
 
 

Measuring Cause and Effect between Process Variables 
 

Margret Bauer, Nina F. Thornhill 
Department of Electronic & Electrical Engineering, University College London, UK 

m.bauer@ee.ucl.ac.uk, n.thorhill@ee.ucl.ac.uk 

John W. Cox 
Eastman Chemical Company, Kingsport, TN USA 

jwcox@eastman.com 

 
 

Abstract 
Disturbances in chemical processes spreading through 

plants affect a number of process variables. The operator 

or the monitoring scheme in place often detects the 

disturbance at a variable critical to the process. This 

variable might not be close to the actual cause and 

isolation of the root cause becomes therefore a task for 

the control engineer. The aim of this study is to find ways 

of identifying cause and effect and thus the direction of 

propagation of a disturbance using only historical data of 

the process variables. A recently introduced method, 

predictability improvement (PredI), is based on embedded 
vectors and finding their nearest neighbors. The modified 

PredI algorithm works by exploiting, firstly, time delays 

which often occur between two measuring points and, 

secondly, attenuation of the signature of the disturbance 

related to the distance of the root cause. A new case study 

of an industrial reaction process is presented. The 

modified PredI method is applied to a disturbance 

observed by the operators at the bottom of the reactor 

and successfully shows that the disturbance originates 

from a root cause further upstream. 

 

1. Introduction 
 

Fault detection schemes involve the close observation 
of process variables and control loops.  A number of 
indices have been established to measure the increased 
variability of variables and loops [1], [2]. An alarm is 
raised if a variable or calculated index exceeds a 
predefined threshold. However, this might not be the 
variable that actually caused the disturbance. Isolating and 
diagnosing the fault is therefore an important and often 
challenging task.  

Propagation paths in case of normal operation and 
disturbances have been previously investigated with 
statistical methods based on probability density function. 
Chiang and Braatz [3] used the Kullback-Leibler 
information distance to identify broken relationships when 
a fault is present. A requirement for the identification, 

however, is the existence of a causal map that has to be 
derived from expert knowledge. The concept of transfer 
entropy [4] can measure dependencies without 
constructing a model. The propagation path of the 
disturbances can be retraced and the root cause isolated. 
One of the shortcomings of these approaches is that the 
estimation of the probability density function requires a 
large amount of data which is not always available, 
especially if the disturbance only lasts for a short time.  

In this article, the statistical method of nearest 
neighbors is proposed to measure cause and effect, or 
directionality, between two process variables with using 
only a limited number of measurement samples. With the 
availability of high performance PCs a new class of 
statistical methods has emerged that rearranges the 
historical data as embedded vectors and calculates the 
nearest neighbors of each embedded vector. If the nearest 
neighbor is identified by the use of a second variable, the 
method becomes a measure of predictability from the 
second variable to the first and hence a measure of 
directionality. Čenys et al. [5] introduced a measure to 
establish whether two systems are related. Wiesenfeldt et 
al. [6] extended the measure to a single step prediction 
error to measure bidirectional coupling of two systems 
through uncertainty. The method used in this article is a 
modification of the predictability improvement (PredI) by 
[7]. The PredI algorithm extends the approach by 
Wiesenfeldt et al. to measure the reduction of uncertainty 
of one variable with additional knowledge of a second 
variable and has thus a parallel structure to the method of 
transfer entropy but without the shortcoming of requiring 
a very large data set.  

The cause and effect relationships can be best 
represented in causal models of the process [8]. 
Qualitative models in form of digraphs are commonly 
used and a final result of the cause and effect analysis 
using the method of transfer entropy or nearest neighbors 
will be the automated construction of such a model  

The article is organized as follows. In Section 2, the 
directionality measure using the principle of nearest 
neighbor methods is introduced for analyzing oscillating 



disturbances. The algorithm for computing the PREDI 
measure is given together with guidelines for setting the 
parameter. In Section 3, graphical representation and 
construction of digraphs are suggested once the measure 
has been calculated. The application of the PREDI 
measure to a case study of a reaction process is given in 
Section 4. 
 

