
Approach to 3 × 3 Decoupling and Control of Thermomechanical Pulp Refiners

Daniel Berg
daniel.berg@cit.chalmers.se

Anders Karlström
anders.karlstrom@cit.chalmers.se

Chalmers University of Technology
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Abstract

Theories for the exact and approximative decoupling of
2 × 2 transfer function matrices are well developed and
readily available in the literature. Extended to a 3 × 3
structure, decoupling approaches sometimes turn out to be
somewhat complicated to perform. In this paper, a primary
refiner is modeled using a linear 3 × 3 system structure. In
addition to consistency and motor load, refining zone tem-
perature are regarded as outputs. The inputs that are used
are production rate, dilution-water feed rate and hydraulic
pressure.

Both approximative and exact dynamic decoupling are
investigated and a sufficient condition for stability is given.
It is found that the dynamic decoupling of 3 × 3 systems
can result in slow control action for the closed-loop sys-
tem. Simplifications of the dynamic description are there-
fore introduced by reducing the system to a 2 × 2 system
and choosing the optimal inputs and outputs such that the
relative gain array for the sub-diagonal elements is essen-
tially negligible.

1 Introduction

Significant improvements have been made in the paper-
making process, as well as in the defibration of wood and
pulp, during the last decade. New control strategies for re-
finers have been proposed and it is known that specific en-
ergy alone is insufficient when characterizing the refining
process [18]. Recently, refiner control strategies have fo-
cused on new measurement techniques, such as plate gap
and blow-line consistency measurements, to keep the qual-
ity as constant as possible [23]. Techniques for measur-
ing temperature inside the refining zone have also been pro-
posed as a complement to different measurement techniques
[19], but the primary aim so far has been to use new knowl-
edge relating to internal states to increase our understanding
of the refining processes [5].

Although many theoretical approaches to the control of

TMP plants can be found in the literature [1, 6, 8], it is es-
timated that about 90% of all the installed advanced control
systems are disconnected within a year [11].

The TMP system is a Multi-Input Multi-Output (MIMO)
control system, a fact that appears to be handled in two
ways. Either by disregarding it completely using several
Single-Input Single-Output (SISO) loops, sometimes with
additional heuristic information about some dominant in-
teraction in the process, or by installing a model based con-
trol such as predictive control [7, 11]. Another method for
obtaining a flexible control structure is to combine a sim-
ple controller with some kind of decoupling filter. This,
however, requires some knowledge of the process dynamic
associated with the interactions. The literature on the de-
coupling of 2 × 2 systems is extensive [13, 24, 25] and the
results are, for example, applied to distillation control [16].
In the case of general MIMO systems, research focus on the
conditions for the existence of decoupling controllers [12]
and numerically deduced precompensation filters and con-
trollers [26].

In this paper, the decoupling strategies that are often used
in 2× 2 systems [24] have been generalized to produce the-
ories relating to a 3 × 3 system. In Section 2, fundamentals
relating to decoupling phenomena in refiner processes are
considered. The results of the theories applied to refiner
systems are presented in Section 3, together with a reduc-
tion of the system complexity from a 3×3 system to a 2×2
system.

2 Fundamentals

The approach proposed in this paper is based on the work
presented by Eriksson et al. [9], where full-scale industrial
TMP refiners were modeled and verified. From a system
perspective, it was shown that a simplified, time-invariant
model structure for two serially-linked refiners can be given
by the relation

yx = Gx(s)ux, x ∈ {1, 2} (1)

where Gx(s) is the transfer-function matrix.



Most frequently, the input signal vectors ux, see Fig. 1,
relate to the chip and dilution-water feed rates, in addition to
the hydraulic pressure applied to the stators [2]. The output

Figure 1. The principal refiner-line structure.

vector, yx, can be the measured or estimated consistency [5]
in the blow line, the motor load or other measurements like
the temperature in the refining zone [21]. The refining pro-
cess is thereby a typical MIMO system, with at least three
inputs and a variable number of outputs. This implies that
a number of different control strategies exist, depending on
the process design.

In some processes, the hydraulic pressure is kept as con-
stant as possible, while in other cases it is an input used for
plate-gap control. When hydraulic pressure (or plate gap) is
not assumed to be a constant input candidate, the Gx(s) is
at least a 3 × 3 system with several interactions, where the
inputs affect more than one output. To control processes of
this kind, it is important to have a global control approach
and to reduce the interactions in the system.

