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Abstract

Trajectory planning is of great importance as many
chemical processes normally operate under transient con-
ditions. Many of the available techniques for trajectory
optimization can yield trajectories that are unrealistic
and not implementable. Furthermore, many transient
processes are operated manually, which further reduces
the classes of trajectories that are implementable. In this
paper, input trajectories are restricted to step/ramp func-
tions, which are easily implemented by manual control
or simple control schemes, through the application of in-
put constraints and input switching times. Direct tran-
scription of the dynamic optimization problem was used
to allow the solution to be found using NLP techniques.
The proposed method also serves as a useful control pol-
icy evaluation tool, where comparison of unrestricted and
restricted trajectories leads to valuable insight into the
gains associated with adopting a more sophisticated con-
trol scheme. The restricted inputs approach is applied to
several benchmark problems.

1. Introduction

Optimization of transient operations (e.g. batch pro-
cessing, grade transitions, etc.), is crucial to the success
of many manufacturers. There is considerable litera-
ture on solving these dynamic optimization problems as
open-loop control problems. A range of techniques have
been used in attempts to solve these problems, includ-
ing: variational methods, dynamic programming, dis-
cretization methods, and other transformation meth-
ods. The resulting optimal transition policies are often
difficult to implement; and so most operating plants
are forced to treat transients in a sub-optimal fashion.

A key difficulty with the existing approaches to solv-
ing the grade transition problem is that optimal poli-
cies are not restricted to take on forms that are readily
implementable within the plant. Any general approach
to the problem of determining optimal grade transi-
tions must consider the restrictions placed on the al-
lowable form of the input trajectories by the function-
ality of the plant automation system or operating pro-
cedures.

Optimization of industrial operations is character-
ized by a few to a few hundred degrees of freedom, con-
straints on the inputs and outputs, and restrictions on
the forms that the optimal transition policy can take.
Most often, the trajectories to be optimized are the set-
points for the process controllers. These setpoint tra-
jectories must be implemented via Distributed Con-
trol Systems (DCS), or manually by an operator. Dis-
tributed control systems easily allow the input of sim-
ple steps and ramp functions, and are commonly found
in almost all industrial processes. Restricting the in-
puts to steps and ramp functions gives input policies
that are easily implemented on existing control sys-
tems.

In this work, we build on the ideas of Dabros et al.[1]
where in optimal input trajectories were restricted to
take on the form of a small set of steps. The previ-
ous work of Dabros et al. treated the dynamic opti-
mization problem by discretizing in time and treat-
ing the resulting problem as a quasi-steady state, al-
gebraic optimization problem using conventional non-
linear programming solvers. Additionally, work in this
area includes that of Wang et al. [14] where the solution
of polymerization grade transition problems was done
with the inputs restricted to a set of approximated step
inputs and solved using control vector parametrization.

There are a range of techniques for solving dy-



namic optimization problems. Variational methods do
not scale well with problem size, due to the evalua-
tion of first and second order optimality conditions, and
cannot handle constraints, except in special cases. Dy-
namic programming [10] also does not scale well with
problem size and has a limited range of applicabilty to
problems, due to the method’s inability to handle in-
equality constraints. Control vector parametrization, a
variant of dynamic programming, requires that the pa-
rameter sensitivities of the inputs be calculated analyti-
cally, which can be difficult for large and/or highly non-
linear problems. Transformation methods convert infi-
nite optimization problems to algebraic ones through
the exploitation of problem structure, however these
are limited to a comparatively small class of dynamic
optimization problems. Discretization methods can be
used on any dynamic optimization problem, and can
be solved via a variety of techniques, including itera-
tive dynamic programming(IDP) [9], orthogonal collo-
cation [8] and direct transcription [2]. IDP combines
both discretization and dynamic programming meth-
ods, and has been successfully used for many small
problems. With increasing problem size, IDP problems
become large, with the magnitudes for computation
costs and times becoming unrealistic. The methods of
orthogonal collocation and direct transcription reduce
the dynamic optimization problem to that of solving a
NLP problem. Using NLP algorithms, it is possible to
solve large problems quickly and efficiently.

