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Abstract— Traditional attempts at controlling rolling mills have
involved some linearization of nonlinear dynamics of the process,
and the subsequent employment of linear techniques to solve
the regulator problem. This paper illustrates some results in
the application of nonlinear techniques to the solution of the
rolling control problem. In particular the fairly recent techniques
of adaptive backstepping and control based on passivation are
shown to be effective with various degrees of success. The
structure of the dynamics of the rolling stand and its suitability
to the straightforward application of backstepping or feedback
passivation is demonstrated. An approximate adaptive mecha-
nism for the identification of an unknown model parameter is
shown.

Index Terms— Backstepping, Adaptation, Passivation.

I. BACKGROUND

Numerous thickness control strategies have been proposed
for metal rolling mills (see for instance [1], [2], [3], [4],[5],
[6]). In general the problem statement is related to the set-up
depicted in figure 1.

A. Mill system

Fig. 1. Typical Single Stand Rolling Mill

The sources cited above liberally explain the control issues
pertaining to the rolling mill. We will see in effect that

the major nonlinearity may be captured by equation 1 the
Gaugemeter equation.

II. PROCESSDESCRIPTIONEQUATIONS: SINUSOIDAL

DISTURBANCE FREE MODEL

We now briefly state the equations that govern the process
without any derivations; those have been done elsewhere in
particular [6]. The main control objective is the regulation of
exit strip thicknessh given an entry strip thicknessH. The
main control will be a hydraulic input (work roll gap)S that
directly acts on the entry strip thickness. Indeed we have

h = S + Pa/M (1)

wherePa is roll force and M is the plant’s mill modulus.Pa
is in turn given byPa = WkQpPt

√

R(H − h) wherek is a
resistance to deformation,W the strip width,Pt the effects of
tension,Qp the roll force function andR the radius of the work
roll. In practiceS is in fact a delayed signal of the applied
rolling gap which we callŜ; in this discussion time delay
issues will not be discussed because of their minimal impact.
Slip between rolls and the strip causes a difference between
the strip and work roll velocities; for exit strip velocityvo and
work roll velocity vr we have the forward slipf given by
f = (vo−vr)/vr. Some spurious disturbance effects manifest
themselves as transient changes in the value of the slip. It is
assumed there is a means of inferring the slip through some
secondary measurements such as the strip and motor velocities.

A. Coiler and Uncoiler Equations

The uncoiler and coiler have similar structure and are effec-
tively symmetric see figure (1). The uncoiler consists of the
coil and and the pay-off reel connected to the drive motor viaa
gear box. For the uncoiler wherevp is circumferential velocity,
Tb backward tension,Rp radius, Nu gear ratio, ip drive
currentKu drive motor torque constant, andJu the moment
of inertia one may writėvp = KuRp/JuNu +Rp

2Tb/JuNu.
The subscriptsu and p represent respectively the uncoiler
and payoff reels. Use is made of the tight coupling between
velocity and tension to regulate the tension by varying the
velocity. The inertiaJu consists of the constant drive motor
inertia Jmp and a contribution from the varying coil radius.
The relationship is in fact

Ju = Jmp + πρW (Rp
4 −Rmp

4)/2Nu
2 (2)
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whereRmp is the mandrel radius. While this relation is time
varying, we shall assume that our system is time invariant
because for all intents and purposes these radii do not change
markedly from the nominal values assumed at the beginning of
the analysis. Addition of robustness to the system controller in
such a manner as to counteract the time varying effects , now
seen as bounded disturbances is instead much more productive.
Coiler dynamics are symmetrical to (2) above (the subscriptt
represents the tension reel).

B. Tension Relationships

Strip tension generated by the difference between the ve-
locity of the strip and that of the reels can be expressed as

Ṫb = EHW (vi − vp)/Lp (3)

Ṫf = EhW (vt − vo)/Lt. (4)

Lp is the distances between the work roll and pay off reel,
Lt the distances between the work roll and tension reel,E
the Young’s modulus of the strip,Tf andTb the forward and
backward tensions respectively. Tension must be maintained
within narrow limits to prevent the breaking or tearing of the
steel or in the other extreme the bunching up of the steel. Even
when this does not happen the profile of the sheet may vary
according to the variation in tension. Roll gap adjustment has
an immediate effect on upstream tension, and smaller effect
on the downstream tension [5].

