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Abstract— Most observer-based methods applied in fault
detection and diagnosis (FDD) schemes use the classical two-
degrees of freedom observer structure in which a constant matrix
is used to stabilize the observer error dynamics while a post
filter helps to achieve some desired properties for the residual
(fault information) signal. In this paper, we consider the use
of a more general framework which is the dynamic observer
structure in which an observer gain is seen as a filter designed
so that the error dynamics has some desirable frequency
domain characteristics. This structure offers extra degrees of
freedom and we show how this freedom can be used for the
sensor faults diagnosis problem with the objective to make
the residual converge to the faults vector achieving detection
and estimation at the same time. The use of appropriate
weightings to transform this problem into a standard H∞

optimal control problem is also demonstrated. The introduced
strategies are applied to the identified linear state space model
of the PROCON

TM level/flow/temperature process training
system (manufactured by the Feedback Instrument Limited).

1. INTRODUCTION

Motivated by a growing demand for higher reliability
in control systems, the fault diagnosis problem is gaining
increasing consideration world-wide in both theory and
application. This problem is defined as the synthesis of
a monitoring system to detect faults and specify their lo-
cation and significance in a control system [1]. Model-
based approaches (represented by the structure shown in
Fig. 1) have been a useful tool to solve this problem
specially for linear time invariant (LTI) systems. The two-
stage structure of Fig. 1 was first suggested by Chow and
Willsky in 1980 [2] and is now widely accepted by the
fault diagnosis community [1]. It consists of the following:
(i) A residual generation module that generates a fault
indicating signal (residual) using the available input and
output information from the monitored system, (ii) A de-
cision making phase where the residuals are examined and a
decision rule is applied to determine if a fault has occurred.

Fig. 1. Structure of model based fault diagnosis system.

Most of the work done in this field is focused on the residual
generation problem since the decision making based on well

designed residuals is relatively easy [3], [1].
The observer-based approach, in which an observer plays

the role of the residual generation module, is one of
the most famous techniques used for residual generation.
Many standard observer-based techniques exist in the lit-
erature providing different solutions to both the theoreti-
cal and practical aspects of the problem (see [3]-[6] for
good surveys). The basic idea behind this approach is
to estimate the outputs of the system from the measure-
ments by using either Luenberger observers in a determin-
istic framework [7], [8] or Kalman filters in a stochastic
framework [9], [10]. The weighted output estimation error
is then used as the residual in this case.

Different aspects of the fault diagnosis problem have
been considered in the literature by using this methodology.
Beard used this idea to develop existence conditions for
directional residuals (residuals that achieve fault isolation, i.e
determination of the fault location) [7]. Fault isolation has
also been considered by using the dedicated observer scheme
[11], where a bank of observers is used to differentiate
between different fault scenarios. The important problem
of robustness to disturbances and modeling uncertainties
has also seen much attention. Watanabe and Himmelblau
introduced the concept of Unknown Input Observer (UIO)
for robust sensor fault diagnosis in systems with modeling
uncertainty [12]. Their approach was later extended in a
series of papers by Wünnenberg and Frank (see [13] and
references therein) and also by Patton and Chen (see [14],
[1]) to the detection of both sensor and actuator faults.
Robustness has also been studied extensively by Patton using
the eigen structure assignment approach [15], [8], where
the objective is to decouple the residual from unknown
disturbances by appropriate design of the observer gain.
Optimization techniques have also been widely used in fault
detection applications to minimize the disturbance effect and
maximize the fault effect when complete decoupling is not
possible [16], [1], [4], [5].

