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Introduction 
 

The research in conversion of agricultural biomass into ethanol has gained 
momentum due to high price of petroleum, the demand to reduce greenhouse gas 
emissions, and the recent US government policy on reducing foreign oil dependence. 
However, research in production and supply technologies should also be done in 
conjunction with ethanol conversion development. One challenge is in the collection, 
packaging, storage, and transport processes of the materials from the field to biomass 
refineries. This paper integrates the above processes into an optimized, multi-objective  
economic production model. We present a method that employs Shephard's activity 
analysis output model that is similar to the Data Envelopment Analysis (DEA). Activity 
analysis has been used to measure the efficiency and profitability of many agricultural 
and industrial production processes. The method that we propose to apply models 
dynamic production processes and intermediate production, among many other 
components of a production process. Shadow prices for undesirable outputs (pollutants) 
can also be calculated. Activity analysis is implemented in a linear program to calculate 
the optimum combination of inputs (costs) and outputs (revenues) of production 
processes, and can be dynamically linked to biophysical models to include environmental 
effects of production.  We describe the components of our integrated modeling system 
below. 

 
Optimization of Multiple Objecitives 

 
A multi-objective optimization problem (MOOP) is generally understood to 

contain a number of objective functions that are to be minimized.  Following Deb (Deb, 
2001), the general form of a MOOP is: 
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The MOOP consists of M objective functions, with J inequality constraints and K 
equality constraints.   A solution x is a vector of n decision variables that are constrained 
by lower L

ix  and upper U
ix boundaries. 

 



 
 
Figure 1.  A hybrid genetic algorithm linking an economic model and a physical model        

(SWAT). 
 

A simple genetic algorithm (GA) is an iterative algorithm based on retention of 
the best or “fittest” members of a population of answers until a stopping condition is 
satisfied (Goldberg, 1989).  In an optimization application, the GA consists of an initial 
randomly generated population that is evaluated for fitness using an objective function, a 
test for convergence, and application of the GA operations of selection, crossover and 
mutation.  These elements are followed iteratively until an optimum has been obtained 
(Figure 1).  The non-dominated sorting algorithm (NSGA-II, Deb, 2002) is used to 
optimize over several objectives.  This algorithm retains the non-dominated individuals 
from each generation, resulting in a estimate of the trade-offs among multiple objectives.  
The algorithm shown if Figure 1 uses and economic model to  simulate producer 



behavior and a physical model to simulate the effect of producer behavior on the 
environment (Whittaker, el al., 2009).  A novel feature of this algorithm is the dynamic 
linkage among models.  Information is exchanged between models at each generation 
during the search for an optimal set.   Almost all current integrated modeling systems 
optimize linked models in sequence, i.e., information only flows in one direction between 
the component models. 
 
Economic Model – Activity Analysis 
 

Each objective in the multi-objective genetic algorithm is specified by a model, or 
combination of models.  In this study, profit maximization is assumed to be the objective 
of producers, and is optimized using activity analysis.  In an activity analysis 
representation of a technology observed for a group of firms, there are 

decision making units (DMUs).  Each DMU uses 1, ,k = … K ( )1, , M
Mx x x += ∈ℜ… inputs 

to produce outputs. The observed inputs ( )1, , N
Nu u u += … ∈ℜ ( )1 , ,k k k

Mx x x= … and the 

observed outputs  are used together with the intensity variables 

, to form the reference technologies.  Here we do not constrain the 
DMU profit, i.e., profit may positive or negative. We relax the assumption of constant 
returns to scale, and allow variable returns to scale by constraining the intensity variables 
to sum up to one. Our basic model is then 
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Denote input prices by and output prices by kp +∈ℜ kr +∈ℜ .  Then the profit of DMU k 
can be computed as the solution to the following linear program: 
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Additional constraints can be added to model optimization of transport from farm to a 
production facility. 