III. O PEN LOOPEQUATIONS

A. Sinusoidal Disturbance Free Model

We begin by recasting the equations above to a more
convenient form. We introduce the more familiar state space
x and shift the equilibrium so that it’s at the origin of the new
state space. Essentially the problem at hand is a regulation
problem with the desired exit strip thickness given byhr.
One may then define an error in the strip thicknesshe given
by he = h − hr. The takeup and payoff velocities may also
be referred to valuesvpr and vtr to give the error signals
respectivelyvte = vt − vtr and vpe = vp − vpr. Tension
errorsTfe andTbe may be similarly defined to result iṅTfe =
βh(vt − vo) from (4), whereβ = EW/Lt is a constant. This
may be further rewritten ˙Tfe = βhr(vt − vo) + βhe(vt − vo)
which may be expanded out intȯTfe = βhrvte + βhrvtr −
βhrvo+βhevte+βhevtr−βhevo. Equation (3) may be written

˙Tbe = αH(vi − vp) (5)

whereα = EW/Lp is a constant. We are given the relation

vi = hvo/H (6)

This may be substituted into (5) to yield

˙Tbe = αvohe − αHvpe − αHvpr + αvohr. (7)

Equation (1) may be written

h = S + µ(
√
H − h)/M = S + µ(H − hr − he)

1/2
/M (8)

Now (8) may be writtenh = S + θ(H − h)
1/2 where θ =

µ/M , M being a constant known to within a ten percent con-
fidence range. This equation can be differentiated on both the
left and right hand sides to yielḋh = Ṡ − θ 1

2 (H − h)
−1/2

ḣe.
After some algebraic manipulation it is clear thatḣe = g(he)Ṡ
where g(he) = 1/(1 + θ

2
√

(H−h)
). One at this stage may

introduce a new set of variables thus

x1 = he
u1 = Ṡ
x2 = Tbe
x3 = vpe
u2 = ip
x4 = Tfe
x5 = vte
u3 = it.

(9)

The system dynamics may then be summarised by the set of
differential equations in (10)

ẋ1 = g(x1)u1

ẋ2 = k1x1 − k2x3 + k3

ẋ3 = b0x2 + a0u2 + k4

ẋ4 = −k5x1 + βx1x5 + k6x5 − k7

ẋ5 = d0x4 + c0u3 + k8.

(10)

The constants that appear in (10) are defined by the following
set of equations

a0 = KuRp/(JuNu)

b0 = Rp
2/(JuNu)

c0 = KcRt/(JcNc)

d0 = Rt
2/(JcNc)

k1 = αv0

k2 = αH

k3 = αv0hr − αHvpr

k4 = b0Tbr

k5 = β(v0 − vtr)

k6 = βhr

k7 = βhr(vt − v0)

k8 = d0Tfr

vr = v0/(1 + f).

It’s then a simple matter to compute the constants once the
motor parameters are given. From the expressions fork3 and
k7 it is not difficult to see that under ideal conditions these
constants equal zero. We may in fact consider them zero except
at instants that is, they may be generalised into disturbance
signalsk3(t) andk7(t). Slip has been known to vary that is, it
suffers disturbance effects. The conservation of mass equations
suffer impulse type disturbances. We will not always make
explicit the time dependence ofk3 andk7 and will frequently
drop them in analyses.

B. Model With Disturbance

The sinusoidal disturbance effects have not been considered
above. To incorporate persistent disturbance effects it issuffi-
cient to replace the entry strip thicknessH with H + ∆H
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where ∆H accounts for the persistent disturbance effects.
We shall make a distinction between the former and a more
spurious and transient type of disturbance. The main type of
disturbance on the system is a persistently exciting sinusoid
of the form δ(t) = Ad sin(ωt + φ) where Ad = 0.2 mm,
ω = 2πvi