2. Directionality measure 
 

A persistent fault or disturbance often manifests itself 
as a combination of a periodic oscillation and statistical 
noise. The oscillation can originate from a variety of 
causes including sticking valves, instrumentation failures, 
tuning problems and process inherent instabilities. The 
signature of the fault changes as the disturbance travels in 
the process. This change through the process dynamics 
can be classified as 

• Time delay 
• Attenuation 

The time delay is caused by the fact that it takes time 
for the disturbance to propagate along the process flow 
from one physical measuring point to the next. The time 
delay of two pure oscillations cannot be measured straight 
forwardly because a variable occurring before a second 
variable by 120o could also be lagging by 240o to the 
second variable. Furthermore, if the time delay is small 
the sampling interval may be larger than the time delay. 
Exploring the attenuation of the disturbance is useful in 
these circumstances. Most processes act as low passes and 
filter the high frequency components of an oscillation. The 
disturbance will have a smoother shape the further it is 
away from the root cause. Linear methods such as cross-
correlation can measure the time delay between two nearly 
identical signals but if the functional distortion is too 
strong it will give no useful results. The concept of 
predictability improvement, however, incorporates both 
time delay and attenuation of the signal to measure the 
causal relationship. 
 
2.1 Nearest Neighbors 

 

Directionality is measured by comparing the 
predictability of a future value of a first variable if the past 
values of a second variable are given against the 
predictability of the second variable if the past values of 
the first variable are given. The concept is based on the 
construction of a state space estimate using the historical 
data points of the process measurements. For this purpose, 
embedded vectors are formed for process variables X and 
Y of length: xi

M = [xi, xi-1, …, xi-M+1] and yi
M = [yi, yi-1, …, 

yi-M+1]. Here, i is the time index and M the number of time 
samples or embedding dimension. The number of 
embedded vectors is N-M+1 where N is the length of the 

sample sequences X and Y. The corresponding future 
values, or one-step-ahead-predictions, are defined as xi+h 
and yi+h. The number of steps predicted in the future h is 
called the prediction horizon. 

 
Algorithm for determining directionality 

Step 1 finds k nearest neighbors xnn,i of xi. 
Step 2 compares the corresponding future value of yi+h 

with future value of the k nearest neighbors yjnn,i+h. 
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Step 3 repeats for all embedded vectors and compute 
average statistic (l = N-M+1-h). 
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Step 4 computes with exchanged x and y and compare 
the two measures. 
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 Here, σy is the variance of time series y. The smaller 
the error between the future value yi+h and the predicted 
future value ynn,i+h, as calculated in step 2, the better is the 
prediction of X to Y. Thus, the final prediction measure 
P(X|Y) in step 4 is the difference between X predicting Y 
and Y predicting X. The original measure p is asymmetric, 
p(X|Y) ≠ ±p(Y|X), which allows a statement of 
directionality. Scaling by variance σy in step 3 ensures that 
the measure lies within a range from zero to 
approximately one. The measure can be slightly larger or 
smaller than 1 because the number of nearest neighbors 
and repetitions, k and (N-M+1), is finite. The 
computational effort increases with N and M and 
decreases with h because the distance between all (N-
M+1-h) embedded vectors has to be calculated and 
assessed. The computation of the distance becomes more 
elaborate if the embedding dimension M is higher. When 
using vector oriented software for implementation, the 
computational effort is most affected by the length of the 
time sequence, N and increases with N2. 

 
2.2 Guidelines 

 
Adjustment of the parameters is particularly straight 

forward if a period of oscillation exists. Constructing 
embedded vectors gives the basis for a state space model 
of the process. The parameters specified for the 
construction of the vectors are crucial for the result of the 
directionality measures. The parameters are embedding 
dimension M, the prediction horizon h and the number of 
samples of the two time sequences. Empirical tests have 
been carried out for a number of data sets and the 
guideline parameters in the following have shown to give 
good results for most applications. 



Embedding dimension: M=4. The length of the 
embedded vector equals to the dimension of the estimated 
state space. If the embedding dimension is set too high, no 
good predictors can be found for both variables even if 
one is better than the other. The opposite case is true for a  
too small dimension. Both variables will be good 
predictors and no strong differentiation is possible.  

Number of samples and sub-sampling: N=400. 
Restrictions for the number of samples are recommended 
for a number of reasons. If the number is too low then not 
enough relevant features are captured to draw relevant 
conclusions. Since the computational effort increases 
significantly with increasing N the number must have be 
limited by an upper bound which depends on the 
computational capacities. Also, the time during which the 
disturbance arises could be limited. Sub-sampling is 
recommended if more than 40 samples per cycle are 
captured. 

