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Abstract 
 
Paper machine data taken from scanning sensors, used to 
assess the quality of the two-dimensional sheet,  normally 
includes significant noise components as well as aliasing 
effects resulting from the irregular sampling pattern of 
the scanning sensor.  The separation of the cross machine 
(CD) variations from those in the machine direction (MD) 
is important for control purposes, but is compromised by 
interaction of scanning patterns with MD disturbance 
frequencies.  Different filtering techniques have been 
proposed to remove the noise, mitigate aliasing, and 
provide accurate CD profiles that are not distorted by the 
high frequency machine direction process variations that 
are present in the data 
The filtering method presented here uses wavelet filtering 
for noise reduction, and takes advantage of a bootstrap 
recursive scheme for successively improving estimates of 
MD and CD variations in the scanned data.  The 
approach also uses periodic sampling theory for 
interpolating the process variations, recognizing the 
changing sampling pattern at different CD positions. 
 
 
1. Introduction 
 
1.1. Scanning Sensors 
 

The fundamental issues addressed in this paper are 
illustrated in Figure 1.  A scanning sensor moves slowly 
back and forth across a rapidly-moving sheet of paper, 
with the sensor continuously gathering data on one or 
more paper properties.  Typically the sensor takes about 
20 seconds to traverse the 10m sheet, while the sheet may 
be moving past at up to 120 km/hr.  Sensors for sheet 
basis weight (mass per unit area), moisture content and 
thickness are commonly mounted on the sensor.  In this 
paper we consider both basis weight and moisture 
variations; the methods can be applied equally to the 
other sheet properties. 

The data gathered by the sensor is a combination of 
the MD process variations, which are assumed uniform 
across the sheet and changing rapidly, and the CD profile, 
which is assumed to change relatively slowly.  As 
indicated in Figure 1, the resulting sampled measurements 
would follow a set of diagonal paths on the sheet if it 
were stationary, with irregular but periodic samples being 
made of the MD direction variations, and essentially 
continuous measurement along each scan furnishing data 
that is a combination of CD and MD variations. 

 

 
Figure 1- Scanning Sensor Path on Paper Sheet 

 
It is important to separate sheet property variations 

into MD and CD components since completely different 
control mechanisms are used to minimize the two classes 
of variations.  It is useful to identify MD variations 
accurately but their control is normally only possible 
through a slow acting loop that involves processes 
upstream of the paper machine itself.  CD control is 
possible on the paper machine itself, using a variety of 
different mechanisms, so that the process delay and 
dynamics between actuator and measurement become 
significant in determining the bandwidth that can be 
controlled. 
 
1.2. Cross and Machine Direction Separation 
 

A substantial literature exists on the problem of 
separating MD and CD variations from scanned data.  It 



 

is common in the industry to process the data one scan at 
a time and to estimate the CD profile by exponential 
filtering of successive scans after first removing the scan 
average.  The filtered profile is then taken as the CD 
estimate, the scan average taken as MD variation with the 
balance of the measured data assumed to be noise.  Such 
an approach ignores the scanning geometry and makes no 
organized attempt to assign the spectral components of 
the scanned data to the MD, CD and noise categories.  
Early methods[1] for separating MD and CD included 
bootstrap algorithms using least squares methods to 
estimate CD and Kalman filtering to track MD changes  
More recently wavelet analysis[2] has been applied to 
track the spectral content of the measurements in real time 
and to use this as a basis for MD/CD separation.  There 
has also been significant work [3] on setting the scanning 
operation into a formal two dimensional sampling theory, 
leading to accurate reconstruction algorithms. 

The approach presented in this paper draws on several 
of these themes.  The idea of recursive bootstrap 
estimation is used to refine separation of estimated MD 
effects from the CD profile, wavelet filtering is used in 
order to identify noise components and, finally, periodic 
sampling theory is used to remove the effects of scanning 
geometry from the scanned data before it is processed. 

The method has been tested on simulated data, in 
which case we have the advantage of knowing the true 
variations.  Analysis has also been carried out on 
operating data, in which case the impact of the method 
can only be inferred from a comparison with the estimates 
provided by other filtering approaches.  The acid test 
would come from analysis of the paper sheet in the 
laboratory after production, but the cost, logistics and 
experimental requirements of such a correlation mean that 
it is almost never feasible.  We have no such data to 
present here. 

