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Abstract— There is some disagreement in the literature on
whether large plant gains are a problem or not when it comes to
input-output controllability. In this paper, the effect of two kinds
of input errors is studied and controllability requirement s are
derived. First, input disturbances are studied. These may pose a
problem if the plant gain is large at high frequencies. Second, we
study the nonlinear effect of limited input resolution which causes
limit cycle behavior similar to that found with relay feedback. The
magnitude of these limit cycles depends on the high-frequency
process gain, but is independent of the controller tuning. They
can be reduced by pulse modulating the input signal, but this
may cause excessive input movement. In summary, large gains
at frequencies corresponding to the closed-loop bandwidthmay
cause control problems, but large steady-state gains are not by
themselves a problem.
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I. I NTRODUCTION

The main goals of feedback control systems are to stabilize
the process and reduce the effect of unmeasured disturbances
on the output to an acceptable level. A fundamental question
arises: Is the process input-output controllable? There are
many factors that need to be considered, and one of them
is the magnitude of the process gain. The gain depends on
the frequency and, for multivariable plants, also on the input
direction. To quantify this, the singular valuesσi(G(jω))
of the process transfer functionG(s) are considered. Of
particular interest are the maximum and minimum singular
values, denoted̄σ(G) and σ(G), respectively. In this paper,
for simplicity, SISO systems wherēσ(G(jω)) = σ(G(jω)) =
|G(jω)| are mainly considered.

It is well accepted that small process gains may cause
problems, for example, with input saturation. For example,
[1] states that, with unitary scaling of the inputs and desired
output changes of magnitude one in terms of the 2-norm, the
requirement for avoiding input saturation isσ(G) ≥ 1, that is,
a minimum gain of one is required to have acceptable control.

It is less clear whether large process gains pose a prob-
lem. [2] consider the condition number, defined asγ(G) =
σ̄(G)/σ(G) and make the following conclusion:A large
condition number may be caused by a small value ofσ(G),
which is generally undesirable. On the other hand, a large
value ofσ̄(G) is not necessarily a problem.

On the other hand, intuitively, a large process gain may be
troublesome, because the output becomes very sensitive to the
input changes. [3] argue along these lines and claim that for
control purposes the magnitude of steady-state process gain

(σ̄(G)) should not exceed about 50. If this is correct then
it would have important implications on the design of many
processes.

The objective of this work is to study this in more detail. It
is clear that the rule of [3] is reasonable if feedforward control
is considered because there will always be some error when
implementing the input and without feedback this cannot be
corrected for. However, in terms of feedback control, the rule
cannot be generally true because for some classes of processes,
it is well known that large process gains are not a problem.
Consider, for example, feedback control of liquid level (output)
using effluent flow (input). The steady-state gain is infinitedue
to an integrating transfer function, but it is easily controllable.

Nevertheless, high process gains may cause problems for
feedback control at least at high frequencies and the aim of this
paper is to study this in terms of input errors. Two main types
of input errors are discussed: input (load) disturbance andinput
inaccuracy caused by limited input (valve) resolution. Most
of the results are derived for first-order plus delay processes,
otherwise, when appropriated, more general derivations are
presented.

II. INPUT LOAD DISTURBANCE

It is well known that “large disturbances” cause control
problems. Without control the effect of disturbances on the
output is y(s) = Gd(s)d(s), and by “large disturbances” is
meant that the product|Gd|d is large. Here, input disturbances
are considered, i.e.,Gd = G. First, a large plant gain|G| may
cause problems for feedforward control. This follows because
it is necessary to be very precise with the input change (e.g.
see eq. (5.70) in [2]). Thus, large disturbances motivates the
need for feedback control, which is considered in this paper.

With feedback control, “large disturbances” are not neces-
sarily a problem, but they pose limitations on the minimum
bandwidth. Consider a single disturbanced and assume that
the reference is constant, i.e.r = 0. Without control the
steady-state sinusoidal response fromd to the control error is
e(ω) = Gd(jω)d(ω), where phasor notation is used. Assume
that the worst-case disturbance at any frequency isd(t) =
d0 sin ωt, i.e. |d(ω)| = d0 (whered0 is assumed constant at
all frequencies), and the control objective is that the controller
error is less thanemax at any each frequency, i.e.,|e(ω)| <
emax. From this, one can immediately draw the conclusion that
no control is needed if|Gd(jω)d0| < emax at all frequencies
(in which case the plant is said to be “self-regulating”). If



|Gd(jω)|d0 > emax at some frequency, then control is needed
(feedforward or feedback). In the following, feedback control
is considered, in which casee(s) = S(s)Gd(s)d(s), where
S = (I+GK)−1 is the sensitivity function. With|d(ω)| = d0,
the requirement|e(ω)| < emax then becomes

|S(jω)| · |Gd(jω)|d0 < emax ∀ω (1)