Figure 2. Decoupled open system S = GP . G
is the actual physical system (refiner) and P
is the decoupling filter.

One common procedure for reducing interactions is to
introduce software-based decoupling filters P = [Pij ]3×3,
see Fig. 2, so that a matrix S = GP is diagonal and non-
singular, i.e.

S =


 S11 0 0

0 S22 0
0 0 S33


 (2)

There are several ways to design P , whereof two are exact

decoupling, where S is chosen and P = G−1S calculated,
and approximate decoupling, where P is found by minimiz-
ing a cost function numerically.

The choice of the exact decoupled system, Se, can be
made theoretically in an infinite number of ways. One
choice is

Se
ii = det(G)∆−1

ii , i ∈ {1, 2, 3} (3)

where ∆ij are the cofactors of G [20]. The superscript e
denotes exact decoupled. This is a generalization of the
”optimal” choice for a 2 × 2 system [24]. This choice is
also known as simplified decoupling, as opposed to ideal
decoupling [16, 25], where Se

ii = Gii.
The exact decoupling filter coefficients are then

P e
ij =

∆ji

∆jj
i, j ∈ {1, 2, 3} (4)

implying that the diagonal elements are unity.
If stable first-order systems are assumed for the elements

in G, i.e.

Gij =
Kij

Tijs + 1
, i, j ∈ {1, 2, 3} (5)

where Kij and Tij > 0 are the low-frequency gain and
time constant respectively, a rule of thumb for stability can
be formulated. The cofactors, ∆ij , and the determinant,
det(G), are stable as G is stable and consequently P e and
Se are stable, if the inverse of the diagonal cofactors, i.e.
∆−1

ii , is stable. Fulfilling the inequalities

|Kkk||Kll| > |Kkl||Klk|
TkkTll < TklTlk

Tkk + Tll < Tkl + Tlk

,
k, l ∈ {1, 2, 3}
k �= l

(6)
thus produces a stable system [4].

Sometimes, the exact decoupling filter can be replaced
by a constant filter matrix P c which only decouples at a cer-
tain frequency, s = iω, i.e. P c = P e(iω). Two interesting
decoupling frequencies are ω = 0 rad/s and the cross-over
frequency ω = ωc rad/s, where the former is frequently
used to avoid complex valued coefficients. This choice is
applicable if the degree of coupling is frequency insensi-
tive [4] and this can be determined visually by plotting the
frequency-dependent relative gain array matrix (RGA) [15]

RGA(ω) = G(iω). ∗ (G−1(iω))T (7)

The sign ”.∗” denotes element-wise multiplication and G is
a transfer-function matrix. The RGA for the refiner system
G is shown in Fig. 3, where the left-hand indices refer to
RGA elements, (i, j) ⇔ RGAij . A high degree of cou-
pling between the input i and the output j is indicated by
RGAij ≈ 1. Exact decoupled systems will have diagonal
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Figure 3. RGA for a refining system process
described by the transfer-function matrix G.

elements RGAii(ω) ≡ 1 (solid lines) and sub-diagonal el-
ements RGAij(ω) ≡ 0, i �= j.

Exact decoupling becomes complex when the model or-
der is increased. For a general transfer-function matrix,
G = [Gij ]n×n, the order of det(G) is m · n · n!, where
m is the order of elements Gij , i, j ∈ {1, 2, . . . , n}.
In the equivalent manner, the co-factors have the order
m · (n − 1) · (n − 1)!. The high model order often implies
numerical difficulties [4].

Designing an approximative decoupling filter

Pn
ij(s) =


 κij

σijs + 1
τijs + 1

, i �= j

1, i = j
i, j ∈ {1, 2, 3} (8)

is another way to create an analyzable system. The filter
coefficients κij , σij , τij are calculated by minimizing a cost
function

min
κ,σ,τ

∑
i�=j

∫ ∞

0

yij(t)dt (9)

where yij(t) is the unit step response of Sn
ij , Sn = GPn

[24]. The superscript n denotes numerically optimized de-
coupled systems.

3 Results

As there are three inputs and several output candidates,
the refiner system naturally becomes a n × 3 system. If
a temperature vector containing measurement signals from
eight sensors is used, the complete system has ten outputs.
Using one of these sensors as an output, the structure can
be described as a 3 × 3 system. As can be seen in Fig. 4,
which illustrates the low-frequency gains Kij defined in Eq.