Orthogonal collocation uses Lagrange polynomials
to approximate the trajectories of the states and in-
put functions, where the roots of the polynomial oc-
cur at the discretization points. Note that the num-
ber of points needed equals the order of the approxi-
mating polynomial. The inflexibility of the number of
mesh points, makes using this method for the formu-
lation presented below unwieldily. In this work direct
transcription and single step or simple multi-step nu-
merical methods are used to remove this complexity.

This paper: 1) presents the structure of the opti-
mal grade transition problem; 2) provides a clear dis-
cussion of the solution issues and method and 3) illus-
trates the proposed approach with three detailed case
studies, that have been widely used as benchmark prob-
lems in the dynamic optimization literature.

2. Restricted Input Optimal Trajectory
Problem

The systems of interest for this paper are those op-
timal trajectory generation problems with models de-
scribed by sets of both differential and algebraic equa-

tions (DAE) and take the following form

min
u(t)

Φ [x(t), z(t),u(t), t]

s.t.

f(ẋ(t),x(t), z(t),u(t), t) = 0
g(x(t), z(t),u(t), t) = 0
h(x(t), z(t),u(t), t) ≤ 0 (1)
x(t)L ≤ x(t) ≤ x(t)U

z(t)L ≤ z(t) ≤ z(t)U

u(t)L ≤ u(t) ≤ u(t)U

where x and z are vectors of states with dimension
Rnx , Rnz , and u is a vector of inputs with dimension
Rnu , respectively and L and U represent their respec-
tive lower and upper bounds. The objective function Φ
is a scalar function, which is to be minimized. The vec-
tors f , g and h each have dimension Rnf , Rng and Rnh ,
respectively. The set of equations f represents the set
of differential equations which describe the system dy-
namics. The set g contains any algebraic relationships
including constitutive relationships. Any inequality or
path constraints are in h.

Restriction of u(t) to the set U of na analytical func-
tions, where only one function from U is allowed to oc-
cur during any of the m intervals of time for each of the
nu elements of u, requires the use of equilibrium con-
straints. Simply stated, only one input function is al-
lowed for any input trajectory during a given time in-
terval. To solve the generalized problem, equation (1)
must be recast using equilibrium constraints and solved
using the methods of mathematical programs with
equilibrium constraints (MPEC). The methods of solv-
ing MPECs for process engineering has been consid-
ered by Raghunathan and Biegler [11] and these meth-
ods can be used with existing trajectory optimization
techniques to solve the generalized problem.

The MPEC formulation allows the inputs to take on
any trajectory; however, special solvers are necessary,
making this form of problem not readily solvable. As
mentioned previously, most DCS can easily implement
step and ramp input trajectories. Limitation of the in-
put trajectories to these simple input functions results
in a formulation that can be easily solved using exist-
ing NLP solvers. The formalization follows that pro-
vided by Betts [2], where changes in all of x, z, u, f , h
and h are allowed at discrete points in time, termed in-
put switching times (IST). The IST are decided using
the prescribed switching intervals, defined as the in-
put interval ∆ui. Each input ui(t) in Rnp has associ-
ated with it a set of IST Ti, where more than one in-
put can contain the same IST. Figure 1 shows a simple
grid of IST for a double input system, with input in-
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Figure 1. Time Grid Development-2 Inputs

tervals of ∆u1 and ∆u2. Here the sets of IST are

T1 = {t0, t4, tf}
T2 = {t0, t1, t2, t3, t5, t6, t7, tf}

where T1 and T2 are the sets of input switching times
for u1(t) and u2(t), respectively. At any given IST, the
active set of inputs, (i.e. those with the current IST
within their set of IST), are allowed to implement an-
other step or ramp function. Any input not in the ac-
tive remains unchanged in its present interval. States
are assumed to be continuous across all IST, with con-
tinuity enforced using equality constraints. Discretizing
Problem (1) using the IST grid, and applying the nec-
essary constraints, the following continuous version of
the restricted input optimal trajectory (RIOT) prob-
lem results

min
ak

o ,a1

Φ
[
xk(t), zk(t),uk(t), tk

]

s.t.