A plant with a small |Gd| is preferable since the need for
feedback control is then less, or alternatively, given a feedback
controller (and thus givenS), the effect of disturbances on the
output is small.
|S| is small at low frequencies, so in general it does not

matter if |Gd| is large at steady state. However,|S| increases
with frequency and crosses 1 at the bandwidth frequencyωS.
At this frequency

|Gd(jωS)| < ymax/d0 (2)

Thus, (2) provides an upper bound on the allowed disturbance
gain at the frequencyωS . In most cases|Gd| becomes smaller
at high frequency, so the bound is easier to satisfy ifωS

is increased. However, for stability reasons the value ofωS

is limited, and typicallyωS ≈ 0.5/θ, where θ denotes the
“effective delay” around the feedback loop (just consider G
as a first-order plus delay model with a PI controller tuned
according to [4] and|S(jωS)| = 1). The bound (2) then
becomes

|Gd(j0.5/θ)| < ymax/d0 (3)

This bound is independent of the controller, and thus provides
a fundamental controllability requirement.

However, the purpose of this paper is not to consider plants
for which |Gd| is large, but rather plants for which|G| is
large. In practice, these are related because all plants have
disturbances at the input to the plant. To this effect, consider
input (load) disturbances withGd(s) = G(s)αd whereαd is a
constant gain. (3) then gives the following limit on the allowed
plant gain at frequencyωS

|Gd(j0.5/θ)| < 1/αd · ymax/d0 (4)

Input disturbances are very common and have many sources.
For example, in many cases the input is a valve which receives
its power from a hydraulic system (e.g. the brakes of a car)
or from pressured air (many process control applications).A
change (disturbance) in the power system will then cause an
input disturbance. The value ofαd will vary depending on the
application. If it is assumed that the system has been scaled
such that the largest expected inputu is of magnitude 1, then
it seems reasonable thatαd is at least 0.01, and that a typical
value is 0.1 or larger.

As an example consider the following plantG(s) =
ke−θs/(τs + 1); Gd(s) = αdG(s), wherek = |G(0)| is the
steady-state gain of the plant. The high-frequency asymptote is
|G(jω)| ≈ k/τω = k′/ω, wherek′ = k/τ is the initial slope
of the step response. (4) gives the controllability requirement

k/τ = k′ < 1/αd · 0.5/θ · ymax/d0 (5)

Thus, there exist an upper bound on the allowed value ofk′.
Remark: (5) seems to indicate that a plant with a large

steady-state gaink is fundamentally difficult to control. How-
ever, this is usually not true, because a large value ofk is
usually accompanied by a large time constantτ . For example,
for an integrating processG(s) = k′e−θs/s. Thus, there is an
infinite steady-state gaink and also an infinite time constant
τ .

III. LIMITED INPUT RESOLUTION

The implications of limited input resolution is studied here.
The main reason for this is that [3], based on a case study,
claim that this imposes limitations on the allowed steady-state
process gain.

A. Controllability requirement assuming sinusoids

Consider a simple SISO example where the plant is given
by

G(s) = 100/[(10s + 1)(s + 1)2] (6)

and the controller is

K(s) = Kc(τIs + 1)/τIs, (7)

which contains a dominant time constantτI = 10, that cancels
the pole inG(s), andKc = 0.04 is selected.

The block diagram of the feedback system is depicted in
Figure 1.
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Fig. 1. Feedback control configuration for the valve inaccuracy problem.

In this Figure,r is the set point,y is the plant output,u
is the controller (K) output, andG is the plant. The element
called quantizer has been used to simulate valve inaccuracy.

The effect is thus to quantize a smooth signalu into a stair-
step outputuq.

uq = q · round(u/q) , (8)

Hereq is the quantization step and theround function takes
its argument to the nearest integer. The limited valve resolution
results in a stepwise input “disturbance” of magnitude equal
to the quantization step,q.

For the example given by (6) and (7),q = 0.03 is taking as
the quantizer step. Figure 2 shows the closed-loop responsefor
a step change in the reference of magnitude 1 (r0 = 1). From
this figure, the magnitude and the period of oscillations iny
are measured to bea = 0.189 andT = 6.72s, respectively.