5, the use of the temperature sensor T4 or T5 as an output
will produce a small gain from the dilution-water feed rate,
while the other temperature sensors will produce a larger
|Kij |, which is not attractive from a decoupling perspective.
When choosing the load as an output, |Kij | will be large
as well, while the consistency as an output will result in a
small gain when the production rate and hydraulic pressure
are changed. This information is valuable when trying to
find sub-diagonal elements with small RGA values.

Figure 4. Low-frequency gains for different el-
ements in a 10 × 3 system.

In this paper, elements in the transfer-function matrix for
the primary refiner are first-order models with one pole es-
timated using an output-error (OE) model [14].
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(10)
The low-frequency gains have been derived using PLS mod-
els [10] in order to verify stationary behavior, as measure-
ments from a refiner are usually noisy and exhibit time vari-
ations [3], as well as direct-dependent dynamics [22]. The
refiner system is clearly coupled with several interactions,
which can also be seen in Fig. 3.

The need for decoupling can be verified by first apply-
ing a feedback control to each individual diagonal element
Gii(s), as shown to the left in Fig. 5. The controllers Fii(s)
are assumed to be PI controllers. Each diagonal feedback
loop is stable with a large stability margin, as the phase
margin has been set at 90◦. The crossover frequency ωc

is approximately the inverse of the dominant time constant
of Gii. However, if the same control approach is applied to
the MIMO system, Fig. 5, right, where all interactions are
included, the closed-loop system becomes unstable. This is
shown in Fig. 6, where the step responses of the input sen-
sitivity function, (I +GF )−1G, have been plotted. The use
of the input sensitivity function, i.e. di to yi in Fig. 5, and
not the sensitivity function (I+GF )−1 is justified as distur-



Figure 5. SISO-loop design applied to diago-
nal elements, left, and the actual MIMO sys-
tem, right.
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Figure 6. Input sensitivity function for cou-
pled system G.

bances, such as chip and dilution-water feed disturbances,
[2] are input disturbances.

For the open, exact decoupled system Se in Eq. (3), step
responses are shown in Fig. 7 and, as desired, sub-diagonal
elements are close to zero. Frequency dependent RGAs for
Sc and Sn are plotted in Fig. 8. As can be seen, both are
decoupled for lower frequencies but not for higher frequen-
cies — the former owing to the frequency dependence of
the coupling, the latter as the optimization routine [17] has
a problem converging properly due to the complexity of the
optimal solution.

Step responses for the input sensitivity functions for the
decoupled MIMO systems are shown in Fig. 9. Exact de-
coupling is plotted with a solid line, static decoupling with
a dotted line and numerical decoupling with a dash-dotted
line. The closed-loop systems are formed by applying the
same control strategy as for G, see Fig. 5 but adjusting ωc

to the inverse of the dominant time constant of the diago-
nal elements of the decoupled systems. The sub-diagonal
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Figure 7. System decoupled with exact de-
coupling.
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Figure 8. RGA for numerically decoupled sys-
tem, left and for static decoupling, right.

elements of numerically and stationary decoupled systems
have a transient response but negligible low-frequency gain,
which is also indicated in Fig. 8. The scale in Fig. 9 is
selected to emphasize the fact that numerically decoupled
sub-diagonal elements also have transient responses.

Consequently, even though the filter can be designed,
a more robust solution should also be considered as time-
varying aspects can, for example, affect control robustness.
Decoupling of the 3 × 3 system does not solve the prob-
lem satisfactorily. Important time constants for the refiner
are normally about 10 seconds, as can be seen in Eq. (10),
while for the decoupled system in Fig. 7 the relevant time
constant will be about 50–100 seconds. An examination of
Fig. 4 reveals that the low-frequency gain using load as an
output is high for all input signals. This is to be expected,
as load is the ”sum” of all the actions in the refiner. How-
ever, this also implies a high degree of coupling, see Fig. 3,
where the elements with output (3, j), i.e. load, are highly
coupled. For systems with a high degree of coupling, re-
moving the most coupled input and output signal according
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to the RGA can be justified as a high degree of coupling also
indicates that an output could be a linear combination of the
other outputs and only contain redundant information.

The most favorable solution would be to find a transfer-
function matrix which has zeros, or at least almost negligi-
ble elements, in its sub-diagonals and design a robust con-
troller with simple decoupling filters. In refining processes
with limited instrumentation, this is usually impossible, but,
as the temperature profile is available, new opportunities for
control design exist.

Removing the load is a good choice when it comes to ob-
taining a more naturally decoupled system, but, to achieve a
2×2 system, an input must be removed as well. The choice
is not obvious, but, from Fig. 4, it is perceptible that the
subsystem

y =
[

Temp.
Conc.