 
2. Non-Uniform Sampling & Reconstruction 
 
2.1. Periodic non-uniform sampling 
 

The scanner measurement samples taken at each CD 
position on successive scans form a non-uniform but 
periodic sampling scheme, with the pattern of periodic 
sampling changing with CD position.  In this case there 
are two samples per period.  More generally there may be 
an arbitrary number of samples within each period before 
the pattern is repeated, as shown in Figure 2.  It is well 
known that in such cases the relation between the 
bandwidth of a signal that is to be exactly reconstructed, 
and the minimum required Nyquist sampling rate of twice 
the bandwidth, holds true if the average sampling rate 
satisfies the Nyquist constraint.  Thus, in principle, the 
variations in MD sampling pattern across the sheet are of 

no concern and are equivalent for reconstruction purposes 
to the uniform sampling that occurs at the centre of the 
sheet.  In practice, however, measurement noise effects 
on the reconstruction process are strongly influenced by 
the sampling pattern within each period.  Samples 
obtained close to the sheet edges arrive in closely located 
pairs and do not allow reconstruction with the precision 
available from samples at the centre of the sheet. 

To describe the general sampling pattern, samples are 
considered as N different uniform samples of the signal 

)(tx  interlaced in time. Each set of samples is fitted into 

the pattern by a set of N delays kτ .  T defines the average 
sampling time.  Thus the sample times are: 
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Figure 2 - Periodic Non-uniform Sampling 

 
For periodic non-uniform samples of )(tx , in a special 
case when N=2 and τττ =−= 21 , the following 
interpolation formula holds. [4] 
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Here W is the bandwidth of the signal, T is the average 

sampling time, and it is assumed that we are sampling at 
exactly the Nyquist rate in relation to the bandwidth of 
the signal.  Note that this interpolation is non-causal. 

For the paper machine scanning arrangement, the 
value of τ  changes between different CD positions. This 
change will affect the reconstruction relationship, with 
the weighting amplitude assigned to the interpolation 
function associated with each sample increasing 
dramatically as τ approaches the value of 1, which 



 

indicates the edge of the sheet.  This is shown in Figure 3, 
where the individual interpolating functions are plotted.  
The variable, a, as indicated in Figure 1, varies from a=0 
at one side of the sheet to a=1 at the other.  At the centre, 
where a=0.5, the interpolating function becomes the 
familiar sinc function of uniform sampling theory. 

 

 
Figure 3 - Reconstruction Function Amplitudes for 

Different CD positions 

 
2.2. Reconstruction Using Filters 
 

In Figure 3 [5] an arrangement of non-causal filters 
equivalent to the interpolation approach described in 
section 2.1 is shown.  The periodic non-uniform sampling 
arrangement of the scanning sensor, where two samples 
are taken in each sampling interval of 2T, is illustrated.  
One sample is taken at a point a seconds before the scan 
end and the other at a point a seconds after the scan end. 
The reconstruction of data from this sampling strategy, as 
shown in Figure 3, consists of one channel including a 
forward shift and the other with a backward shift. 
 

 
Figure 4 - Data Reconstruction using Generalized 

Sampling Theorem 

Perfect reconstruction, is possible using this technique 
if we have a band limited signal. However, in reality the 
signal is highly corrupted with noise and is not band 
limited to the Nyquist rate of sampling.  In the presence 
of white noise, the reconstructed signal from a set of 
periodic non-uniform samples can be shown to amplify 
noise power relative to the uniform sampling case by a 

ratio dependant on the separation of the samples.  For our 
case, with two samples, the noise amplification factor [6] 
will vary as shown in Figure 5, with the value of a lying 
between 0 and 1. For the case of periodic sampling a=0.5, 
at the sheet centre, the noise amplification factor is 1, as 
expected.  The noise interpolation factor is the ratio of the 
variance of the noise of the reconstructed signal to that of 
the white noise added to the original signal. 
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Figure 5 - Noise Amplification factor at different CD 

positions 

 
3. Recursive Filtering Algorithm 
 

The algorithm presented here initially processes the 
scanned data so as to eliminate the periodic sampling 
effects discussed in Section 2.  The data is then 
recursively processed using wavelet filtering in order to 
separate MD and CD variations from noise terms.  In the 
examples that follow, scanned data has been processed in 
real time – i.e. causal filtering has been used.  Significant 
improvements would be possible if batch processing of 
the accumulated data were possible, but the additional 
delay involved is not normally acceptable. 

