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ABSTRACT

This paper discusses the application of statisti-
cal techniques to identify soft sensor models be-
tween the process quality variables, whose online
measurements are not available in real time, and
the process variables measured in real time. The
methodology is illustrated through the application
of the Canonical Variate Analysis for building soft
sensors to predict hydrocarbon compositions in the
secondary extraction plant at Suncor.

1. INTRODUCTION

Soft sensors are being increasingly used in process
industries where instruments for online measure-
ment of some quality variables are not available.
Many numerical methods such as Partial Least
Squares, Principal Component Analysis, etc. can
be used in the multivariate regression to iden-
tify a static model between the quality variables
contained in the Y -matrix and the process vari-
ables contained in the X-matrix (Raghavan et
al., 2002). The real-time predictions of quality
variables from these models are called soft sensor
predictions and are useful for the control room
operators to improve the process performance by
taking appropriate corrective actions. Soft sensor
predictions can also be used for inferential control
(Amirthalingam et al., 2000; Kresta et al., 1994; Li
et al., 2002; Parrish and Brosilow, 1985). The
notation ‘quality’ and ‘process’ variables used in
this paper is respectively synonymous with the
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statistical notation ‘response or dependent’ and
‘predictor or independent’ variables.

Modelling soft sensors for industrial application
poses some unique data pre-processing challenges
such as the presence of missing data and data
outliers and may require data filtering. One of the
critical steps in building the soft sensor models
is the selection of appropriate process variables
in the X-matrix. Collinearity of the variables in
the X and Y matrices is a problem that needs
to be addressed for data regression. Collinearity
does not affect the ability of a regression equation
to predict the response but gives unreliable esti-
mated of their individual regression coefficients.
Hence it poses a problem in estimating the con-
tributions of individual process variables. In this
paper discussion on a Canonical Variate Analysis
(CVA) based methodology for building soft sen-
sors to provide real time inferential measurements
of some quality variables in the oil sands extrac-
tion process is provided.

The feed, product and tailings streams from the
various unit processes in secondary extraction
plant at Suncor Energy have hydrocarbon compo-
nents A and B, along with water and fine solids.
Online measurement of composition using analyz-
ers is a difficult task due to the presence of fine
solids. Hydrocarbon composition information in
the process streams, which is critical for operat-
ing the plant, are currently not available in real
time because of the several hours delay caused by
sample collection and laboratory analysis. Even
though plant personnel need the composition of
only one or both of the hydrocarbon components
laboratory analysis typically provide composition



of all the components in the stream and some
additional properties such as the density of hydro-
carbons, etc. This additional information is useful
in improving the selection of process variables in
the X-matrix for building the soft sensors.

The rest of the paper is organized as follows.
Section 2 provides the factors that were considered
for the selection of the numerical technique for
multivariate regression. Section 3 illustrates the
basic CVA methodology and section 4 illustrates
the industrial application followed by conclusions
in 5.

2. SELECTION OF THE NUMERICAL
TECHNIQUE FOR MULTIVARIATE

REGRESSION

A typical industrial process is multivariate and
any quality variable associated to that process
is likely dependent on several process variables.
Hence building a soft sensor for the quality vari-
able(s) involves identifying a model through mul-
tivariate regression. For this we need to explore
the relationship between the process matrix Xn×p,
containing ‘n’ samples of ‘p’ process variables, and
the quality matrix Yn×q, containing ‘n’ samples of
‘q’ quality variables.

At this point we need to choose a suitable nu-
merical technique for data regression to resolve
the following problems typically encountered with
industrial data.

2.1 Collinearity among the process variable

Since the process variables considered in the X-
matrix are from the same plant it is likely that cor-
relations exist between these variables. Collinear-
ity occurs when process variables are so highly
correlated that it becomes difficult to distinguish
their individual influences on the quality vari-
able(s). Collinearity (ill-conditioning of the XT X
matrix) does not affect the ability of a regres-
sion equation to predict the quality variable but
it affects the ability to obtain reliable estimates
of their individual regression coefficients (Dallal,
2001).