]
u =

[
Prod. Rate
Dil. Water.

]
(11)

or alternatively

y =
[

Temp.
Conc.

]
u =

[
Hydr. Pres.
Dil. Water

]
(12)

has a low degree of coupling, as the gain from production
rate to consistency and from dilution-water feed rate to in-
termediate temperatures is very low [3], as can be seen in
Fig. 4. However, the hydraulic pressure is also a possible
choice for the input signal as the gain from hydraulic pres-
sure to consistency is weak, even though the gain is higher
than from the production rate. The dilution-water feed rate
is the only input with a high gain to consistency, making it
a clear input choice.
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Figure 10. Input sensitivity function for 2 × 2
system. Hydraulic pressure and load ex-
cluded.

As can be seen in Fig. 10, the step response of the struc-
ture in Eq. 11, i.e with F33 ≡ 0, produces fast closed-loop
dynamics and, moreover, the load will be indirectly con-
trolled as it is correlated to temperature and consistency.
However, this is not valid when the hydraulic pressure is
changed. To also handle the steady-state error of load yload

from an input disturbance in hydraulic pressure dhydr that
can be seen in Fig. 10, a slow integrating controller could
be used, i.e reinstalling F33, but with slower control action.
Step responses of the input sensitivity function can be seen
in Fig. 11. When forming the closed loop input sensitivity
function for the system in Eq. (11), however, the steady-
state error from dhydr to yload is negative, whereas element
G33 in the open loop system in Eq. (10) has a positive low-
frequency gain. Thus, when forming the closed 2 × 2 sys-
tem low-frequency gains for remaining open elements can
change sign.

It is also possible to modify the MIMO structure in order
to fit the Eq. (12). This means that the controller structure
becomes

F =


 0 0 F11

0 F22 0
F33 0 0




with the same inputs and outputs as indicated in Fig. 5. As
can be seen in Fig. 12, step responses have been applied
to the input sensitivity function according to Eq. (12) the
closed-loop dynamics will be similar to those of the system
in Eq. (11).
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Figure 11. Input sensitivity function for 2 × 2
system though with controller F33 reinstalled
with slow control action.

4 Conclusions

A control system for a refiner line must be very robust
due to non-linear behavior such as plate wear, which causes
changes in the time constants and gains over the running
time period. A refiner line also has a multitude of interac-
tions, further increasing the need for robustness and sim-
plicity. Theoretically, the decoupling of 3 × 3 systems is
possible, but, as far as the refiner is concerned, it results in
very large time constants due to the similarity between the
low-frequency gains of the diagonal and sub-diagonal ele-
ments.

It is shown that exact decoupling is possible to derive,
but this is unattractive for the control of the refiner due to the
slow control action and the very high complexity of the sys-
tem. Using numerical decoupling filters will significantly
reduce the decoupling filter complexity compared with ex-
act decoupling, but this results in slow control action for
the resulting decoupled system as well. Static decoupling
cannot be regarded as an alternative for decoupling, as the
degree of coupling of the refiner is frequency dependent.

Moreover, for the refiners with installed temperature sen-
sors, the reduction of the 3×3 system to a 2×2 system with
temperature and consistency as outputs and production rate
and dilution-water feed rate as inputs is shown to be the
best choice. The high degree of correlation to temperature
and consistency makes the information in the load exces-
sive and input disturbances can therefore be handled by the
2 × 2 feedback system. Output disturbances in the load,
however, are not handled by the control system. However,
the hydraulic pressure (or production rate) and load that are
excluded from the 2× 2 system will not be ignored. A slow
control action could be installed to handle the steady-state
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Figure 12. Input sensitivity function for 2 × 2
system. Production rate and load excluded.

error, but care should be taken as the low-frequency gain
of remaining elements can change sign when forming the
closed 2×2 system and result in an unstable system in spite
the slow control action. The steady-state error can also be
handled by implementing another temperature sensor from
the array, for example T7, instead of the load as an output
signal. Thereby, a more robust controller could probably be
designed.

Finally, the remaining input and output signals could be
used by mill personnel to set the operation point, or can be
used in a quality-control system working in another time
frame.

If new instrumentation or soft sensors, such as residence
time or a quality-related variable, are installed, a 3 × 3 sys-
tem with a lower degree of coupling could be formulated
and the decoupling theories presented above could be ap-
plied.
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