Prediction horizon: h=1. In the definition the 
prediction horizon was set to h when looking at one-step-
ahead-prediction. For the optimal result, the prediction 
horizon is equal to the actual time lag between the two 
sequences analyzed. As the delay is usually unknown, 
setting the prediction horizon to one as suggested by 
Feldmann and Bhattacharya [7] gives satisfying results if 
the sequence is not oversampled, that is, all the time 
dynamics of the process are in the same range as the 
sampling rate. 

A further change in the construction of the embedded 
vectors can be achieved by including the past values of y 
in addition to x when predicting yi+1. This is equivalent to 
a feedback structure in the state space. In addition to the 
time embedding, the number of nearest neighbors has to 
be chosen. 

Number of nearest neighbors: k=15. The number does 
not influence the result of the nearest neighbor method 
significantly. The number has to be statistically relevant 
but too if chosen too large, it makes the result irrelevant. 

Because of the generic approach of the method of 
nearest neighbors the data is not restricted to be of 
oscillatory nature. However, optimization as discussed 
above is aligned to the oscillatory case.  
 

3. Graphical representation 
 

The directionality measure established in Equation (3) 
expresses coupling between two variables x and y. A 
positive value of P(X|Y) indicates that x influences y, a 
negative value the opposite case. The measure can be 
calculated for all combinations of n process variable, i.e. 
n(n-1) combinations. A way of presenting these 
directionality measures is a bubble chart. In a bubble 
chart, the driver variables are listed on the y-axis while the 
response variables are on the x-axis. At the intersection of 

driver and response variable a bubble whose size reflects 
the value of the directionality measure is placed. Thus, the 
most important relationships are easy to detect.  

As a final result, a graph that allows backward 
inference for the root cause is desired. Digraphs are 
graphs with directed arcs between nodes. The nodes 
represent process variables and the arcs the relationship 
between the variables, that is, the causality measure. 
Several arcs can lead from and to a node. When 
constructing the digraph the number of detected 
relationships has to be reduced in some cases since 
duplicated dependencies might occur. As an example, a 
process variable PV1 might influence a variable PV2 
which in turn influences PV3. The causality measure may 
detect not only these relationships but also a dependency 
between PV1 and PV3, probably less prominent. This 
dependency has to be rejected when constructing the 
digraph.  
Most of the time, digraphs are constructed using expert 
knowledge or a mathematical model in form of differential 
and algebraic equations of the process. Here, the digraph 
for fault diagnosis is derived from the historical process 
data and the causality measure. The consistency to models 
gained from the process schematic helps to understand the 
root cause of the disturbance.  
 

 
Figure 1. Process schematic of industrial case 

study. 
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Figure 2. Time trend in samples of process measurements for the industrial case study. 

 

4. Industrial case study 
 
The process schematic of the reaction process is shown 

in Figure 1. Five temperature measurements are taken in 
the top section of the reactor above a point where heating 
fluid is pumped through the tray structure to control the 
temperature. Controlled temperatures are the inflow of the 
heating fluid and the temperature right above the inlet 
which are controlled in cascade. An additional 
temperature measurement is taken near the outlet of the 
reactor. The outflow at the 

bottom of the reactor is controlled by the level on the 
bottom tray and a temperature measurement further 
downstream is available. During operation of the reactor 
system a strong oscillation was observed by operators at 
the level at the bottom of the reactor. The level 
measurement and control is a crucial parameter in the 
process and closely observed. After the alarm was raised 
the first reaction was to check whether poor tuning was 
the root cause. The control engineer also checked all other 
available reactor process measurements for oscillations of 
the same period. The time trend of all measurements 
indicated in the process schematic is shown in Figure 2. 
Oscillations with the same period as the level affect a 
number of the temperature measurements along the 
reactor. All measurements apart from the controlled 
temperatures TC1 and TC2 as well as the temperature TI6 
show strong evidence of the disturbance in the time trend. 

The hypothesis posed is that the disturbance is caused 
further upstream. The task for the directionality measure is 
to accept or reject the hypothesis. 
 