f(ẋk(t),xk(t), zk(t),uk(t), tk) = 0
g(xk(t), zk(t),uk(t), tk) = 0
h(xk(t), zk(t),uk(t), tk) ≤ 0
uk

j = ak
oj

+ ak
1j

t tk ∈ Tj

uk
j = uk−1

j tk /∈ Tj (2)
xk−1

F = xk
I k = 1, .., h

zk−1
F = zk

I k = 1, .., h

x(t)L ≤ xk(t) ≤ x(t)U

z(t)L ≤ zk(t) ≤ z(t)U

u(t)L ≤ uk(t) ≤ u(t)U

j = 1..p

where ao and a1 are vectors of time independent pa-
rameters for the step and ramp formalization, which
become the decision variables of interest in this prob-
lem. Here the objective function, differential, equality
and inequality constraints remain unchanged. Follow-
ing these equations the input restriction and continu-
ity equations are included. Other possible constraints

which may be included are smoothness of the input tra-
jectory, as well as rate limits on inputs. The above form
of the RIOT problem allows both step and ramp func-
tions; however, reformulating the problem to include
either function is trivial, where step functions alone
can be achieved simply by seting a1 = 0. Ramp func-
tions only require a0 = 0, with the addition of conti-
nuity constraints between IST.

As stated, problem (2) cannot be solved using dy-
namic programming techniques [10], and discretization
must be used to reduce the problem to a NLP. Dis-
cretizing time into q mesh points in each input inter-
val, the RIOT problem reduces to the following form

min
ak

o ,a1

Φ
[
xk

i , zk
i ,uk

i , tki
]

s.t.

f(ẋk
i ,xk

i , zk
i ,uk

i , tki ) = 0
g(xk

i , zk
i ,uk

i , tki ) = 0
h(xk

i , zk
i ,uk

i , tki ) ≤ 0
uk

j = ak
oj

+ ak
1j

t, tk ∈ Tj , ∀i
uk

j = uk−1
j , tk 3 Tj , ∀i (3)

xL ≤ xk
i ≤ xU

zL ≤ zk
i ≤ zU

uL ≤ uk
i ≤ uU

∆tL ≤ ∆tk ≤ ∆tU

xk−1 = xk

zk−1 = zk

i = 1, .., q j = 1..p k = 1, .., h

where q > 2, a requirement that must be met to sat-
isfy the presence of IST bounds and to ensure input
restriction. In this form the RIOT problem still may
contain functions of derivatives and integrals in the
state variables. The method of direct transcription [2]
is best suited for solving RIOT problems, where dif-
ferential/integrals terms are directly transcribed using
commonly used numerical methods. NLP techniques
can then be used to solve Problem (3).

3. Restricted Input Optimal Trajectory
Method

The RIOT method can be stated easily using the fol-
lowing steps:

1. Formulate problem as a desired dynamic opimiza-
tion problem of the form given in (1).

2. Determine the IST grid using the predefined val-
ues of the input intervals for all inputs.



3. Restrict inputs using equality constraints, treat-
ing those inputs which are in the active set, and
inactive set appropriately.

4. Introduce continuity constraints at the IST for all
states, the problem is now in the form of Prob-
lem (2).

5. Discretize the continuous problem into a grid of
mesh points, and use direct transcription to re-
move any derivative and integral terms.

6. Solve using NLP techniques.

7. If error tolerances are not met, refine mesh and/or
increase order of numerical method, then go back
to step 6.

Mesh refinement can be accomplished by using some
sort of refinement rules (e.g. rules used for the upcom-
ing studies are taken from Betts and Huffman [3]).

4. Case Studies

The method presented above will be illustrated us-
ing three commonly studied problems: 1) the single in-
tegrator system, examined by Goh and Teo [4], Guay et
al. [12] and Luus [5]; 2) the consecutive reaction prob-
lem; and 3) the parallel reaction problem both exam-
ined by Ray [13].

The problems were solved using Boeing’s r© Sparse
Optimal Control Software (SOCS), using sequential
quadratic programming or interior point solvers, and
exploiting problem sparsity to efficiently solve optimal
control problems. All problems were solved to meet a
the minimum objective function and ODE tolerance
allowable in SOCS, and were initially solved using the
trapezoidal rule. Mesh refinement and numerical meth-
ods were then allowed to change freely as mesh refine-
ment continued. Optimizations were done using a dual
AMD 2400+ with 1 Gb RAM.