Ld

. Ad and Ld are the magnitude and “period” of
the thickness deviation respectively. Assumingvi has been
satisfactorily controlled it’s clear this thickness deviation is a
simple sinusoid of known frequency and magnitude. We shall
employ the internal model principle to reject this disturbance.
For successful rejection, knowledge only of the frequency will
suffice; the controller in effect identifies both the phase and
magnitude of the disturbance to reject it’s effects. The model
of the system that incorporates the sinusoidal disturbanceis

ẋ1 = g1(x1, θ, t)u1 + g2(t)

ẋ2 = k1x1 − k2x3 + k3 − Ãd sin(ωt+ φ)
ẋ3 = b0x2 + a0u2 + k4

ẋ4 = −k5x1 + βx1x5 + k6x5 − k7

ẋ5 = d0x4 + c0u3 + k8

(11)

We note that [6] employs the internal model for disturbance
rejection for a linear scheme. The functionsg1 and g2 that
appear in (11) are defined precisely in the following equations
g1(he, θ, t) = 1/(1 + θ

2
√

(H−h)+sin(ωt+φ)
) and g2(he, θ, t) =

θω cos(wt)/(1 + θ

2
√

(H−h)+sin(ωt+φ)
).

IV. STABILISATION

This paper applies results explained in [7] and [8]. Clearly
equation 10 may be considered a cascade of three subsystems,
namely theẋ1, the ẋ2, ẋ3 and theẋ4, ẋ5 subsystems. These
cascades may be stabilised individually, with the hope thatin-
terconnected individually stabilized cascades would be stable.
Indeed assuming an invertible (an examination indicates that
g is invertible in the range of interest)g(θ, x1) the control
law u1 = −x1/g(θ, x1) stabilizes the first subsystem. For the
rolling mill

g(θ, x1) =
1

1 + θ

2
√

(c1−x1)

(12)

with θ is unknown. This paper will show that an approximate
adaption law is able to give satisfactory results.

Assumingx1 has been stabilised the remaining dynamics
for the ẋ2, ẋ3 subsystem may be written

ẋ2

ẋ3
=

−k2x3 + k3

b0x2 + a0u2 + k4
(13)

With the substitution̂u = a0u2 + k4 we may write

ẋ2

ẋ3
=

−k2x3 + k3

b0x2 + û2
(14)

realising a lower triangular subsystem that is stabilisable
via backstepping. Any lower triangular system may be sum-
marised

ẋ1

ẋ2

...
ẋn

=

f1(x1x2)
f2(x1, x2, x3)

...
fn(x1, x2, ...xn, u)

(15)

The backstepping procedure begins with the construction of
a control Lyapunov function (clf), for example in this case
V1 = 1

2x
2
2. Its derivative V̇1 = x2ẋ2 = x2(−k2x3 + k3)

may be rendered negative definite to make the dynamics of
x2 globally asymptotically stable. A choice ofV1 = −x2

2

and substution is sufficient to compute a desired psuedo (or
virtual) controlx3des = (k3+x2)/k2. If k2 andk3 are known,
a straighforward application is viable, whereas if they are
unknown but bounded to known bounds, robustifying control
laws based on domination are effective. At this expository
stage we assume thatk2 and k3 are known. The control for
the augmented system̂u2 may be computed as follows; assume
that x3 deviates fromx3des by z1. We may then write

x3 = x3des + z1 = (x3 + x2)/k2 + z1 (16)

Introducing a new composite clfV2 =
x2
2

2 +
z21
2 and rendering

its derivative negative definitėV2 = −x2
2 − z2

1 , one may then
compute a suitable control law

û2 = −2x3des + z1 = −2x3 + (k2 + 1/k2 − b0)x2 + 2k3/k2

(17)
One can similarly repeat the procedure for the (ẋ4, ẋ5) sub-
system (or one may use the symmetry) to result in the stabil-
ising control û3 = −2x5 + (−k6 − 1/k6 − do)x2 − 2k7/k6.
By further using the relationsu2 = (û2 − k4)/ao and u3 =
(û3−k8)/co one may compute the actual controls,u2 andu3 to
input into the system. We note thatu1 as computed is actually
a differential of the desired control law and integral action is
therefore required to generate the desired control effort on the
actual system,S =

∫

u1dt.
The treatment above gives a flavour of the methods available

for nonlinear control; it is true a linear method could have
stabilised theẋ2, ẋ3 or ẋ4, ẋ5 subsystems, and that approach
of combining nonlinear and linear methods for stabilisation
is not unusual. In this paper we demonstrate that methods
based on passivation (of which backstepping is an instance)
are viable for the achievement of integrated solution to the
control problem. This paper focuses on the single stand with
a persistant sinusoidal disturbance. Simulation results of the
resultant controllers are shown.

