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Abstract 

The vision of the Hydrogen Economy is to use renewable energy to power Fuel Cells. Power systems based on this 
pattern have reduced carbon footprint, minimal production of pollutants and potentially high efficiency. Biomass is of 
particular interest as large quantities of plant and wood (cellulose) residues are generated annually and are presently 
considered a waste product.  

Anaerobic Digesters are a commercial, well established, technology for converting a wide range of biomass (manure 
and some plant residues) into a benign solids product and a methane rich gas (biogas). 

A number of demonstration projects have shown that Fuel Cells can operate on biogas, a pattern of energy 
production that is a realization of the Hydrogen Economy. 

The biogas contains a number of contaminants, such as hydrogen sulphide, that are detrimental to Fuel Cells. 
Currently, adsorbent beds are the primary technology for the removal of these containments. These beds must be sized 
correctly in order to protect the Fuel Cell but not oversized in order to minimize capital and operating costs.  

The Bohart-Adams model is widely used to size fixed bed adsorbers. A critical role of the model is to fit it to 
breakthrough curves from laboratory beds, extract model parameters and use the parameters to design the commercial 
adsorber. With properly calibrated parameters, the design of the bed can proceed with confidence. 

This article investigates the method of fitting the Bohart-Adams model to breakthrough data, using methanol 
adsorption on activated carbon as a test case, and computes the consequent error in the model parameters. 



   

   

 

1 Introduction 
A key element in the development of the Hydrogen Economy is the linking of Fuel Cells to a renewable energy resource 

such wind power, solar or biomass. The overall power system has many benefits. As the raw fuel is renewable, the power 
system is carbon neutral: there is no net addition of carbon dioxide to the atmosphere. The Fuel Cell ensures reduced or even 
no emissions of common pollutants such as NOx, SOx and particulates. In addition, Fuel Cells are potentially efficiency with 
efficiencies greater than the prevalent energy conversion technology: the internal combustion engine. If the Fuel Cell operates 
at high temperature (SOFC or MCFC), there is a further advantage as the high quality heat can be converted to additional 
power. 

There are a number of well noted weaknesses in the vision of the Hydrogen Economy. First, renewable energy from wind 
or solar has significant variation with the time of day and season. There must significant means to store energy when it is 
being produced and not needed, so that it is available for use when demanded by the user. The requirement for storage 
capacity greatly increases the cost of power generation with the consequence that ‘green’ power is much more expensive then 
power generated from combustion of fossil fuels. 

The weakness with biomass as a renewable energy lies in processing it to a useful form suitable for a fuel cell. Biomass is 
a complex material that varies with the plant. Some technologies show promise of being able to handle a wide range of plant 
material such as enzyme technology or gasification. However, these technologies are pre-commercial or still under research.  

Anaerobic Digestion (AD) is one well established, commercial, technology able to process a wide range of biomass. AD 
technology is very attractive for decomposing animal manure (cattle, pig or chicken), sewage at waste water treatment plants, 
or kitchen waste in urban areas. The AD converts the ‘waste’ into a methane rich biogas and solids which can be used as a 
soil amendment. The biogas can be converted to power with a ‘genset’ which offsets the costs of the AD installation.  

Moreover, the hydraulic retention time of an AD can be quite long (many days). The AD can ‘store’ biomass for 
significant periods smoothing variation in the feed of raw biomass.  

The AD technology provides a critical link between a renewable energy source and Fuel Cells. There are a number of 
demonstration projects that show this link is technically feasible and that the biogas is suitable fuel for Fuel Cells [1]. 

A common element in these demonstrations is the cleanup of the biogas. Biogas contains a large number of impurities, 
such as hydrogen sulphide, that are detrimental to the Fuel Cell. One technology used to remove impurities are adsorbents 
such as activated carbon [2]. The correct sizing of the beds is important in protecting the Fuel Cell and the overall economics 
of the process. 