Reduced rank regression techniques can be used
to resolve this problem.

2.2 Noise in the variables

Since the measurements of the process variables
are coming from instruments they have signal
noise. If the measurements are used directly in
the model identification step this constitutes an
errors in variables (EIV) case. In this paper we

consider the case where the process variable mea-
surements are available at a faster time interval t1
and the quality variable measurements are avail-
able at a much slower time interval t2 À t1. The
quality variable measurements come from labora-
tory analysis of the consolidated samples collected
over a specific time period through online auto
samplers. The process variable measurements can
be weighted averaged with respect to the stream
flow rate to mimic the auto sampler mechanism.
Therefore the j-th sample of the i-th process vari-
able in the X-matrix, represented by xij where
i = 1, ..., p and j = 1, ..., n; is obtained by the
weighted average

xij =

∑k=t2(j−1)+1
t2j F kxk

ij∑k=t2(j−1)+1
t2j F k

(1)

Since we are using the weighted average data of
the process variables for model identification this
does not constitute the EIV case.

2.3 Selection of variables in the X matrix

As suggested before, a typical process has multiple
process variables and not all of them have signif-
icant bearing on the quality variable(s). We want
to include only important process variables in the
X matrix. This selection can be made based on
the relative magnitude of the individual regression
coefficients of the process variables.

Consider the case where the composition of only
one component in the stream, measured through
the laboratory analysis, is of interest to the oper-
ators. However laboratory analysis provides data
on composition of all the components in the
stream and some additional properties. These ad-
ditional quality variables, although not required
for soft sensor modelling in the end, can come in
handy for the process variable selection process.
We can include all the quality variables obtained
from laboratory analysis in the Y -matrix and re-
duce the number of process variables taken in the
X-matrix based on the relative magnitude of the
sum of the regression coefficients for all the quality
variables.

2.4 Robustness of regression

Since the quality variables from laboratory analy-
sis are available every few hours, building sta-
tic models to provide soft sensor predictions are
considered in this work. CVA methodology, orig-
inally developed by (Hotelling, 1935; Hotelling,
1936) to identify associations between two sets of
data, appears to be a suitable numerical technique
for multivariate regression to obtain steady state
models.



3. A PRIMER ON CANONICAL VARIATE
ANALYSIS

CVA methodology summarizes the association be-
tween two sets of data through a few carefully cho-
sen correlations between linear combinations of
variables in the first set and linear combinations of
the variables in the second set (Johnson and Wich-
ern, 1982). The pairs of linear combinations are
called canonical variables and their correlations
are called canonical correlations. CVA methodol-
ogy first identifies the pair of linear combinations
having the largest correlation. Next, it identifies
the pair of linear combinations having the largest
correlation among all pairs uncorrelated with the
initially selected pair, and the process continues.
Interested readers are referred to (Johnson and
Wichern, 1982) for detailed derivations.

The linear static model explaining the quality
variables Y based on the process variables X is

Y = XB + E (2)

Where Bp×q contains the model coefficients and
E represents the unmeasured disturbance. CVA
methodology begins with obtaining the covariance
matrix for the joint matrix

[
Xn×p Yn×q

]

S = COV (
[
Xn×p Yn×q

]
) =

[
Sxx Sxy

Syx Syy

]
(3)

where Sxx(p×p) and Syy(q×q) contain the covari-
ances between the variables in data sets Xn×p and
Yn×q respectively. Sxy(p×q) = ST

yx(q×p) contain
the covariances between the pairs of variables from
different sets Xn×p and Yn×q and measure the
association between the two sets. The linear com-
binations corresponding to the X and Y matrices
are obtained from the eigen vectors of the ma-
trix products S−1

xx SxyS−1
yy Syx and S−1

yy SyxS−1
xx Syx

respectively. The correlations between the pairs
of linear combinations are contained in the eigen
values. If Yn×q is the smaller set (q ≤ p), then q
pairs of linear combinations (Ui(p × 1), Vi(q × 1)
for i = 1, ..., q corresponding to X and Y matrices)
are obtained.

