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Abstract—Fuel cell power plants with an integrated fuel Arfiom

processing system for hydrogen generation are an attractive Amosphere W
option for stationary, distributed power generation. We consider HEX Water
a PEM fuel cell power plant with CPO based fuel processor for BlO

generating hydrogen from natural gas. During load transients, Ar
the temperatures at various points of the fuel processor need to
controlled tightly so that the catalytic reactors function properly.
The control of the CPO reactor temperature is particularly chal-
lenging due to the highly exothermic oxidation reactions, short KXXRRXE o
residence time and the sensitivity to stoichiometry. We consider HDS WX CPOX ST Wes2 PROX
two architectures for the CPO exit gas temperature control:
the first is a baseline controller designed using a decentralized
approach and the second is an advanced controller, designed
using multivariable control approach. The advanced controller
gives better decoupling and disturbance rejection performance.
We employ p analysis to study the robust stability and robust . . L
performance of the two controllers. This analysis shows that the ~ Fuel cell power plants used in transportation applications
advanced controller is superior. Using the notion of skewed:, we and in grid-independent stationary applications are required
establish that, for a prescribed level of performance degradation, to follow varying electrical loads. During transients, reactant
the worst-case uncertainty that can be tolerated by the advanced ge|ivery to the fuel cell stack needs to be properly controlled
controller is higher than the baseline controller. to prevent starvation and subsequent damage to the stack. The
air delivery system on the cathode side is relatively simpler
and the hydrogen delivery from the FPS to the anode is

The fuel processing system (FPS) is an integral part oftgpically the key factor limiting the transient capability of the
fuel cell power plant in applications where hydrogen storaggwer plant. The control of the FPS during transients involves
is not a viable option. The FPS reforms a hydrocarbon fugiaintaining proper stoichiometry and operating temperatures
such as natural gas into a hydrogen rich gas. The reformigg all the reactors. Although CPO based FPS is considered
is performed using one of the three pathways: catalytic partig@mpler due to higher efficiency and simpler overall system
oxidation (CPO), Catalytic steam reforming (CSR) or aUtOthe@esign eg' no steam generation required for CPO)' the
mal reforming (ATR). A water-gas shift (WGS) reactor is alseemperature regulation of the CPO reactor during transients
employed to converCO to Hy by reacting with H20. In  presents a significant challenge due to the short residence time,
PEM (polymer electrolyte membrane) fuel cell power plantgighly exothermic side reaction and the difficulty in measuring
the FPS includes further reaction stages to bring down thge reactor bed temperature.
CO content to less than 20 ppm sin€&0 is a poison to  The control of fuel and air flows into the FPS to regulate the
the electrode Catalyst of the fuel cell. An overview of fuel CetPO reactor temperature aht) de"very to the fuel cell stack
technology and further details on fuel processing can be fouRgls been studied using coarse, system level dynamic models
in [1]-[4]. in [5], [6]. In this paper, we describe the application of robust

A schematic of the FPS using catalytic partial oxidatioBontrol techniques, in particular, the-analysis to study the
(CPO or CPOX) reactor is shown in Figure 1. Natural gasbustness of different fuel and air control architectures for
fuel is mixed with air and passed to the CPOX reactogPO temperature regulation. We first present an overview of
The reformate stream from CPOX containing predominantiiie ;, analysis and synthesis framework in Section Il and then
Hy,C0,CO,, H2O and N, is cooled by injecting water and discuss the application to CPO reactor temperature control in
sent to the WGS reactors to remove the bulk(a@ and to Section Ill. The conclusions are offered in Section IV.
supplementd, production. The reformate from WGS reactors
is cooled and mixed with air for furthef’O clean up in the Il j ANALYSIS AND SYNTHESIS
preferential oxidation (PROX) reactors before being fed to theWe now present a brief overview of key concepts from
PEM fuel cell. modern robust control theory, including the analysis and
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Fig. 1. Schematic of a CPO based fuel processing system in a fuel cell
power plant

I. INTRODUCTION



synthesis framework for robustness analysis and robust con
troller design. A detailed exposition of multivariable robust

. A
control theory can be found in standard text books such as- P 4l ] RS A
7], 18] PN £ I v w O

A. Model uncertainty and the structured singular valué (

(@

Robust control theory offers a framework to systematically
account for model uncertainty in the control design process. In
the case of a dynamic plant model, uncertainty takes different
forms. Determining the plant uncertainty set is equivalent to a
guantification of what we know about what we do not know. A
If this quantification takes a mathematical form then it cal
be further exploited in analysis and design procedures such z
the i analysis and synthesis. Typical sources of uncertaint F
are: i) model parameters known approximately or even with
errors, ii) plant nonlinearity associated with varying model d ) ]
parameters, iii) imperfect sensors and actuators, and iv) lack
of model knowledge in the high frequency range. Fig. 2. Setting for robust stability (RS) and robust performance (RP), similar