4.1. Single Integrator Problem

An analytical solution for the single integrator has
been solved via linear least squares optimal control the-
ory [15]. The single integrator problem can be stated
as

min
u(t)

x2(tf ), tf = 1

s.t.
ẋ1(t) = u(t)
ẋ2(t) = x2

1(t) + u2(t)
x1(0) = 1 (4)
x2(0) = 0
x1(1) = 1
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Figure 2. Optimal Solution of Integrator Prob-
lem

Restricting the inputs of the integrator system to
be step functions, and using direct transcription, the
RIOT optimization problem can be reformulated to
give

min
β

x2(tf ), tf = 1

s.t.

ẋk
1(t) = uk(t)

ẋk
2(t) = (xk

1)2(t) + (uk)2(t)
uk(t) = βk

xk+1
1I

= xk
1F

(5)
xk+1

2I
= xk

2F

x1(0) = 1
x2(0) = 0
x1(1) = 1
k = 1, .., n

Figure 2 shows the optimal trajectories of both the
restricted and unrestricted problems. For the unre-
stricted problem, the optimal value of the objective
function, x∗2(tf ), was found to agree to within 6 sig-



nificant figures of the analytical solution to the prob-
lem. All RIOT problem solutions were found to be less
optimal. For the case where only one step function is
allowed the degrees of freedom become zero and the so-
lution reduces to u(t) = 0.

4.2. Consecutive Reaction Problem

The consecutive reaction problem, first examined by
Ray [13], McAuley and Dadebo [6], and Guay et al. [12]
follows the following reaction

A→
k1

B→
k2

C

It is desired to maximize the recovery of the middle
product by manipulation of the reactor temperature.
The problem can be stated mathematically as

max
u(t)

x2(tf ), tf = 1

s.t.
ĊA(t) = −u(t)C2

A(t)
ĊB(t) = −0.03875u2(t)CB(t) + u(t)C2

B(t)
CA(0) = 1 (6)
CB(0) = 0
0.9092 ≤ u(t) ≤ 7.4831

where the input u(t) is defined as u ≡ 4000e−2500/T .
Restricting the input u(t) to take on n steps, the prob-
lem then becomes the following

max
β

x2(tf ), tf = 1

s.t.

Ċa
k
(t) = −u(t)k(Ck

a )2(t)

Ċb
k
(t) = −0.03875(uk)2(t)Ck

b (t) + uk(t)(Ck
a )2(t)

uk(t) = βk

Ck+1
AI

= Ck
AF

Ck+1
BI

= Ck
BF

(7)
CA(0) = 1
CB(0) = 0
0.9092 ≤ uk(t) ≤ 7.4831
k = 1, .., n

where I and F refer to the beginning and end of
the current input interval. The optimal trajectories
for both the restricted and unrestricted problems are
shown in Figure 3. The optimal conversion, C∗b (tf ) for
the unrestricted trajectory problem was found to be
0.610803, in good agreement with those published in
the literature. All RIOT formalizations had optimal so-
lutions less than that of the restricted problem.
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Figure 3. Optimal Trajectory of Consecutive Re-
action

4.3. Parallel Reaction Problem

The parallel reaction problem presented here has
been examined thoroughly in the literature by Bei-
gler [16], Ray [13] and others [17] [18] [6]. Here two re-
actions are taking place within a tubular reactor, which
are stated as

A→
k1

B

A→
k2

C

Defining the dimensionless concentrations of species A
and B in the reactor as x1 ≡ CA/CAo and CB/CAo

where CAo is defined as the initial concentration of A,
the following maximization problem results

max
u(t)

x2(tf ), tf = 1

s.t.

ẋ1(t) = −u(t)x1(t)− 1
2
u2(t)x1(t)

ẋ2(t) = u(t)x1(t)
x1(0) = 1 (8)
x2(0) = 0
0 ≤ u(t) ≤ 5

where u(t) ≡ k1L/v, L is the reactor length, and v is
the spacial velocity. Dividing the problem into np in-
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Figure 4. Optimal Trajectory of Parallel Reaction

put intervals, and recasting in continuous RIOT form

max
β

x2(tf ), tf = 1

s.t.