Limit cycles are inevitable if there is a quantizer and integral
action in the controller. This follows because on average the
input must equal the steady-state valueuss = yss/G(0) =



r/G(0), and if this does not happen to exactly correspond to
one of the quantizer level, the quantized inputuq will cycle
between the two neighboring quantizer levels,q1 andq2. Let
f and1 − f denote the fraction of time spend at each level.
Then, at steady stateuss = fq1+(1−f)q2 and from thisf can
be found. Note that the closeruss is to one of these values,
the longer the timeuq must remain on it. In the example,
uss = yss/G(0) = 1/100 = 0.01, which is closer toq1 = 0
thanq2 = 0.03. The fraction of timeuq remains onq1 = 0 is
f = 1 − 0.01/0.3 = 0.67. As expected, this agrees with the
simulations.
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Fig. 2. Simulation results for the system given by (6) and (7)for r0 = 1.

Moreover, when the limit cycle is established the quantizer
can be regarded as a relay without hysteresis and thus can be
treated as such. The amplitude of the oscillations can then be
found analytically by considering the harmonic linearization
or describing function of the nonlinearity in the loop showed
in Figure 1.

For a relay without hysteresis, the describing function is
given by (see [5]):

N(a) = 4q/πa, (9)

wherea is the amplitude of the oscillations andq is the relay
amplitude (like the quantization step).

For the system depicted in Figure 1, the condition for
oscillation is simply given by

N(a)L(jω) = −1, (10)

whereL(jω) = G(jω)K(jω) is the open-loop transfer func-
tion.

Since according to (9)N(a) is a real number, it follows
from (10) thatω is the ultimate frequencyωL,180 andKu =
N(a) = 4q/πa is the ultimate gain [6]. As long asτI in (7)
is sufficiently large, that is,1τI

is much smaller thanωL,180,
∠K = −π

2 + arctan(ωL,180 · τI) ≈ 0. Then,∠L = ∠G +
∠K ≈ ∠G, ωL,180 ≈ ωG,180 (ωL,180 is independent of both
Kc andτI ), andKu = 1/|G(jωL,180)| which leads to

|G(jωL,180)| ≈ πa/4q (11)

Let amax denote the maximum allowed amplitude of the
oscillations isy. Then, from (11) the following controllability
requirement applies

|G(jωL,180)| < πamax/4q, (12)

Typically, amax will be considerably smaller thanymax, e.g.
amax = 0.1ymax. (12) gives an upper limit on plant gain at
frequency where∠L = −π (−180o). Usually,ωL,180 ≈ 1.5/θ
(just consider G as a first-order plus delay model with a PI
controller tuned according to [4] and∠L = −π).

For the system given by (6) and (7),∠L(jωL,180) =
− arctan(10ωL,180) − 2 arctan(1ωL,180) = −π which gives
ωL,180 = 1.09 and the period of oscillation is found to be
T = 2π

ωL,180
= 5.8. Moreover,|G(jωL,180)| = 4.13 and from

(11), a = 4
π q|G(jωL,180)| = 0.158. This agrees quite well

with the simulation results(T = 6.72, a = 0.189).
It has been assumed here that the resulting oscillations are

sinusoidal, but this is not quite true. Then, two questions arise:
What happens if the response iny is non-sinusoidal? Does (12)
still hold? The answer for the last question isyes, as discussed
in section III-C.

B. Non sinusoid responses

By taking the system described by (6) and (7) and using the
configuration of Figure 1 withq = 1 (representing the worst
case, an on/off valve), the simulation results for the output y
are depicted in Figure 3.
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Fig. 3. Simulation results for the system given by (6) and (7)for q = 1.

From the figure, it is clear that the oscillations are not
sinusoid-type. A deeper analysis by computing the power
spectrum of the limit cycle confirms this hypothesis. In Figure
4, there is a second peak of about 50 at 4 rad/s which shows
the data inconsistency, i. e. the limit cycles cannot be properly
fitted to a sinusoid-type curve. From (11) andT = 2π/ωL,180

the amplitude and period of the limit cycle are found to be
a = 6.23 and T = 6.28s which are very different from the
measured results,a = 1.82 and T = 26.48s. Consequently,
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Fig. 4. Power spectrum of the limit cycle of the system described by (6)
and (7) forq = 1.