Structured uncertainty is parametric uncertainty, whict ™ [l
models the "unknown” in the plant in a specific manner. Typ-
ically encountered examples of structured uncertainty are ggin

. X 3. u-analysis for robust stability
and time constant or pole and zero uncertainty. If parametnc_l_h ts of robust stabilit d robust perf
uncertainty is used, a significant effort is required to produce ' '€ CONCEP!S 0T rObust Stabifiity and robust performance are

the uncertain model. This is due to the requirement of él strateq in Figure 2 using_the notation borrowed from [8].
£ nominal plantP is described by

exact structure. Most analysis and design methods targeted-l%
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multivariable systems use state space models. For such models YA p. p N
uncertainty is located at the level of some real parameters. 2 || = [P” PH} | w
In process control, these parameters are typically representing v i i u

uncertainty in the model temperature, volume, flow, mass G e interconnection of to a controllery — Kuv yields, as

It can be assumed that the model state space matrices depend A un

linearly on these parameters. The, norm and the structured shown in Figure 2(b), the syster}i’?z =N, ] where
singular value ) are the main tools used for quantifyingy is defined by the lower Linear Fractional Transformation
uncertainty in the frequency domain. (LFT) of P and K:

For multivariable (MIMO) systems, the concept of di- _
rections is prevalent. This is because, in MIMO systems, N = Fi(P.K) = Pui + PiaK(I = P2 K) ™' Pay.
directions can lead to much higher sensitivity to uncertainty. Also, observing Figure 2(d}; = Fw and F is given by the
At the same time for MIMO systems, deriving detailed uncetpper LFT of N and A
tainty descriptions can lead to a significant effort. The curse =
of complexity extends over the non-parametric uncertainty F=Fy(N,A) = Noz + Nt A(I = NiuA) ™" Nio.
representations for MIMO systems mainly because they giveNote that the nominal stability corresponds to the stability
rise to full complex uncertainty transfer matrices which denot§ . For robust stability analysis, it is essential to check if
nonphysical couplings at the input or output of the plantghe designed controller provides stability for all allowed plants.
To solve this problem one can consider structured uncertaintyie plant in closed loop with\ is M = Ny,. Robust stability
in individual input channels (actuators) or output channetgin be summarized as the stability of the\ interconnection
(sensors). This description maps into a diagonal structure farFigure 2(c)VA for which ||Al|, < 1. Equivalently, for
which the robustness analysis can be less conservative. robust stability,F’ = F.(N,A) needs to be stable.

As a result, a general MIMO control configuration with Robust stability for unstructured perturbationise.( full
uncertainty involves a block diagonal uncertainty matrix whetglock A) is equivalent toz (M) < 1, Vw, which is equivalent
each block represents either unstructured uncertainty (complexX|M||., < 1. For each perturbation blockl = d;A;d;
uncertainty) or structured uncertainty (captured by real deviahich meansA = DAD™!, the robust stability condition
tion from a mean parameter value). By using in robust analysisils down tog(DM D~1) < 1 Vw. Since this applies to any
a structured uncertainty transfer matrix not all uncertain = diag(d;) the updated robust stability condition is:
matrices are included, hence the level of conservativeness in

. _ . 1
the analysis is minimized. D{B;IelD F(D(w)M(jw)D(w)™") < 1,Vw



whereD is the set of block diagonal matrices whose structufd A structure and assuming nominal stabilitye( N inter-

is compatible to that o\ (i.e. AD = DA). nally stable), the equivalent condition for robust performance
The structured singular value (SSV o represents an (RP) is:

essential tool used throughout both analysis and design\iLet _

be a complex matrix and lek, be a set of complex matrices RP = |Fl B 1Fu(N; A)lloe < 1,V[[A[l <1

having the block diagonal structudéag(A;), specified by the = pa(N(jw)) <1,Vw.

sizes OfA; fori =1...k. In this structure some of the blockstg g ctured singular value is computed with respect to the
may be repeated and some may be restricted to be real. The LA 0

structured singular value af/ with respect to the structure SructureA = | A, for which A, is a full complex

A, is defined by the real non-negative function perturbation with the same dimensions as F (see Figure 2).