The Bohart-Adams model is widely used to size fixed bed adsorbers [3]. A critical role of the model is to fit it to 
breakthrough curves from laboratory beds, extract model parameters and use the parameters to design the commercial 
adsorber. 

In this article, we compare linear and non-linear methods to fit the Bohart-Adams model to a sample breakthrough curve.  

2 Experimental 
A standard breakthrough experiment was performed using a proprietary 

activated carbon. A canister was loaded with 175 cm3 of the carbon and 
dehumidified (RH<15%) by dried air until a constant mass was achieved. The bed 
was then exposed to dried air at 30 SLPM containing 2007 mg/m3 of methanol 
(Aldrich). The exhaust from the bed was monitored by an IR detector that was 
calibrated for methanol concentrations from 0 - 150 mg/m3 (115 ppm). The data 
from the experiment are presented in Table 1. Methanol was detected in the exit 
stream after 13 minutes and reached the limits of the detector calibration after 24 
minutes. The run was extended beyond 24 minutes but the data is not considered 
reliable due to a possible saturation of the IR monitor.  

3 Bohart-Adams Model 
The Bohart-Adams model is well established in the literature [3]. The key 

assumption of the model is the ‘rectangle’ or step isotherm: the equilibrium 

Time Exit Conc.
(mins) (mg/m3)

13 0.13
14 0.26
15 0.53
16 1.18
17 2.49
18 5.52
19 10.64
20 19.83
21 37.29
22 61.19
23 96.25
24 150.61  

 
Table 1 Breakthrough data 

For AGC exposed to methanol 



   

   

capacity of the adsorbent is fixed at sq (mg/cm3) and independent of the concentration of the species in the vapour phase. 
Application of a molar balance over a differential cylinder of the material gives the following governing equations: 
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In equation (1) and (2), c is the interstitial concentration of adsorbate (methanol, mg /cm3 of void space), ν  the 
interstitial velocity (cm/sec), ε  the void fraction, q  the uptake of adsorbate (mg/cm3 of adsorbent) and sq the equilibrium 

uptake. The parameter k , the adsorption coefficient, has units of cm3 of void space/ (mg-sec).  

The bed is assumed to be homogenous and gradients occur only in the axial direction. 

At the time t = 0, the bed is free of adsorbate ( 0=q ) and exposed to an inlet stream of inert gas carrying the adsorbate at 

a constant concentration of 0c . The solution to equations (1) & (2) is: 
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and distance. The exit concentration is obtained by setting Lz = , where L is the length of the bed. 
The use of the Bohart-Adams model to design adsorbent beds requires accurate knowledge of the two parameters k and 

sq . These parameters are not easily predicted since they represent the aggregate effects of mass transfer, pore diffusion, 
kinetics of adsorption and equilibrium. 

It is standard practice to measure a breakthrough curve for the contaminated stream and a proposed adsorbent with flows, 
concentrations and compositions typical of the actual application. Equation (3) is fit to the breakthrough data to determine the 
two parameters. This calibrates the Bohart-Adams model so that it can be applied with confidence to size the bed. 

It is custom to rewrite Equation (3) to facilitate the fit to the breakthrough data. The reciprocal of Equation (3), after some 
trivial algebra, can be written as: 
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c
c 10       Equation 4 

The second term on the right side is usually small and can be neglected. We also recognize that for long times, the term 
νz  in the expression for τ  can be ignored. Taking natural logarithms yields the equation: 
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A plot of LHS versus time yields a straight line. The tools of linear regression are used to compute the intercept and slope, 
from which it is simple to find k and sq . 

The alternative is non-linear regression: fit equation (3) directly to the data and determine the value of k and sq  that 
minimize the sum of squares. 

It is worthwhile noting that equation (5) has the same form as the Wheeler-Jonas equation [4] which has broad use in the 
literature for calculating breakthrough times. Linear regression is also used to fits the model to data in order to determine the 
parameters. This investigation offers insight into the quality of the parameters for the Wheeler-Jonas equation. 