V. SIMULATION RESULTS

A. Summary of Simulation Constants

Herewith is a summary of the values of the physical
constants used in the simulation. The entry strip thicknessis
H = 2 mm, the forward slipf = 0.02. Rp = Rt = 1 m, a0 =
b0 = c0 = d0 = 1 m−1, v0 = 5.95 m s−1, hr = 1.24 mm,
Tbr = 7270 kg, Tfr = 8283 kg. The sinusoidal disturbance
∆H is given by∆H = Ad sin(2πvit/Ld) whereLd = 5 m
is the period of the thickness disturbance, andAd = 0.2 mm
is the magnitude of the disturbance.

B. Open Loop Results: Disturbance Free Model

We begin first by showing the time history of the system
in open loop, in particular on the quantitiesh, Tf and Tb
respectively the exit strip thickness, the forward tensionand
the backward tension. Simultaneous unit step inputs ofS, ip
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and it respectively the roll gap, payoff reel motor current
and take-up reel motor current are applied at timet = 0.
The evolution of the states of interest in that case is shown
in figure 2. The deterministic sinusoidal disturbance onH is
ignored in this instance. From figure 2 it is observed that there
does not seem to be any obvious unbounded instability. Instead
h settles with a steady state error of0.235 mm, whileTf and
Tb oscillate sinusoidally with frequencies of approximately
1 rad s−1 and 1.4 rad s−1 respectively. (Tf has the larger
magnitude.)
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Fig. 2. Open loop time histories ofh, Tf andTb

C. Open Loop Results: Model incorporating sinusoidal dis-
turbance

When the deterministic sinusoidal disturbance is added to
the H signal there is evidence of a transient oscillation about
the steady state values ofh (as indeed there is around the
transient values ofTb andTf ).

D. Closed Loop Results

1) Back-stepping Control Laws: Application of the control
laws computed by the method of back-stepping in conjunction
with the control that stabilisesx1 achieves the results shown
in figure 3 . It is observed in figure 3 that perfect regulation is
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2

time(seconds)

new_sg_bk_stp

Tfe
,Tb

e,h

Fig. 3. Closed loop time histories ofh, -Tfe and -Tbe The effect of back-
stepping control law

achieved forh, Tb andTf within about7 seconds of start up
of the closed loop process. The tensions experience overshoots
of less than12 per-cent momentarily before settling. We will
seek in the following sections to guarantee convergence by the
use of other methods in particular adaption.

2) Internal Model Principle: The internal model principle
suggests that to reject a persistent disturbance, it’s dynamics
must exist in the closed loop control. In the case at hand the
dynamics of the sinusoid may be incorporated into the closed
loop by cascading a sinusoid (in fact the Laplace equivalent
is included) to the respective plant outputs. This adds at least
two states to the open loop plant for each output of interest.
In general any output which requires the suppression of the
sinusoid would be augmented with two additional states.

Any method of stabilisation may then be attempted on the
augmented system. The dynamics of a sinusoid are lower
triangular and their addition to the system does not alter
the lower triangular dependence of the dynamics. As such
the whole system cascaded with a sinusoid is still amenable
to stabilisation via backstepping. References [9] ,using [10],
[11] and [12] demonstrates that for the problem at hand, the
suppression of sinusoids in the non-linear functionsg1 and
g2 is straightforward, an example of the non-linear output
regulation problem with full information. Indeed having the
variablehe as an input into a sinusoidal filter ωn

2

(s2+2ǫωn+ωn
2)

completes the solution. The two additional states from the
second order oscillatory filter must be part of the controller to
achieve output regulation.