/L:(M) = sup &(A) such thatdet(I — MA) # 0. D. Worst-case uncertainty analysis using skewed
A8 Insight into skewed: can be gained by understanding the

If no suchA exists therua_ (M) = 0. The subscripfA, may following example. Assuming that the peakvalue for a given
be dropped when the uncertainty structure is clear from tgkosed loop design is 1.1. This means that the robust per-
context. The above definition gf extend to the case whenformance requirement will be satisfied exactly if we reduced
the complex matrix)/ is frequency dependent, in which casehoth the performance requirement and the allowed uncertainty
u will also be frequency dependent. by 10 %. This shows that. does not give the worst-case

Assume that the nominal systed and the perturbation Performance as one might have expected. To find the worst-
A are stable, then th@/A system is stable for all allowed case weighted performance for a given uncertainty one needs
perturbations withs(A) < 1, Vw if and only if (M) < 1, to keep the magnitude of thi perturbation fixed (i.e7(A) <
Vw. Therefore the condition for robust stability for real od,Yw). In this case we need to compute the skeyerd N de-
complex block diagonal perturbations may be rewritten afifed asis(N(jw)),Vw = maxs(a)<i,vw [[FI(N; A)(jw)lloo
Robust Stability«<= (M (jw) < 1). These conditions may

be interpreted also as the generalized small gain theorem t ) o ) ]
also takes into account the structuref We now describe the application of the theory in Section I

The structured singular value, a powerful tool for robudf the CPO reactor temperatufEc(po) control problem. The

performance analysis, can also be employed for robust c&ﬁudy i$ conducte_d using linear models de_rived from a high
troller synthesis using the so-callddk -iteration procedure. dimensional, nonlinear system level dynamic model [9]. The
The iterations are started with a stalii¢;jw) with appropriate order of the linear model is reduced to a tractable size using the

structure. The next step is to synthesize a controller for tfgUtines from the SLICOT library [10]. The computations
scaled problemminx (minpep |[DN(K)D~!||s). This step are performed using the-Analysis and Synthesis Toolbox for

is followed by another find of an appropriate(jw) that MATLAB. _ _ )
minimizes at each frequency(DND~!) given a fixed N. The control ofT¢-po involves ensuring that the fuel and air

Note that further aD(jw) that is stable and minimum phaleOWS are coordinated so that the oxygen-to-carbon (or equiv-

is propagated. Such iterations may continue until adequ@gntly. the air-to-fuel) ratio (O2C) is in an acceptable range.
performance is achieved. In this paper, we focus onlyuon Excursions in O2C lead to high temperatures that damage the

analysis and the aforementioned discussion/nii iteration CPO catalyst. A second control objective that relates to fuel
was only offered for completeness and air regulation is to meet the hydrogen demand from the

fuel cell stack for producing the desired electrical power at
prescribed hydrogen utilization. The overall control problem
with both the objectives ofi, utilization control andlcpo
For a control systems engineer ensuring robust stability otantrol has been studied in [5], [6] where LOR aftl,,
designed loop is an essential step before attempting any praehniques have been employed respectively. For simplicity,
tical implementation. The engineer efforts should never stege restrict our attention in this paper to robustness analysis of
at this level since an equally important aspect of a successfw: 7-po loop only and ignore the hydrogen utilization part.
control design is achieving closed loop performance. The$his analysis can be easily extended to the case including the
notions have to be addressed simultaneously. Precisely, wihgtrogen utilization control.
performing control design nominal performance is important The nominal closed loop system is shown in Figure 3. The
but, at the same time, accounting for plant uncertainty apadwer load is the external disturbance signal and the manip-
providing expected performance across the whole operation#@#ted variables are the fuel valve open fraction and the air
envelope is mandatory. To observe if such goals were met thiewer speed. We consider O2C as the performance variables
analysis of a closed loop involving a linear plant and controllgince it captures both the temperature and the selectivifjsto
can be pursued in thg framework. in the CPO reactor. The measured variables used as feedback
Robust performance of MIMO systems can also be atbr the controller are the stack curreffig po, fuel flow and
dressed using thg framework. Rearranging the system in thair flow.
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which corresponds to 5% at steady state and 20% at high
frequencies. The block diagram of the system for the robust
stability test is given by the upper LFT a¥ and A as in
y Figure 2 whereN represents the nominal closed loop plant
with the uncertainty weightV’ = diag(W;, W5, W3) absorbed

in and A is the structured uncertainty consisting of scalar
Fig. 4. Bode plot showing the nominal disturbance rejection performangmcertainty blocksA = diag(él, 02, 53).
of the baseline and the advanced controllers Robust stability of the system is guaranteed if {laefor
the NA system is below unity for all frequencies. Moreover,

We consider two controller architectures: the first one, e smaller the peak value of, the higher the robustness
legacy controller, corresponds to the baseline case and A¥9In of the system. The computed for both the baseline
been designed using a decentralized approach. The secepetroller and the advanced controller is shown in Flgg_re 5.
control architecture, which we refer to as the advanced cdh-can be seen that both controllers have robust stability to
troller, has been designed using multivariable design tedR€ Prescribed level of uncertainty. The advanced controller
niques described in [6]. A frequency domain comparison 8fS Slightly smaller peak value of indicating better robust
the nominal disturbance rejection performance of the twability. In fact, if the uncertainty ifopo is higher or is at
controllers is shown in Figure 4 and it can be observed tHQWer frequencies, the superiority of the advanced controller
the advanced controller gives better disturbance rejection Fomes prominent.
the gain for the advanced controller is well below that of th
baseline controller.