   

   

y = -0.66382x + 18.08277
R2 = 0.99319
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Figure 1 Linear Regression of methanol data according to Equation (5) 

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

10 15 20 25

Time (mins)

R
es

id
ua

ls
 in

 ln
[(c

0-
c)

/c
]

 

 
Figure 2 Residuals in linear regression of 
Figure 1. Residuals are evenly distributed 
about zero although there is a systematic 
variation indictaing a second order 
(parabolic) effect is present 
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Figure 3 Residuals in concentration derived 
from linear regression of Figure 1. Residuals 
are not evenly distributed about zero and 
there is a systematic variation with time 

3.1 Linear Regression 
The results of fitting Equation (5) to 

the data of Table 1 are presented in 
Figure 1. The methanol breakthrough 
data are well represented by Equation 
(5) as the R2 = 0.9934 – most of the 
variance in the data is removed by the 
model. The values for k and sq are, 
respectively, 5.5125 cm3·mg-1·sec-1 and 
18.7446 mg·cm-3 

The interdependence of slope and 
intercept (and also k and sq ) is evident 
in the graph. The intercept is obtained 
by extrapolating the regression 
backwards to zero time (as suggested by 
the backwards extrapolation of the trend 
line). Small changes in the slope lead to 
significant changes in the intercept. We 
also note that the transformation (LHS 
of Equation (5)) is not well defined as 

time approaches zero. The concentration at the exit of the bed is zero at t=0 leading to an undefined calculation. At times near 
zero, small measurement errors in the concentration are amplified via the transformation leading to large uncertainties in the 
intercept. 

The residuals of the fit for equation (5) are presented in Figure 2. The residuals show that there is a small systematic trend 
in the data – a second order term could be included in Equation (5) to improve the fit. However, they are evenly distributed 
about zero and the high R2 of 0.9913 indicates that equation (5) is an excellent representation of the transformed data. 

Figure 3 presents the residuals in the concentration. This is the difference between the data and the concentration 
computed using Equation (3) with the values for k and sq  computed from the linear regression. It is quite clear that there is 
a bias. The residuals increase significantly with time rather being evenly distributed about zero as in Figure 2. The predicted 
values for the concentration are presented in Table 2. 



   

   

An exposition of the theory and calculation of the joint confidence region for the parameters in a linear model is given in 
[5]. The general linear model is written as:  

ZXY += β            Equation 6 

where Y is the response (concentration), X the regressor variable (time) and Z, a random variable representing error in the 
model. The variable β are the parameters, the slope and intercept of equation (5).The fit of the model to data is obtained by 
minimizing the sum of squares: 

( ) 2YyS −=β       Equation 7 

Carrying out the least squares fitting procedure yields the best estimates of the parameters, called β̂ . The estimates can 
be calculated by the expression: 

( ) YXXX TT 1ˆ −
=β      Equation 8 

The joint confidence region for the parameters β at the α confidence level is the ellipsoid: 

( ) ( ) )1;,(ˆˆ 2 αββββ −−⋅⋅≤−− PNPFsPXX TT
                      Equation 9 

where P is the number of parameters in the model, N is the number of data points and F(P,N-P;1-α) is Fishers F distribution 
with P and N-P degrees of freedom. The residual mean square, s2, is calculated from the expression: 
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For the data in Table 1, XT=[1 13; 1 14; 1 15; …,1 23; 1 24] and  
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Other values entering into equation (9) are: P = 2; N-P = 10; F(2,10;0.05) = 4.10 and s2 = 0.04323 ( ( )β̂S  = 0.4328). The 
RHS of equation (9) is 0.3545. 

Equation (9) develops into a quadratic that can be solved for combinations of slope and intercept of Equation (3) that 
defines the boundary of the 95% confidence region centred on β̂ . From the slope and intercept, the 95% confidence region 
for k  and sq  can be developed. 