ẋ1
k(t) = −u(t)kxk

1(t)− 1
2
(uk(t))2xk

1(t)

ẋ2
k(t) = u(t)kxk

1(t)
uk(t) = βk

xk+1
1I

= xk
1F

xk+1
2I

= xk
2F

(9)
x1(0) = 1
x2(0) = 0
0.9092 ≤ uk(t) ≤ 7.4831
k = 1, .., np

Both problems (8) and (9) were then discretized and
direct transcription was used to convert to a NLP. The
optimal value of x∗2(tf ) = 0.573545, corresponding well
with those presented in literature. All restricted so-
lutions were found to be less optimal than their un-
restricted counterparts. The optimal trajectories for
the unrestricted, 1–step and 4–step restricted cases are
shown in Figure 4.

5. Results and Discussion

As stated above, all RIOT problem solutions to the
integrator, consecutive, and parallel reaction problems
were found to be less optimal then their unrestricted
counterparts. Comparison of the objectives for both the
unrestricted and restricted inputs are compared in Fig-
ure 5 for all three case studies. It appears that, as the
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Figure 5. Objective Functions and Error of Case
Studies

number of steps are increased, the RIOT formulation
approaches the optimal value of the unrestricted case
asymptotically. The RIOT problems with two allow-
able steps show approximately 1–3% difference when
compared to the unrestricted solutions, with the loss
becoming negligible for both the 8 and 16 step cases.
For optimal cases, where the input was held constant
for all time, large deviations from the unrestricted op-
timum were found to occur for the integrator and par-
allel reaction problems.



Restriction of the inputs was found to affect the
computational efficiency of the problem. Figure 6 shows
the effects of input restriction on the computation time.
All problems are found to have a monotonically in-
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Figure 6. Solution Times of the Case Studies

creasing relationship between the computational time
and the number of steps. Interestingly for highly re-
stricted systems (low number of steps), the computa-
tional costs were below that of the unrestricted prob-
lem. This suggests that it may be possible to reduce
optimization costs by reformulation of a problem in
RIOT form. For highly restrictive problems the de-
grees of freedom are lowered and the number of ad-
ditional constraints added to the system are minimal,
which is expected to give rise to shorter solution times.
As the number of allowable steps is relaxed, the prob-
lem gains more degrees of freedom and an increasing
number of equality constraints, which leads to large so-
lution times. For the parallel reaction problem, even the
16–step restricted input computational costs were be-
low that of the unrestricted case. The number of mesh
refinement iterations necessary was found to increase

with increasing number of steps, and for both prob-
lems the number of mesh refinements became larger
than that necessary for the unrestricted case. Decreas-
ing the input restriction also led to an increase in the
overall number of mesh points.

Input saturation was found to occur on both the
unrestricted cases for the consecutive and parallel re-
actions; however, restriction of the inputs for these two
cases was found to remove input saturation. The nec-
essary range for the inputs was found to shrink for all
three problems studied. This suggests that the RIOT
formalization has a natural back off on the magnitude
of the inputs.

The RIOT problem also provides a useful tool in
benefits analysis for determining whether implementa-
tion of advanced control policies would result in large
gains to a process. Comparison of the unrestricted and
restricted optima, when combined with cost analysis,
may provide useful information into whether substan-
tial gains exist for more sophisticated controllers struc-
tures.

6. Conclusions

This paper proposed a restricted input approach to
solving dynamic optimization problems, using direct
transcription. Dynamic optimization techniques can
produce input trajectories that are too complicated to
implement using existing control policies. The method
presented above addresses this problem by restricting
the input trajectories to step and ramp functions, easily
implemented using Distributed Control Systems. The
proposed method builds on existing dynamic optimiza-
tion theory, using direct transcription to the problem
solving using NLP techniques.

The method was found to offer computational ad-
vantages, exploiting low degrees of freedom for prob-
lems with low numbers of steps and ramp functions.
All RIOT problems were found to be less optimal then
their unrestricted counterparts, providing a useful con-
trol system evaluation tool, where large differences may
provide incentives for adopting advanced control poli-
cies. Furthermore, restriction of the inputs reduced the
aggressiveness of the control action, where unrestricted
trajectories with input saturation were found to oper-
ate within operating bounds.
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