0
Frequency (rad/sec)

§. Robust performance test

" In order to compare the robust performance of the baseline

A. Robust stability test and the advanced controllers, we consider a slightly different

We now study the robust stability of the two controllersetup. We introduce non-parametric multiplicative uncertainty
under structured, non-parametric uncertainty at the plant oif-the fuel flow and air flow outputs with the weights given
put. The disturbance signal (Power Load) and the perfdsy
mance output (O2C) are not relevant for the robust stability
study. Multiplicative uncertainty in each of the three channels,
namely, fuel flow, air flow and’cpo is assumed.

The uncertainty weights for fuel and air flows are chos
as

2541

s+1°

These weights correspond to 5% error at steady state and 10%
Llror at high frequencies as in the robust stability test. The
performance metric is the gain from the disturbance, Power
Level, to the output, O2C. The weight for the performance

Wl(S) = WQ(S) =0.05

2s+1
s+1

Wl(S) = WQ(S) = 0.05
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where « is a scale factor that represents the desired steady W 10’ 1 w0 o’ 10’ 10’
state gain from the Power Level to O2C. Thus we, provide an ey (e
allowance 10 times higher than the steady state allowance ff. 9.  Robust performance test: Bode plot of the worst case model
02C excursions during transients. uncertainty £ x 2 A closed

The block diagram of the system for the robust performance
test is given by the interconnection df andA as in Figure 6
where N represents the nominal closed loop plant with the The norm of the3 x 3 perturbation {) that makes the loop
uncertainty weightV = diag(W;, Wa, W,,) absorbed in and unstable is shown in Figure 8. The advanced controller can
A is the structured uncertainty consisting of scalar uncertairi§jerate a largeA than the baseline controller.
blocks A = diag(dy, 02, ,). The worst caseA (2 x 2 model uncertainty) for the two

Robust performance of the system is guaranteed ifitha controllers is shown in Figure 9. The advanced controller can
the NA system is below unity for all frequencies. Moreoverolerate larger uncertainty than the baseline controller.
the smaller the peak value ¢f, the higher the robustness The disturbance rejection performande.( the gain from
performance margin of the system. That is, the system ca@wer reference to O2C) with th2 x 2 model uncertainty
tolerate higher level of model uncertainty without degradatidRop closed is shown in Figure 10. Again, it is evident
in the disturbance rejection performance_ W]eomputed for that robustness of disturbance rejection is imprOVEd by the
both the baseline controller and the advanced controller 8gvanced controller.
shown in Figure 7. It can be seen that the advanced controller )
has a peal less than unity and meets the robust performan&e Worst-case uncertainty test
requirement whereas the baseline controller faas1 and its As described in Section 1I-D, the skewedrepresents the
robust performance is not guaranteed. true worst-case performance of an uncertain system. For the
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using multivariable control design techniques. The robust
stability of the closed loop system under the two controllers
was compared when subjected to diagonal, structured, non-
parametric uncertainty in the air flow, fuel flow and the
temperature measurements. Robust performance of the two
controllers was compared when subjected to structured, non-
parametric uncertainty in the fuel and air flow measurements.
Skewedg analysis was employed to evaluate the performance
degradation as a function of model uncertainty for both the
controllers. The analysis revealed that the advanced controller
has better robustness properties than the baseline controller.
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system in Figure 6, we compute the worst-case disturbance
rejection performance as a function of the size of model
uncertainty in the flow measurements. Figure 11 shows the
tradeoff between the size of the uncertaintge.(the norm of

the 2 x 2 A perturbation) and the worst-case performance for
the baseline and the advanced controllers. It can be observed
that the worst-case performance of the advanced controller is
better than the baseline controller. It should also be noted that
the nominal design of the advanced controller itself gives it
an advantage in terms of superior disturbance rejection (see
Figure 4).

IV. CONCLUSION

The CPO reactor temperature control problem in a fuel
cell power plant was considered and the robust stability and
robust performance of two different controllers under model
uncertainty was evaluated using theanalysis framework.
Linearized models derived from nonlinear system level dy-
namic models were employed for control analysis. The first
controller (baseline) was a legacy controller designed using a
decentralized approach. The second controller was designed
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