The results of the calculations are presented in Figure 4. The confidence region is a symmetric ellipsoid while the range of 
k  and sq is surprisingly large. The adsorption coefficient varies from about 5.1 to 5.9 around the optimum value is 5.5. This 
corresponds to a relative variation of about 7% (0.4/5.5*100). The capacity varies from 18.3 to 19.3 around the optimal value 
of 18.7 or a relative variation of about 3% (0.6/18.7*100). 

3.2 Non-Linear Regression 
The non-linear regression involves minimizing the sum of squares (equation (7)) where the model predictions (Y) are 

provided by equation (3). The initial guess for the parameters k and sq was the results of the linear regression. Indeed, the 
numerical routine (SOLVER function in Excel) had great difficulty locating the minimum sum of squares without a good 
initial estimate. The minimum was checked by preparing a two dimensional matrix of values k and sq , computing the sum of 
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Figure 4 The joint confidence region (95% confidence level) for k and sq based upon linear regression. 
The blue line is the boundary of the confidence region and the red dot is the value of k and sq  that 
minimize the sum of squares (Optimum Values). 
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Figure 5 Residuals in concentration 
derived from the non-linear regression. 
Residuals are evenly distributed about 
zero but show a sinusoidal (systematic) 
variation with time 

squares for each combination and manually checking for the 
minimum sum of squares. These efforts lead to values for k and 

sq of, respectively, 4.1804 cm3·mg-1·sec-1 and 19.9305 mg·cm-3.  

The residuals in the concentration of the fit of equation (3) are 
presented in Figure 5. The residuals are evenly distributed about 
zero but show a sinusoidal variation that suggests a small systematic 
trend. This is consistent with the similar observation for the linear 
regression. 

The predicted values for the concentration for the linear and 
non-linear fit are presented in Table 2. The non-linear fit gives much 
better representation of the data at larger times, especially for times 
21 – 24 minutes. The relative error at small times (13 – 15 minutes) 
is much larger than the error in the linear fit but is still close to the 
data. 

The calculation of the confidence region for the non-linear 
estimates of the parameters is given by the equation [5] 
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PSS   Equation 12 

Values entering into equation (12) are: P = 2; N-P = 10; 
F(2,10;0.05) = 4.10, ( )β̂S  = 42.0925. Carrying out the calculations 
gives S(β) ≤ 76.8213. 

A trial and error method was used to determine values of β that 
satisfied equation (12) exactly (i.e. S(β) = 76.8213). This procedure 

was greatly assisted by the matrix of values, mentioned above, to confirm the location of the minimum sum of squares.  



   

   

The results of the calculations are presented 
in Figure 6. The confidence region is an 
apparently symmetric ellipsoid. Increasing the 
confidence level shows that the joint confidence 
region is asymmetric and is banana shaped. The 
adsorption coefficient varies from about 3.93 to 
4.45 around the centre value of 4.18. This 
corresponds to a relative variation of about 6% 
(0.26/4.18*100). The capacity varies from 19.7 
to 20.2 around the optimal value of 19.93 or a 
relative variation of about 1.3% 
(0.25/19.93*100). 

The two regression techniques produce best 
estimates that are significantly different at the 
95% confidence level. That is, the two 
confidence regions do not intersect and there is 
no combination of k and sq  that will generate 
an error that meets the criteria of both equation 
(9) and (12) simultaneously.  

Inspection of the two figures clearly shows 
that the area of the non-linear confidence region (Figure 6) is smaller than the area of the linear confidence region (Figure 4). 
The area of the confidence region is estimated by using the trapezoidal rule. Figure 4 has an area of 0.2315 while the area in 

Time Exit Concentration   (mg/m3) 
(mins) Measured Linear Fit Non-linear Fit 

13 0.13 0.16 0.65 
14 0.26 0.31 1.07 
15 0.53 0.59 1.77 
16 1.18 1.15 2.93 
17 2.49 2.24 4.84 
18 5.52 4.34 8.00 
19 10.64 8.41 13.20 
20 19.83 16.28 21.75 
21 37.29 31.38 35.73 
22 61.19 60.06 58.43 
23 96.25 113.44 94.85 
24 150.61 209.19 152.20 