Wavelet methods have been shown to be effective for 
removing noise from the data.  We initially assume that a 
CD profile estimate is available.  Then this CD profile is 
subtracted from the measured noisy data, to leave a first 
estimate of the MD variations, which are treated as a one-
dimensional data set.  Wavelet de-noising is effective in 
removing noise components from this MD data.  With 
this MD estimate, the recursion is initiated by returning to 
the raw scanned data and refining the estimated CD 



 

profile, which will include noise terms.  Wavelet filtering 
is again applied, now to the CD profile. 

The block diagram shown in Figure 6 describes this 
procedure. 
 

 
Figure 6 - Recursive Filtering Algorithm 

 
Initially, a filter based on the periodic sampling theory 

described earlier, is applied to the scanned data.   The 
non-causal filters can be approximated at this stage by 
causal ones for real time processing.  The full filter is 
used for off-line batch applications.  The reduced filter is 
similar to conventional exponential filtering, with the 
difference that the time constant is changed in recognition 
of the varying time intervals between the samples varies.  
In this way the sampling geometry of the scanner is 
recognized. 

 
4. Simulation Results 

 
The algorithm has been tested on a variety of 

simulated data sets, and typical results are shown in 
Figures 7 and 8.  The data was corrupted by white noise 
of standard deviation σ=0.2 imposed on a signal of unit 
amplitude.  It will be seen that excellent estimates are 
obtained in comparison with those generated by 
conventional filtering. 

MD signals are shown in Figure 8, which shows that 
using the wavelet algorithm described above gives 
excellent estimation of the MD signal compared to using 
the exponential filter, or scan average. 

 
Figure 7 - CD Profiles: Actual (left) & Filtered (right) 

 

 
Figure 8 – True & Estimated MD Signals 

 
Error variance analysis for the MD signals establishes 

that the wavelet filtered MD error is very minor compared 
to that of the exponential filter.  

In the simulation the scan time needed for the scanner 
to move from one side of the sheet to the other, is 
assumed to be 20 seconds.  The data has 100 
measurement points, and 40 scans are taken into account. 
The true MD signal is a relatively slow pure sine wave; 
the CD is also a sine wave that decays in time. 
 
5. Industrial Results 
 

The proposed algorithm has been tested on an 
industrial set of moisture data, for different periods of 
time.  Figure 9 shows the CD profile estimates obtained 
using conventional filtering, while Figure 10 show the 
CD profiles obtained using wavelet filtering. 

 



 

 
Figure 9 – Filtered CD Using Exponential Filter 

 
Figure 10 - Filtered CD, Using Wavelet Algorithm 

 
Figure 11 - CD Variance of the Filtered Data 

Figure 11 compares the CD error variance of the data, 
to the error variance of the CD profile if it was filtered 
using conventional methods. 
 

6. Conclusion 
 

It has been shown that recursive wavelet filtering can 
provide excellent reconstruction of both machine 
direction and cross machine process variations.  Sampling 
geometry has been taken into account in filtering data 
before it is submitted to the wavelet processing.  The 
proposed method combines approaches, each of which 
has been discussed individually elsewhere.  This method 
is applied to the measured data following each scan, and 
so may be performed on line. 

Important issues remain to be addressed.  The aliasing 
effects of high frequency machine direction disturbances 
should be addressed in a formal manner, especially when 
these variations are close the scan frequency.  Variable 
rate scanning has been proposed as a method to address 
these issues.  It is also important to note that the full 
application of periodic sampling theory has not been 
implemented both because of noise issues at the sheet 
edges as indicated in Figure 5, and because of a need to 
restrict data processing to a scan-by-scan basis.  Batch 
processing would allow more accurate results, as would a 
full analysis of causal non-uniform sampling filters. 
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