VI. A DAPTIVE CONTROL

We recall that there exists an unknown parameterθ that
figures prominently in all control laws formulated. This para-
meter is known to within ten percent of a certain nominal value
θ̂. The problem of adaptive control in the non-linear setting
has received a lot of attention in recent years. Results in the
literature appear most frequently for the type of equation that
can be stated as

ẋ = f(x)θT + g(x)u (18)

whereθ is an unknown constant. Suppose whenθ is known,
the appropriate control law is given byu = k(x, θ). The
problem of adaptive control is whether the control law may
actually be framed as

u = k̂(x, θ̂)
˙̂
θ = λ(x, θ̂)

(19)

whereθ̂, an estimate of the actual parameterθ, is employed in
the control law in conjunction with some dynamic adaptation
mechanism,λ to ensure that the estimate converges to the
true value of the parameter. Now it will be remembered our
dynamic system in the absence of the sinusoidal disturbance
may be summarised as

ẋ1 = g(x1)u1

ẋ2 = k1x1 − k2x3 + k3

ẋ3 = b0x2 + a0u2 + k4

ẋ4 = −k5x1 + βx1x5 + k6x5 − k7

ẋ5 = d0x4 + c0u3 + k8

(20)

with g given by

g(x1, θ) = 1/(1 +
θ

2
√

(c1 − x1))
). (21)
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This relation (21) does not have the usual form for this type
of problem (as typified by equation (18)). Fortunately results
in [7], [13], [8] exist showing how an attempt at a solution
may be made.

VII. T EST CASES

A. Direct Estimation of Unknown Constant Gain

Consider
ẋ = θu (22)

whereθ is an unknown constant of known sign. This is the
case of linear parameterisation for which firm results are most
frequently encountered. Ifθ were known then the controlu =
−cx/θ with c > 0 would result in GAS dynamics. Ifθ were
unknown it is reasonable as a first step to suggest a control
law of the form

u = −cx/θ̂ (23)

instead. Indeed the justification for this step is the certainty
equivalence principle. Defining an error̃θ, the difference
between the parameter estimate and the true value of the
parameter we can write

θ = θ̃ + θ̂. (24)

Substituting (23) into (22) we have

ẋ = θ̂u+ θ̃u

= −cx− cxθ̃θ̂−1.
(25)

We are unable to conclude immediately from equation (25)
whether the equilibrium pointx, θ̃ = 0, 0 is GAS. A Lyapunov
analysis has to be carried out to enable firm conclusions to be
drawn. To that end we choose the Lyapunov function candidate

V =
x2

2
+
θ̃2

2
(26)

whose time derivative is equal to

V̇ = xẋ+ θ̃
˙̃
θ

= −cx2 − cx2θ̃θ̂−1 + θ̃
˙̃
θ

= −cx2 + θ̃(−cx2θ̂−1 +
˙̃
θ).

(27)

By choosing the so-called parameter update law of the form

˙̃
θ = cx2θ̂−1 (28)

the time derivative of the Lyapunov function is rendered NSD.
That condition in conjunction with invariance property may
be used to conclude the GAS properties of the equilibrium

point (x, θ̂) = (0, 0). Now (28) may be written˙̂θ = −cx2θ̂−1

which indicates that there is the danger ofθ̂ going to zero

with time, resulting in jumps in the value˙̂θ. Some example
simulations indicate the potential pitfalls. This jump is usually
dependent on the initial estimate for the parameter,θ(0). A lot
of times in the control literature this initial estimate is set to
zero, highlighting the pitfalls that may therefore arise. Figure
4 is the simulation for the case whereθ = 6, c = 1 x(0)=4 and
θ̂(0) = 1.33 . The value ofθ̂ equals zero for brief instances
which then destroys any meaningful control effort.
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Fig. 4. x and θ̂. Unfortunate choice of̂θ(0) (Simulink)

It’s suggested in [8] that instead of estimatingθ it might be
productive to instead estimate it’s reciprocalθ−1 with some
estimater̂. For this case the representative equation may be
written

θ−1 = r̃ + r̂. (29)

The corresponding control law in analogy with the previous
analysis may be written

u = −r̂cx. (30)

Following the steps for the previous case, we obtain

u = −(θ−1 − r̃)cx. (31)

To make conclusions about stability the Lyapunov function

V =
x2

2
+ θ

r̃2

2
(32)

is differentiated to yield the relations

V̇ = xẋ+ θr̃ ˙̃r

= −cx2 + θcx2r̃ + θr̃ ˙̃r

= −cx2 + θr̃(cx2 + ˙̃r).

