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Talk Overview

* FPS problem setup (system, variables, challenges, etc.)
e Proposed solution for analysis
e Briefing on theory for proposed solution

« Comparative controller (legacy vs. advanced)
performance assessment

e Conclusions
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Typical Fuel Cell / Fuel Processing Unit Structure

B Controller
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Typical Fuel Cell / Fuel Processing Unit Structure

Alr frorm
Atmosphere
# HE}'{ Water
BLO - Al
Matural Gas Hz rich gas
I: to FC stac
HDS MR RO WS W52 PROX

- Catalytic Partial Oxidation (CPO) based fuel reforming is attractive due to system
simplicity and efficiency

» Highly exothermic side reaction (FOX) with selectivity a strong function of O2/C ratio
» Risk of CPO catalyst damage if reactor overheats during transients
» Strong interactions between fuel and air

* Reliance on secondary measurements since sensors cannot be placed at the point of
interest (e.g. CPO bed temperature and flow sensors)

* Nonlinear characteristics of plant, sensors and actuators
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Control Design Practice
Establish Control Goals

Write Specifications
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Design Controller

Select Key Tuning Parameters

Analyze Performance
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Two different methods were
employed for controller design
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Control Architecture
Performance Analysis
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Analysis approach

Legacy Control
Architecture

Advanced Model Based
Control Architecture

FPS Plant

Robust Stability (RS)

*Fuel Flow
*Air Flow
T CPO

Uncertainty Assumptions:

v

Weights Reflect
Uncertainty Magnitude

Robust Performance (RP)

Uncertainty Assumptions:
*Fuel Flow

*Air Flow
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Weights Reflect Uncertainty and
Performance Requirements
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Nominal Stability and Nominal Performance - A Theory Briefing
Design with nominal plant model does not guarantee robustness

* Nominal stability — Requires only closed loop stability with given plant

* Nominal performance — Requires closed loop stability and disturbance rejection with given plant

» Model uncertainty can destabilize the system or reduce performance

[P,C] stable

[P,C] stable and
M 1< 2

Controller

Controller
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Robust Stability - A Theory Briefing
Stability in the presence of model uncertainty

» Robust stability — Requires stability for given class of plants

» Uncertainty model — Defines a class of plants centered around a nominal plant
P=PF,1+WA) P=PF,+WA

e Structured singular value (1) — Determines robust stability of the interconnection [P,C]

o) = inf |A|| such  that det(1 -GA)=0

AeA

1(G, A

class !
class

*Robust stability can be guaranteed iff: lLl < 1

Structured uncertainty

Robust stability problem — AL e—
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Structured Uncertainty Used in Closed Loop Analysis - A Theory Briefing

Model uncertainty is
represented as
Interconnections with a delta
block

Parametric (real) vs. non-
parametric (complex)
uncertainty

Structured (block diagonal A)
vs. unstructured (full block A)
uncertainty
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Robust Performance - A Theory Briefing
Stability and performance in the presence of model uncertainty

* Robust Performance — Require stability and performance for given class of plants

» Performance specifications can be represented as interconnection with a delta block
 Delta blocks now represent both model uncertainty and performance requirements
* Robust performance test = Robust stability test with structured uncertainty

« Structured singular value (n) framework still applies

* Robust performance can be guaranteed iff: lLl < 1

» Computation of mu can be performed with various by various algorithms:

PSV, MuOpt, Perron, Osborne, Slicot

The robust performance problem [ A |*
A
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Setup for Robustness Analysis of Air-Fuel Control
Linear plant model with structured multiplicative uncertainty

* Fuel and air flow uncertainty represented by weighted delta blocks

2s+1
s+1

W, =W, =0.05x

*Performance requirement (disturbance rejection from P_ref to O2/C) is represented by another

weighted delta block

-3
W, =0.1x 40x10 ><O'15+1 — Wp —> 8p — > Performance
0.01 s+1 Measure
0O2/C ., W1 IS
Power reference — 1
> Fuel Flow >
Fuel Valve Air Flow
| >
Air Blower
> ] L W2 > 52
Current o _
T_CPO Simulink setup far bgth baseline and
<« advanced controller architecture
C 4' Mu-computations perfprmed in Matlab
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Weights selection
Linear plant model with structured multiplicative uncertainty

 Error in flows is 5% at steady state and 10 % at 1 [rad/s]: W, =W, =0.05x 2s+1

s+1

4ox10-3jxo.1s+1

» Power reference to O2/C disturbance rejection weight: W, = O'b{ 0.01 s+1

*Q2/C transient performance allowance = 10x steady state

Bode Diagram of W3
Bode Diagram of W1 and W2 113 T
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Robust Stability Study
Advanced controller has a better stability margin

- Diagonal structured, non-parametric, multiplicative uncertainty: P = (1+WA)P,
in Fuel Flow, Air Flow and T CPO (catalytic partial oxidation reactor) outputs
» Uncertainty in T CPO at lower frequencies (1 decade lower than that in flows)

» Multivariable robustness margin = 1/ IL[

. for rabust stakility with output uncett ainty
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Disturbance Rejection Performance

Advanced control improves disturbance rejection with nominal plant

Mominal clozed loop Bode responzse from Pref to O2C
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Mu-Analysis

Advanced controller gives better robust performance than the baseline controller

Upper bound an

—— Baseline Cantroller

— Advanced Controller |

Smaller peak value is better!
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Norm of allowable worst case perturbation (3x3 delta)

Marm of 3x3 perturbation
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Larger size of allowable
perturbation is desirable
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Frequency response of the worst case model uncertainty

* Worst case uncertainty is when robust performance objectives cannot be attained

» Allowable worst case uncertainty for advanced control is larger than for baseline control
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Closed loop time response with the worst case uncertainty

* Worst case is when robust performance cannot be attained

» Allowable worst case uncertainty for advanced control is larger than for baseline control

Amplitude
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Performance degradation as a function of model uncertainty

* Gradual deterioration in achievable robust performance as model uncertainty is

increased

» Performance degradation is less for advanced control than for baseline control

Bound on perform ance nom

T T

— Adwanced corntrol

—— Baseline control
T

Lowest curve provides tightest bound!

Size of perturbation
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Size of the closed loop transfer function from Power reference to O2/C

Marm of clozed loop tf from Prefto sweighted O2C with 2x2 delta
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Conclusions

* Proposed analysis = standard work

* Model based control tools are used successfully for
assessment

e Controller (legacy vs. advanced) performance evaluation
favors the advanced controller

* This is just a possible path for analysis
* Mu analysis and synthesis enable robust control design
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Alternative Methods for:
Uncertainty Propagation Analysis

- Mu analysis and synthesis considers worst case scenario

» Additional information about uncertainty (e.g.,
probabilistic knowledge) is not utilized

» Extensions of robust control methods to account for
probabilistic notions of uncertainty pursued by Barmish et
al (Wisconsin) and Zhu (Caltech)

 Direct characterization of uncertainty is also possible and
beneficial
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