Figure 2 illustrates this model with a technology consisting of 3 observations (a,b 
and c) of production where one input is used to produce a single output.  The technology 
T is bounded by the line including a, b, and c, and includes the area under the boundary.  
The maximum profit is obtained by production at the facet where the price line is tangent 
to the boundary of the technology.  There are three different input prices shown in Figure 
2, 1 2 3, ,p p p , while the output price remains constant.   

 
 

 
Figure 2.  Profit maximization using Activity Analysis for technology T, facing three 
different input prices. 

 
 
Physical Model 
 

We use the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) to 
simulate stream flow and associated movement of nitrogen, phosphorus, and sediment 
(among other variables) in the agricultural production of biofuel feedstock.  SWAT is a 
geographically distributed model that simulates stream flow, plant growth and fate and 
transport of chemicals and sediment.  In the genetic algorithm used for optimization, the 
profit maximizing amounts of inputs to production are calculated using activity analysis, 
and fed into SWAT to simulate the environmental effects of profit maximizing 
production. 



 
Water Quality Index 
 

In this study, we calculate the effect of agricultural production on water quality 
using the outputs from SWAT.  An index gives a single number that represents the water 
quality of at the outlet of the simulated basin, and is calculated as the weighted sum of the 
metrics of water quality.  These metrics include total suspended solids, levels of nitrogen 
and levels of phophorus, among others.  By applying a variation of the Malmquist (1953) 
index, the weights are endogenous to the calculation.  That is, they are derived from the 
observed data rather expert opinion , or some other method.  We assume there are N 
characteristics of water quality x, and 1, ,k K= … measurements (observations) of water 
characteristics at time periods.  Our data is represented   1, ,t = … T

.t N
k
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In this study we define the reference technology (or benchmark) using all 

observations, i.e., it is defined as K T×
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where , are intensity variables.  The intensity variables from the convex 
combinations of all the data points.  The lower boundary of this set is the best practice 
benchmark isoquant II in Figure 1.  For each observation we compute 
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Suppose we compare with ( ,k t′ ) ( ), 1k t′ + , then the water quality index (WQI) is 
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In this application, we compare all measurements through all time periods, so ,k tθ ′  is set 
equal to 1.  If WQI = 1, water quality is equal to the best practice.  WQI values greater 
than 1 indicate a poorer water quality.  To implement the calculation, we use a linear 
program to solve (6) for each observation, then calculate (7), the water quality index.   
 

For this study, we assume that the water characteristics are undesirable, and 
should be minimized.  The two dimensional case is illustrated in Figure 1, where we wish 
to compare vector 0x  of length 0C with vector 1x of length 0B.  The benchmark that we 
use for comparison is the best practice benchmark II, where we are indifferent as to 
choice among points that lie on the benchmark. Each distance AB and DC, known as 
Shephard’s input distance function, is the distance that each vector can be proportionally 
reduced to reach the benchmark (II).  The ratio of the input distance functions, i.e. 

/
/

OB OA
OC OD

 is the Malmquist consumer/input quantity index, and we conclude for this 

example that 1x  has better water quality than 0x . 
 
Integrated Modeling System 
 

Figure 4 shows the data flow of the complete integrated modeling system.  The 
system is implemented in the statistical programming language R and FORTRAN.  Given 
the large computational requirements of the modeling system, we set it up to run on a 
Beowulf cluster.  The algorithm is parallelized by running the evaluation step of the GA 
for an individual on a node in the cluster. 
 

The results from the use of this integrated modeling system may be used to assess 
the efficiency and economic viability of alternative technologies employed in agricultural 
biomass removal and transport for ethanol production.  The system requires substantial 
knowledge to set up and run.  We propose that the output of the modeling system 
distributed to stakeholders will be a database containing the set of trade-offs among 
objectives.  Any stakeholder can find the optimum solution that fits their preferences by 
querying the database.  Stakeholder choices will be informed by a state of the art 
modeling system, without a requirement to understand or run the modeling system. 
 
 
 



 
 
Figure 3.  Construction of the Malmquist index with two constituents of water quality. 
 
 

 
 
Figure 4.  Information flow for integrated modeling system for multi-objective simulation 
of agricultural bio-fuel feed stock production. 
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