(11) cannot predict the amplitude for a non sinusoid response
and (12) should not be used to assess the controllability of
such systems.

We would like to perform an exact analysis. This is difficult,
but we have derived exact results for a first-order plus delay
process (see next section).

C. Controllability requirement for first-order plus time delay
processes in the time domain

In this section, non sinusoid-type quantitized responses for
a first-order with delay plant controlled by a PI controller is
discussed. The following example is considered

G(s) = ke−θs/(τs + 1) (13)

K(s) = Kc(τIs + 1)/τIs, (14)

with k = 100, θ = 1, τ = 10, Kc = 0.04, andτI = 10.
The loop is set up according to Figure 1. The simulation

results forq = 0.03 and a step change of 0.2 in the reference
(r0 = 0.2) are given in Figure 5.
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Fig. 5. Simulation results for the system given by (13) and (14).

The amplitude and period of the limit cycle ofy can be
predicted for first-order plus delay processes as it is shown

later. For this particular example they are measured to bea =
0.3 andT = 16.07s, respectively. It can be seen that the output
of the quantizer,uq, oscillates between 0 and 0.03. The steady-
state value isuss = 0.2/100 = 0.002, which means it stays
f = 0.93 (93%) of the time (15s) at 0 andf = 0.07 (7%) of
the time (1.07s) at 0.03.

Again, it can be argued that the response depicted in Figure
5 is non sinusoid and then again (12) cannot be applied
to assess the controllability of the system. This suggests
a different approach from the one derived in section III-B
must be investigated. We have derived an exact analytical
expressions for the amplitude and period of oscillation of the
limit cycle for a first-order plus delay process. The main result
is presented below without proof.

Theorem: For the system given by (13) and (14) set up
according to the configuration of Figure (1) with quantizer
levelq, the amplitude and period of the limit cycle oscillations
are given by

a = kq
1 − e−t1/τ + e−T/τ − e−(T−t1)/τ

1 − e−T/τ
(15)

T = θ(
1

1 − f
+

1

f
), (16)

wheret1 = θ/(1 − f) and f is calculated fromuss = fq1 +
(1 − f)q2.

For the example presented at the beginning of this section,
the amplitude and period of oscillation calculated using (15)
and (16) area = 0.3 and T = 16.07s, respectively which
match exactly the observed results. For this case, (11) gives
a = 0.24 andT = 4θ = 4s, that is, (12) can be considered a
more conservative bound.

In general, the minimum value forT and the maximum
amplitudea occurs when the set point change,r0, is such that
f = 0.5. In this case,T = 4θ anda = kq[(1− e−2θ/τ)2/(1−
e−4θ/τ)] and the results also compare well with the describing
function analysis based on sinusoids in (11).

Moreover, for the plant given by (13) and (14), assuming
τI ≈ τ ⇒ ∠L = −ωL,180θ − π/2 = −π ⇒ ωL,180 = π/2θ,
the corresponding period and amplitude of oscillation areT =

2π/ωL,180 = 4θ anda = kq
√

16
π2

4(θ/τ)2

π2+4(θ/τ)2 , which for small
values ofθ/τ agrees quite well with the previous expression
for a in (15); see Figure 6.

Remark: Since (15) is derived taking into account the
approximationτ = τI which applies for well-tuned controllers
(see [4]), the amplitude and period of the limit cycle are
independent of the controller parameters.

Again, it is required thata < amax and the controllability
requirement for first-order plus time delay processes is

|G(0)| <
amax

q

1 − e−T/τ

1 − e−t1/τ + e−T/τ (1 − et1/τ )
(17)

D. How to avoid oscillations

The oscillations in the output of the system showed in
Figure 1 can be avoided by the following ways:

a. Change the valve so that the resolution is enhanced
(small quantization step);



0 1 2 3 4 5
0     

0.2   

0.4   

0.6   

0.8   

1     

1.2   
1.27   

θ / τ

a 
/ (

k 
⋅ q

)

f = 0 or 1

f = 0.1 or 0.9

f = 0.2 or 0.8

f = 0.3 or 0.7

f = 0.5

Using DF (3)
4 / π

0 1 2 3 4 5
0     

0.2   

0.4   

0.6   

0.8   

1     

1.2   
1.27   

θ / τ

a 
/ (

k 
⋅ q

)

f = 0 or 1

f = 0.1 or 0.9

f = 0.2 or 0.8

f = 0.3 or 0.7

f = 0.5

Using DF (3)
4 / π

0 0.1 0.2 0.3 0.4 0.5 0.6
0     

0.2   

0.4   

θ / τ

a 
/ (

k 
⋅ q

)

f = 0 or 1

f = 0.1 or 0.9

f = 0.2 or 0.8

f = 0.3 or 0.7

f = 0.5

Using DF (3)