(33)

One may chooses a parameter update law that guarantees
a NSD Lyapunov derivative. This law is shown to be˙̃r =
−cx2. This update mechanism has a redeeming feature in that
becausė̃r = − ˙̂r, the derivative in the update law is greater than
or equal to zero. This adaptive control law is therefore stable
for any initial estimateŝr that are greater than zero. There is
a caveat however in that for actual physical systems signals
never perfectly converge to zero. The net effect of this on the
parameter update law is to have a residual positive derivative.
The danger is then of a drift to infinity of the estimater̂. In
practice this is solved by switching off the update laws when
required. Figure 5 is the corresponding simulation withθ = 6,
c = 1 x(0)=4 and ˆθ(0) = 0. Indeed one may choose any value
for the initial parameter estimate with satisfactory results. An
attempt to extend the results for the following cases [9]

ẋ = g(x)θu (34)

ẋ = g(θ)u (35)

ẋ = g(x, θ)u. (36)

was unsuccessful in coming up with parameter update laws
that had no dependence onθ.
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Fig. 5. x and θ̂. Stable parameter update law. (Simulink)

VIII. A PPROXIMATE ADAPTATION

Here we seek to investigate whether an adaptive law in
which one uses the estimateθ̂ of θ in the update algorithm has
redeeming features, or alternately whether it might illuminate
a new method of attack toward the problem. We recall (??)
restated below for convenience

ẋ =
u

(1 + θf(x))
. (37)

Consider the control law

u = −(1 + θ̂f(x))cx (38)

where θ̂ is an estimate of the unknown parameter and c is
a constant that is strictly positive. Clearly then (37) can be
restated

ẋ = − (1 + θ̂f(x))cx

(1 + θf(x))
. (39)

We assume (24) holds and can then write after some algebra

ẋ = −cx+
θ̃f(x)cx

(1 + θf(x))
. (40)

We use for analysis a Lyapunov functionV = x2

2 + θ̃2

2 to
result in the time derivative

V̇ = xẋ+ θ̃
˙̃
θ

= −cx2 + θ̃f(x)cx2

(1+θf(x)) + θ̃
˙̃
θ.

(41)

For a parameter update law we seek, as is the norm to force
the two last terms in (41) to cancel. The parameter update law
that would achieve this would be

˙̃
θ = − cx2f(x)

(1 + θf(x))
. (42)

Unfortunately that adaptive law cannot be implemented be-
cause it depends on the unknown parameterθ. At this stage
we endeavour to find how the alternative parameter update
(43) would fare. It differs from (42) only in that̂θ substitutes
for θ in the adaptive algorithm.

˙̃
θ = − cx2f(x)

(1 + θ̂f(x))
. (43)

Substituting (43) in (41) we can write

V̇ = xẋ+ θ̃
˙̃
θ

= −cx2 + θ̃f(x)cx2

(1+θf(x)) −
θ̃cx2f(x)

(1+θ̂f(x))

= −cx2 + θ̃cx2f(x)( 1
1+θf(x) − 1

1+θ̂f(x)
)

= −cx2 + θ̃cx2f(x){(1+θ̂f(x))−(1+θf(x))}
(1+θ̂f(x))(1+θf(x))

= −cx2 − θ̃2cx2f(x)

(1+θ̂f(x))(1+θf(x))

(44)

If θ̂ is rendered always positive(both positive), then from fact
that f(x) is always positive it turns out that this approximate
adaptation (for lack of a better term) results in a negative
definite derivative of the Lyapunov function, assuring the
convergence of bothx and θ̃ to zero. Now this is not always
true and a mechanism to guarantee the positiveness ofθ̂ would
be required.

