By that the optimal 
control problem can be transferred into a large scale parameter optimization problem with 
constraints on the parameters, the resulting control functions and the state variables. The direct 
approach has the advantage that it can be applied to a basic differential equation system without 
much preparation. Furthermore constrains on controls and states can be set directly. A 
disadvantage might be the fact, that dependent on the chosen parameterization, large numbers of 
optimization variables can arise and that the obtained results are usually not unique and not 
optimal in the strict sense of the Maximum principle. Fortunately and in contrast to classical 
parameter identification of kinetic rate constants, for control purposes parameters and controls 
have not to be unique - but (sub-) optimal „only“. This requires special numerical algorithms 



efficient enough to ensure fast convergence, but capable of dealing with underestimated least-
square problems. 

Therefore we sketch some brief details of a new algorithm, originally developed for parameter 
estimation problems, which turned out to be particularly helpful for parameterized control problems 
too. The basic idea is to solve the optimization problem by use of a Gauss-Newton method and 
perform an advanced analysis of the related Jacobian matrix (containing the derivatives of all 
objectives with respect to all parameters) aiming at the number of so-called “essential degrees of 
freedom”, i.e. the number of parameters which can be uniquely identified in the present model in 
view of the present information (i.e. data for classical parameter estimation or constraints and 
requirements for optimal control problems). 

If the number of essential parameters is not maximal, there will be correlations or total 
insensitivities among the parameters. Technically we define the essential directions of the 
Jacobian matrix as those directions which belong (under singular value decomposition) to large 
singular values, hoping that large singular values hold more characteristic of the matrix than small 
ones and that neglecting small singular values will not imply loss of too much information. It has to 
be mentioned, that the obtained number of essential directions in parameter space (leading to 
number of essential parameters) depends on a threshold, which cannot be given as a fixed 
theoretical value, but has to be chosen as parameter of the algorithm itself. However, this 
threshold could be identified to be in a small range for many tested examples (as a rule of thumb: 
the ratio of singular values of the remaining lower-dimensional sub problem should be smaller than 
100).  

The program package Predici [1] has been used for more than 12 years for the modeling of 
polymerization kinetics. The core feature of Predici and its underlying Galerkin h-p-method - the 
computation of full chain-length distribution - has been extended to additional distributed properties 
such as mentioned above. The question is how to make use of this complexity when it comes to 
optimization without change of model structure and definition (since models are permanently 
changed and improved, an optimization procedure should leave the model itself unchanged). 
Whereas for classical optimization problems special algorithms are available - mostly based on 
first and second derivatives of a differentiable objective function - in the context of full chain-length 
distributions a computation of higher order derivatives is prohibitive. Therefore in Predici the basic 
parameter estimation tool has been extended by additional functions to allow for optimal control 
problems.  

Principally all input for a control problem (1) can be done in any typical Predici version. For 
example, inequality conditions of the form ( )i ib x c≤  can be reformulated in terms of a slack 

variable Li to 2( )i i ib x L c+ = . The new parameter Li can be added to the list of model parameters 
and included in the estimation process. Control functions can also be formulated by use of 
commands of Predici’s script language (polygon, polynomial). However, after first successful tests 
with the general approach, it turned out, that for the daily work the permanent redefinition of 
parameters and script function would be error prone and time consuming.  

Instead a preprocessor has been implemented and equipped with a full user interface, called 
Priamoz. The idea is to take the unchanged model set-up, define optimization based requirements 
in the user-interface and automatically generate all functions, parameters and weightings by an 
automatic procedure leading to an augmented system. The subsequent parameter estimation – 
applying the essential directions approach – leads to results which can be checked and confirmed 
and are finally transferred back to a basic model without traces of the intermediate solution 
process. 



 
Figure 2: Selection and initialization of a temperature profile as control function in Priamoz. The 
input is transformed to Predici model input. 

Regarding the objectives all model outputs can be selected. Furthermore also a time-optimal 
control can be added. This requires a variable end time of the process which in turn leads to 
transformation of the controls to be identified. In many theoretical papers thus a transformation 
[0,T]  [0,1] is applied to the differential equation system. Such a transformation, based on an 
optimization parameter Tend, has also been introduced in Predici. Instead of using the unit interval, 
however, a reasonable process time Tp is used to keep all other parts of the dynamic system 
nearly unchanged and to allow direct suggestive graphical output. 

 
Figure 3: Selection of objectives in Priamoz. The reported functions for conversion and polymer 
mean values are part of a Predici model and defined by the user. 

This approach might look like an aspect of pure software architecture, but actually provides an 
efficient and comfortable way to extent the current status of the used tools to new problems without 
programming. It can be used for many kinds of objectives, even in connection to direct rheology 
computations (for mostly linear polymer chains) which are available employing the full information 
of the molecular weight distribution. The whole framework could also be a way to use a common 
interface for the generation of model files of different simulation tools. 
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