Using the first few pairs of linear combinations
having significant correlations we can approxi-
mate

Γn×p = Xn×pU1 + ... + Xn×pUa

= Xn×pUp×a (4)

Υn×q = Yn×qV1 + ... + Yn×qVa

= Yn×qVq×a (5)

where a ≤ q.

The CVA estimate of the model coefficients are
obtained as:

B̂cva = U(ΓT Γ)−1ΓT ΥV −1 (6)

4. SOFT SENSORS IN SECONDARY
EXTRACTION PLANT

Secondary extraction process at Suncor has sev-
eral unit processes where the feed streams are sep-
arated into the hydrocarbon rich product streams,
and water and solids in the tailings streams. All
the streams contain hydrocarbon components A
and B, water and solids to varying degrees of com-
position. Knowing the composition of each com-
ponent helps the operators operate the processes
more efficiently. Laboratory analysis on 19 of these
streams measure several properties such as com-
position, hydrocarbon density, etc. Operators typ-
ically need the information of only one or two of
these properties depending on the stream. For ex-
ample, operators would be interested in knowing
the ratio of components A and B in a feed stream,
and composition of component B in the tailings
stream. However, in soft sensor model building
using CVA methodology all the properties mea-
sured by the laboratory analysis are included as
variables in the Y-matrix to improve the model.
Implementing the identified soft sensor models
online is in progress.

The different steps of model identification in the
case of one of the streams, stream-P16T, are il-
lustrated in figures (1)-(5). In this stream the
operators are interested in knowing the compo-
sition of components A and B. Figure (1) shows
a plot of the data and histograms corresponding
to these two variables. From the histograms we
can see that the variables are approximately nor-
mally distributed. Hence they do not need any
non-linear transformation before using the data
in model identification.
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Fig. 1. Data of components A,B in Stream-P16T

A total of 5 laboratory measured quality vari-
ables are included in the Y -matrix. Variables Y1

and Y2 correspond to compositions A and B in
the stream. A total of 16 process variables are
included in the X-matrix. Figure(2) illustrates
the correlation coefficients corresponding to the



canonical variables between the X and Y matrices.
We can see that the first four pairs of canonical
variables have significant correlation. Hence these
four canonical variables are used in the model
identification.
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Fig. 2. Correlations corresponding to the canoni-
cal variables

The absolute values of the regression coefficients
for the variables in X-matrix corresponding to
Y1 and Y2, and the summation of the absolute
values of regression coefficients corresponding to
all the 5 variables in Y -matrix are plotted in
figure(3). Based on the relative magnitude of the
coefficients, 12 variables are selected to be used in
the X-matrix for model identification.
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Fig. 3. Absolute values of regression coefficients
for variables in X-matrix

A total of 636 samples are available for model
building. 486 samples out of these are used for
model identification and 150 samples for valida-
tion of the models. Figure(4) compares the model
predictions with the true values corresponding to
Y1 and Y2 for the model validation data.

Figure (5) shows the correlation coefficients be-
tween the models predictions and true data for
the model identification and validation parts of
the data for all the 6 variables in Y -matrix. We
can see that the model predictions corresponding
to Y1 and Y2 are showing high correlation with the
true data.
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Fig. 4. Comparing the model predictions(-) with
true values(..) for validation data
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Fig. 5. Correlation coefficients with modelling(1)
and validation(2) parts of the data

5. CONCLUSIONS

A CVA based methodology is used to build soft
sensors for the estimation of the composition of
different components in the secondary extraction
process streams. The rationality for the selec-
tion of the numerical technique is explained. The
methodology is illustrated through the soft sen-
sors design on one of the streams P16T. The soft
sensor predictions are found matching well with
the laboratory data and online implementation is
in progress.
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