A. A Simulation

From (21) we know the form off(x) (with he denoted as
x we havef(x) = 1

2
√
H−hr−x

= 12
√
c1 − x). We set up the

in Simulink the structure for the adaption suggested by (43)
and arbitrarily choose values ofθ, θ̂(0) and the constantsc
andc1. With the following valuesθ = 4, θ̂(0) = 0, x(0) = 1,
c1 = 3 and c = 1 the simulation results appear as shown in
figure 6 While adaptation shows promise, methods based on
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Fig. 6. x and θ̂. Approximate adaptive control.

robust domination of the unknownθ have better results in that
they provide guaranteed stability.

IX. CONTROL BY PASSIVATION

We will illustrate a powerful passivation method to achieve
GAS of the origin of the system

ẋ1 = g(x1)u1

ẋ2 = k1x1 − k2x3 + k3

ẋ3 = b0x2 + a0u2 + k4

ẋ4 = −k5x1 + βx1x5 + k6x5 − k7

ẋ5 = d0x4 + c0u3 + k8

(45)

assuming there is knowledge ofθ. It will be remembered that
we anticipated that a credible control could be formulated as
follows: design a stabilising controlu1 for the ẋ1 sub-system
and if the decay ofx1 is rapid enough, it may be ignored
completeley in the design for thėx2, ẋ3 and theẋ4, ẋ5 sub-
systems. However as the simulation in figure 7 shows if the
control actionu1 is not strong enough the whole system may
go unstable. In other words the system is not GS.
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X. PASSIVATION CONTROL OFCASCADES

We will seek to design a control system in which the
interaction ofx1 with the two other sub-systems is taken into
account to achieve GAS. We will appeal mostly to results that
appear in [7] for answers to this problem. We briefly note that
the most severe interaction with thex1 system occurs in the
ẋ4, ẋ5 sub system. We will consider this interaction initially
and aim to resolve it. Our system is in the form

ż = f(z) + ψ(z, ξ),

ξ̇ = Aξ +Bu.
(46)

We briefly recap on theorems and definitons that are going
to be useful for our passivation and stabilisation procedure.
We begin with a definition of passivity taken from [7] slightly
modified. Consider a square system i.e, with equal number
of inputs and outputs, H defined by

(H) { ẋ = f(x, u), x ∈ Rn

y = h(x, u), u, y ∈ Rm

Assume that associated with H is a bilinear supply rate
w(u, y) = uT y, w : Rm×Rm such thatw is locally integrable
for all u ∈ U whereU is a set of admissible controls. Integra-
bility is captured in the relation

∫ t1
t0

‖w(u(t), w(y(t))|dt <∞
for all t0 ≤ t1. Let X be a connected set ofRn containing
the origin. ThenH is passive in X if there exists a positive
semidefinite storage functionS(x), S(0) = 0, such that for
all x ∈ X

S(x(T )) − S(x(0)) ≤
∫ T

0

w(u(t), y(t))dt.

If the storage function is differentiable we writėS(x(t)) ≤
uT y. Next we state two theorems from [7] relating to the
interconnection of passive systems and the stabilisation of
passive systems. Suppose that systemsH1 andH2 are passive.
Then the systems, one obtained by the parallel interconnection,
and the other obtained by feedback interconnection, are both
passive. LetH be the system

ẋ = f(x, u)
y = h(x)

(47)

and let it be passive with aC1 storageS. Then the feedback
u = −y acheives asymptotic stability ofx = 0 if and only if
H is zero state detectable (ZSD). For a linear system without
throughputẋ = Ax+Bu, y = Cx it can be shown [7] that its
passivity means there exists a storage functionS(x) = xTPx
whereP is a positive definite matrix satisfying

PA+ATP ≤ 0
BTP = C.