In all of these works, the residual generator can be
parameterized by the same two-degrees of freedom classical
observer structure, in which a constant observer gain and
a post filter help to achieve different specifications of the
fault diagnosis problem. In this paper, however, we consider
a more general framework, making use of the dynamic
observer structure introduced in [17], [18] where an ob-
server gain is seen as a filter designed so that the error
dynamics has some desirable frequency domain characteris-
tics. We apply this dynamic structure for the sensor faults



estimation problem where the objective of estimating the
faults magnitudes is considered (in addition to detection and
isolation). We show that, unlike the classical structure, this
objective is achievable by minimizing the faults effect in
a narrow frequency band on the observer’s state estimation
error. Different frequency patterns for the faults are also
considered and the use of weightings to model the problem
as a standard H∞ optimal control problem is illustrated. The
introduced techniques are demonstrated through simulations
on a model of the PROCONTM level/flow/temperature
process training system. The rest of this paper is organized as
follows: section 2 introduces some mathematical background
and notations used throughout the paper. In section 3, the
problem of diagnosing sensor faults in a narrow frequency
band is considered. In section 4, we consider the two cases
of low frequency and high frequency ranges, formulating
these problems as weighted H∞ optimal control problems.
Simulation results are presented in section 5 and some
conclusions are drawn in section 6.

2. PRELIMINARIES AND NOTATION

The linear fault detection and diagnosis (FDD) problem
considers the general class of LTI-MIMO systems affected
by faults that can be modeled as follows:

ẋ(t) = Ax(t) +Bu(t) +R1f(t) (1)

y(t) = Cx(t) +Du(t) +R2f(t) (2)

where x(t) ∈
� n, u(t) ∈

� m, y(t) ∈
� p and f(t) ∈

� s,
and where the matrices A,B,C,D,R1 and R2 are known
matrices of appropriate dimensions. Here f(t) is the fault
vector, and can represent the different types of system faults
shown in Fig. 1 (i.e, sensor, actuator and component faults).

As mentioned in section 1, the most famous technique
used for residual generation is the observer-based approach
that uses the following Luenberger observer structure:

˙̂x(t) = Ax̂(t) +Bu(t) + L (y(t)− ŷ(t)) (3)

ŷ(t) = Cx̂(t) +Du(t) (4)

in addition to a transfer matrix (weighting) Q(s) to generate
the residual r as:

r = Q(s)(y − ŷ); r(t) ∈
� q (5)

The residual obtained from (5) is therefore the weighted
output estimation error of the observer, and the residual
generator (3)-(5) has two degrees of freedom, namely, the
constant observer gain L and the post filter Q(s). This
freedom can be used to achieve different specifications of the
FDD problem. The following definitions are widely accepted
by the FDD community and are related to the different tasks
of a residual generator [1]:

Definition 1: (Fault detection) The residual generator
achieves fault detection if the following condition is satisfied:

ri(t) = 0 ; for i = 1, · · · , q ; ∀t

⇐⇒ fi(t) = 0 ; for i = 1, · · · , s ; ∀t

Definition 2: (Fault isolation) The residual generator
achieves fault isolation if the residual has the same dimension
as f(t) (i.e, q = s) and if the following condition is satisfied:

(ri(t) = 0 ; ∀t ⇐⇒ fi(t) = 0 ; ∀t) ; for i = 1, · · · , s

Definition 3: (Fault identification) The residual generator
achieves fault identification if the residual has the same
dimension as f(t) and if the following condition is satisfied:

(ri(t) = fi(t) ; ∀t) ; for i = 1, · · · , s

According to the previous definitions, in fault detection a
binary decision could be made either that a fault occurred
or not, while in fault isolation the location of the fault is
determined and in fault identification the size of the fault
is estimated. The relative importance of the three tasks is
subjective and depends on the application, however it is im-
portant to note that fault identification implies isolation and
that fault isolation implies detection (but not the opposite).

For the sensor faults diagnosis problem (which is our focus
in this paper), the system (1)-(2) is the special case where
R1 = 0, R2 = Ip (the identity matrix of order p) and
f(t) = fs(t) ∈

� p. The effect of using the classical residual
generator in (3)-(5) is clear by noting that the observer error
dynamics is given from (6)-(7) (where e = x−x̂, ỹ = y− ŷ).