Table 2 Exit concentrations, computed from the linear and 
non-linear model fits, compared to the experimental data. The 
linear fit is superior for low concentrations while the non-
linear fit is superior for the high concentrations.  
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Figure 6 The joint confidence region (95% confidence level) for k and sq based upon non-linear 
regression. The blue line is the boundary of the confidence region and the red dot is the value of k and sq  
that minimize the sum of squares (Optimum Values). The scales of the graph are the same as Figure 4 to 
facilitate comparison. 



   

   

Figure 6 is 0.01767, a factor of 10 smaller. The area reflects the random error of the underlying measurements. The fact that 
Figure 4 has greater area than Figure 6 indicates that fitting procedure (linear regression) is inflating the error. For this data, 
non-linear regression generates tighter bounds on the parameter estimates  

Another metric of the joint confidence region is its ‘thickness’. Consider Figure 4 and a fixed value for the adsorption 
coefficient. The values of the capacity that lie on the vertical line and within the joint confidence region provide satisfactory 
fits to the data at the 95% confidence level. Clearly, the wider the region at the given value of the adsorption coefficient, the 
larger is the uncertainty in the true value of the capacity. The same analysis can be carried out for a horizontal line in this case 
the thickness is a measure of the uncertainty in the adsorption coefficient for the given capacity.  

In view of this, Figure 6 is preferred over Figure 4 since it is slender ellipsoid and its width in both vertical and horizontal 
directions is smaller. 

Now, it is desired that the ellipsoid collapse to a vertical or horizontal line segment. In either case, the estimates of the 
parameters are independent of each other. For a horizontal line – the uncertainty in the adsorption coefficient has no effect on 
the capacity; for a vertical line segment the uncertainty in the capacity has no effect on the adsorption coefficient. 

In view of this, a final metric of the confidence region is its ‘tilt’. This refers to the angle the region makes with respect to 
the vertical and is a gross measure of the degree of dependence of the two parameters. The dependence is reflected that if one 
parameter undergoes a change, a proportionate change in the other parameter is required in order to maintain the same sum of 
squares or goodness of fit. For a vertical or horizontal line segment, the dependence is zero or absent, and it is possible to 
estimate the parameters independently. 

The extremities of the confidence region are used to define a straight line that lies close to the optimum values and 
approximately bisects the region in two. For Figure 4, the slope of the line is -1.0972 or an angle of 42º from the horizontal. 
For Figure 6, the slope of the line is -0.9094 or an angle 48º from the horizontal. Both regions indicate a similar dependence 
between the parameters. 

4 Summary 
The Bohart-Adams can be fit to measured breakthrough data in two different ways. The conventional method involves 

linearization of the model (see equation (5)). The fitting can be conveniently done in a commercial software (excel) with 
automatic generation of relevant statistical metrics and tests. The non-linear fitting is more involved and finding the 
parameters that correspond to the true minimum in the sum of squares is difficult. Moreover, the construction of the joint 
confidence region, the key entity in assessing the quality of the fit and the error in the parameters, is non-trivial. 

The two methods generate statistically different parameter estimates but these estimates differ by much less than a factor 
of 2. For the data presented in this article, the difference in the estimates is on the order of 30% for the adsorption coefficient 
and 6% for the capacity. 

The advantage of the non-linear fit procedure is that the joint confidence region seems to be significantly smaller than the 
corresponding region generated by linear regression. This leads to better estimates of the parameters (smaller error). However 
the degree of correlation between the parameters is quite similar for the two fitting methods. 

These conclusions are strictly limited to the experimental data presented in this article. However, these findings motivate 
carrying out a similar investigation on a broader collection of data to confirm advantages of non-linear over linear regression. 
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