(48)

A theorem which links the algebraic conditions of (48)
with frequency domain characteristics follows below. (KYP
lemma) If the linear system (A,B,C) is passive, i.e., there
exists a matrix P satisfying (48) then the transfer function
H(s) = C(sI −A)

−1
B is positive real. Conversely, ifH(s)

is positive real, then for any minimal realisation ofH(s) there
existsP > 0 which satisfies (48). Consider now (46) and
suppose the equilibriumz = 0 of ż = f(z) is GS and aC2

radially unbounded positive definite functionW (z) is known

such thatLfW ≤ 0. Suppose the interconnection term can be
factored as follows

ψ(z, ξ) = ψ̃(z, ξ)Cξ. (49)

If the linear systemH1 with the transfer function

H1(s) = C(sI −A)
−1
B (50)

can be formed such thatH1 is positive real then it is passive.
The nonlinear blockH2 below may then be formed

ż = f(z) + ψ̃(z, ξ)u2 (51)

with it’s input given byu2 = Cξ = y1. We can freely choose
as a design choice, an outputy2 of H2 that rendersH2 passive.
Employment of theorem X leads to a passive interconnected
system. UsingW (z) as a storage function for forH2 we
require that

Ẇ =
∂W

∂z
(f(z) + ψ̃(z, ξ)y1) ≤ yT2 u2. (52)

Knowing thatLfW ≤ 0, we satisfy (52) by selecting

y2 = h2(z, ξ) := (Lψ̃W )
T
(z, ξ) = ψ̃T (

∂W

∂z

T

) (53)

we makeH2 passive. Via a feedback transformation

u = −h2(z, ξ) + v (54)

we obtain an system that is passive fromv to y1. Global
stability is then achieved by feedback

v = −cy1 (55)

wherec > 0 is a constant.

XI. A PPLICATION OFPASSIVITY RESULTS

Consider our system (45). Let’s make the substitutionsz1
= x5, z2 = x4 and ξ = x1. Then momentarily ignoring the
ẋ2, ẋ3 dynamics (45) may be rewritten

ż1 = d0z2 + û3

ż2 = −k5ξ + βξz1 + k6z1 − k7

ξ̇ = g(ξ)u1 = v
(56)

If we consider the output of the “linear” block to bey1 = ξ
then all that is interposed betweenv and ξ is an integrator,
i.e., a passive system exists. (Note the square root nonlinearity
has been subsumed in the control signalv). Now (56) may be
written as

ż1 = d0z2 + û3

ż2 = k6z1 − k7 + ξ(−k5 + βz1)

ξ̇ = g(ξ)u1 = v
(57)

with the interconnection term obviously defined and

ψ̃(z, ξ) =

[

0
ξ(−k5 + βz1).

]

(58)

Becauseu3 has not yet been defined, we can flexibly achieve
the goal of a stable linear cascadez = 0 for ż=f(z) by
the judicious use of any linear stabilisation method (pole
placement, LQR etc). Indeed we can assume a control of the
form

û3 = −a1z1 − a2z2 (59)



8

and a corresponding Lyapunov function

W (z1, z2) =
z2
1

2
+
z2
2

2
. (60)

We know from (54) that a feedback transformation given by

v = −h2(z, ξ) + w (61)

achieves passivity fromw to y1 where

h2(z, ξ) = ψ̃T (
∂W

∂z

T

). (62)

Noting that
∂W

∂z
=

[

z1 z2
]

(63)

and substituting in (53) we have

h2(z, ξ) = −k5z2 + βz1z2. (64)

Using (61) we obtain

v = k5z2 − βz1z2 + w. (65)

The transformationw = −ξ completes the design. In the
original state space we have

v = k5x4 − βx5x4 − x1 (66)

or
u1 = k5x4−βx5x4−x1

1/(1+ θ

2
√

(H−hr−x1)
)

= (k5x4 − βx5x4 − x1)(1 + θ

2
√

(H−hr−x1)
).

(67)

The other control is given by

u2 =
−a1x1 − a2x2 − k4

b0
. (68)

It must be rememberedk3 may be set equal to zero for
analysis.

XII. S IMULATION

If we place poles as follows:x5 at −1 and x4 at −2 we
obtain a1 = −3 and a2 = −2.6129. The simulation for a
gain k = 5 is shown in figure 7; that gain may be used as a
means of tuning controller action. Care must be taken though
not to make it too aggressive and bring into play unmodelled
dynamics.

XIII. C ONCLUSION

This paper demonstrates that the design of non-linear con-
trollers is viable for the rolling mill. The theory has matured
enough in recent times to allow a straightforward application
of the results, and the explosion in computing power should
enable the implementation of some of these algorithms.
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Fig. 7. Nonlinear control law (Simulink)
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