Fig. 6. The amplitude in (15) agrees surprisingly well with the describing
function analysis (11) providedθ/τ is small.

b. Redesign the process in order to change the values of k,
τ , andθ (smaller effective delay);

c. Take away the integral action leaving solely a P-
controller (may give a poor performance);

d. Introduce fast, forced cycles at the input with a higher
frequency than those generated “naturally”. For exam-
ple, one may use high-frequency pulse modulation or
add high-frequency sinusoids (somedu = sin ωt which
may wear out the valve).

The use of a P-controller (item c) can eliminate oscillations
as long as steady-state offset can be afforded. In order to make
the offset as small as possible, bounds on the controller gain,
Kc, are found to be (again, for the sake of compactness, the
derivation of those bounds are not to be shown here):

nmaxq

r0 − nmaxqG(0)
≤ Kc <

(nmax + 0.5)q

r0 − nmaxqG(0)
, (18)

wherenmax = br0/qG(0)c.
An attractive alternative, at least from a theoretical point

of view, is to introduce high-frequency cycling at the input
(item d). The problem is that the fast cycling may be difficult
to handle in practice, for example, because the valve cannot
be moved so fast or because of excessive wear. One approach
is to introduce a pulse modulator in the controller before the

quantizer. By applying this method, the response of the system
given by (13) and (14) is depicted in Figure 7. As it can be
seen, the amplitude is drastically reduced.
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Fig. 7. Simulation results for the system given by (13) and (14) using a
modulator (r0 = 0.2).

IV. DISCUSSION

[3] claim that an upper limit for̄σ(G) should be imposed.
It is suggested that a reasonable limit is 50 because essentially
all control systems are eventually implemented with analogue
devices which typically have an accuracy on the order of 0.5%.
Actually this is true only at bandwidth frequency whereas no
such limit exists at steady-state. Furthermore, it is also claimed
that it is impossible in practice to get the fine manipulationof
the control valves that is required for control because these
valves would be limited to move in a very small region.
Actually this is only true for feed forward systems without
pulsing. There will be no problem with feedback, but some
cycling must be accepted.

[3] also claim that the cycling can be avoided by detuning
the controller, but this is not generally true, unless one is
willing to remove the integral action and accept an offset. The
simulation used by [3] to illustrate this claim is misleading,
because oscillations do start if the simulation time is increased.

An important distinction between input load disturbance
and valve inaccuracy is that, in general, in the latter a high



bandwidth has no effect on the controllability of the system
since controller parameters do not generally affect the limit
cycle as showed for first-order plus delay process. Moreover,
the requirement in (4) is more restrictive than the requirement
in (12) if |Gd|d0 > q/2.42 (to see this, consider the ratio
|G(jωS)|/|G(jωL,180)| and (4) and (12)).

Two basic approaches to assess controllability are discussed
in this paper. But, in general, to make use of one or the
other, the resulting limit cycle has to be characterized. If
the process is a first-order plus time delay the controllability
requirement is directly given by (17). Otherwise, simulations
must be performed in order to determine if the limit cycle is
sinusoid-type, for example, by performing a spectral power
analysis. If the limit cycle is proved to be sinusoid-type, (12)
is used as the controllability requirement.

V. CONCLUSION

Processes with large gains are a major problem when input
load disturbance and valve inaccuracy problems arise. For
input load disturbance, high gain implies the need of a high
bandwidth which cannot always be achieved in practice.

When dealing with valve inaccuracy problems a different
approach has to be used since, in general, the controller para-
meters do not affect the bandwidth. Besides, high gains givea
large amplitude of the resulting limit cycles. For sinusoid-type
limit cycles, the simple approach using harmonic linearization
approximation are derived to assess controllability. As for
first-order plus time delay processes, on the one hand, more
complicated expressions are needed to assess controllability
but on the other hand, the results are exact. A general approach
to deal with valve inaccuracy is proposed.

In order to avoid oscillations due to valve inaccuracy one
may use a P-controller and performance may then degrade due
to offset. Alternatively, the pulse modulation approach yields
much better results since the remaining oscillations are ofvery
low amplitude, but the problem is that the valve may wear out
severely.
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