4.1 Application of directionality measure 
 

An example of the mechanism for the nearest neighbor 
method can be shown by investigating the relationship 
between TI4 and TI5. In the top panel of Figure 3 (a) a 
data point of temperature measurement TI5 is chosen 
(filled circle). The corresponding embedded vector of 
temperature TI4 is shown by the filled circles in the lower 
panel. In a next step, the nearest neighbors of the 
embedded vector are found which are indicated in the 
same figure by unfilled circles. The corresponding future 
values are shown in the upper panel. It can be seen that 
these are good predictors because the difference to the 
original sample point, indicated by error bars, is small. In 
Figure 3 (b) the role of TI4 and TI5 is swapped. The 
embedded vectors of TI5 now predict future values of 
TI4. The error bars are larger than for the alternative case 
so that TI5 can be interpreted as a poor predictor of TI4. 

The result for all combinations of process 
measurements is shown in Figure 4. All values for the 
directionality measure which are greater than 0.1 are 
considered and highlighted in grey. Firstly, a group with 
strong directionalities between the temperature 
measurements at the top of the column can be observed  



 
Figure 3. Finding the nearest neighbors: (a) the future values of TI5 (upper panel) predicted by 

embedded vectors of TI4 (lower panel) are good estimates (small error bars in upper panel); (b) vice 

versa, TI5 gives a poor estimate for TI4 (large error bars in upper panel) 
 

pointing towards a sequential order from TI1 to TI5. More 
importantly, the level measurement LC1 is influenced by 
TI2, TI5 and TC1. However, the other temperatures TI1, 
TI3 and TI4 do not show this direction. The group of 
controlled temperatures, TC1, TC2 and TI6 must be 
viewed separately since the disturbance is not very 
significantly represented (see Figure 2). 
 

4.2 Construction of digraphs and discussion 
 
The results in the bubble chart in Figure 4 are 

converted into a digraph as shown in Figure 5 (a).  There 
are no dependencies to TI6 which shows a noisy behavior, 
see Figure 2. It is believed that the output of sensor TI6 
was not strongly related to the actual process temperature, 
due to sensor installation issues.  

 
Figure 4. Overview of all directionality measures in a bubble chart. Variables on the vertical axis 

influence variables on the horizontal axis by the value indicated in the intersecting bubbles. 
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Figure 5. Digraphs considering all detected 

causalities (a) and after removing redundant 

connections (b).  

 
Only strong connections for TC1 and LC1 were 

considered in an intuitive manner. The simplified digraph 
that omits redundant dependencies is shown in Figure 5 
(b). A fault propagation path from TI1 through to TI5 can 
be retraced and then further on to TC1 to TI7 over TC2 
and LC1.The two groups are connected only through a 
single arc between TI4 and LC1 which suggests that a 
relationship does not exist between TI5 and TC1. It is 
thought that the controllers damp the characteristic of the 
disturbance. Internal reactor characteristics coupled with 
temperature measurement issues may also be masking the 
expected relationships. 

The directionality measure supports the hypothesis of 
an upstream disturbance rather than a problem with the 
level measurement. Level in the bottom tray and 
temperatures in the reactor are related as expected due to 
the nature of the reactor process. It can be concluded from 
the results of the directionality measure that the 
disturbance is not caused by the level controlled flow but 
by an upstream disturbance originating at a point before 
the reactor. The disturbance is entering at a plant 
boundary and is not originating within the unit. This is a 
significant and useful finding because it means the root 
cause is further upstream.  

 

5 Conclusions 
 

The concept of the nearest neighbor method, 
predictability improvement, which incorporates both time 
delay and attenuation, was presented here for 
directionality analysis. An indication can be given towards 
the direction of propagation and the root cause. 

Guidelines derived from experimental studies are given to 
aid its routine implementation. In a case study of a 
reaction process the directionality of fault propagation 
was successfully investigated and gave unambiguous 
results. A digraph could be constructed from the 
directionality measure that showed the fault propagation 
path of the oscillatory disturbance. One of the advantages 
of the nearest neighbor method is the simple 
implementation and the generic approach. In comparison 
to directionality measures based on the probability density 
function fewer data samples are required to give 
consistent results. A drawback of the nearest neighbors 
method is that a pre-selection of variables that show 
similar time trends has to be undertaken to retrieve useful 
results. Its role in plant auditing is therefore a drill-down 
tool once the major disturbances have been mapped out.  
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