ė(t) = (A− LC)e(t)− Lfs(t) (6)

ỹ(t) = Ce(t) + fs(t) (7)

The fault vector fs has direct effect on the output esti-
mation error ỹ, and hence on the residual. Therefore sensor
fault detection according to definition 1 is achievable by this
structure [1]. Sensor fault isolation can also be achieved
by using the dedicated observer scheme, where a bank of
observers (3)-(4) is used to differentiate between different
faults. However, for this approach, the number of sensor
faults need to be known a priori, and also some restrictive
observability conditions need to be satisfied [11]. In this
paper we consider the multiple sensor faults identification
problem using a novel approach. Our methodolgy is based
on the extension of the Luenberger structure in (3)-(4) to
a more general dynamic framework. We tackle the case
when the sensor faults fs are in a narrow frequency band
by showing that the sensor fault identification problem is
equivalent to an output zeroing problem which is solvable
only with a dynamic observer. We further consider the cases
of low and high frequency ranges showing that the problem
can be modeled as a weighted H∞ optimal control problem.
The extra design freedom offered by the dynamic formulation
is used to solve the proposed problems.

The following definitions and notations will be used
throughout the paper:

Definition 4: (L2 space) The space L2 consists of all
Lebesque measurable functions u :

� + →
� q , having a

finite L2 norm ‖u‖L2
, where ‖u‖L2

∆
=
√

∫∞

0
‖ u(t) ‖2 dt,

with ‖u(t)‖ as the Euclidean norm of the vector u(t).
For a system H : L2 → L2, we will represent by γ(H) the
L2 gain of H defined by γ(H) =

‖Hu‖L2

‖u‖L2

. It is well known
that, for a linear system H : L2 → L2 (with a transfer matrix



Ĥ(s)), γ(H) is equivalent to the H-infinity norm of Ĥ(s)
defined as follows:

γ(H) ≡ ‖ Ĥ(s) ‖∞
∆
= sup

ω∈
�
σmax(Ĥ(jω))

where σmax represents the maximum singular value of
Ĥ(ω). The matrices In, 0n and 0nm represent the identity
matrix of order n, the zero square matrix of order n and the
zero n by m matrix respectively. Diagr(a) represents the
diagonal square matrix of order r with

[

a a · · · a
]

1×r

as its diagonal vector, while diag(a1, a2, · · · , ar) rep-
resents the diagonal square matrix of order r with
[

a1 a2 · · · ar
]

as its diagonal vector. The symbol T̂yu
represents the transfer matrix from input u to output y.

The partitioned matrix G =

[

A B

C D

]

(when used as an

operator from u to y, i.e, y = Gu) represents the state space
representation (ξ̇ = Aξ + Bu, y = Cξ + Du), and in that
case the transfer matrix is Ĝ(s) = C(sI − A)−1B + D.
We will also make use of the following property on the rank
of Ĝ(s) [19]:

rank

[

A− sI B

C D

]

= n+ rank
(

Ĝ(s)
)

(8)

if s is not an eigenvalue of A and where n is the dimension
of the matrix A.

3. NARROW FREQUENCY BAND SENSOR FAULTS

DIAGNOSIS

In almost all observer-based FDD designs, maximizing the
faults effect on the observer’s estimation error is considered
as an optimal objective. However, for the sensor faults case
(as shown in (6)-(7)) the opposite is true. By minimizing
e, the output estimation error ỹ converges to fs which
guarantees fault identification in this case. In this section,
we consider the solution of this design problem (when fs
is in a narrow frequency band around a nominal frequency
ωo) by using a dynamic observer structure, showing that the
problem is not tractable for the static gain structure in (3)-(4).

3.1. Dynamic generalization of the classical observer struc-
ture

Throughout this paper, following the approach in [17],
[18], we will make use of dynamical observers of the form:

˙̂x(t) =Ax̂(t) +Bu(t) + η(t) (9)

ŷ(t) =Cx̂(t) +Du(t) (10)

where η(t) is obtained by applying a dynamical compensator
on the output estimation error (y − ŷ). In other words η(t)
is given from

ξ̇ = ALξ +BL(y − ŷ) (11)

η = CLξ +DL(y − ŷ). (12)

We will also write

K =

[

AL BL

CL DL

]

(13)

to represent the compensator in (11)-(12). It is straightfor-
ward to see that this observer structure reduces to the usual
observer in (3)-(4) in the special case where the gain K is the

constant gain given by K =

[

0n 0np
0n L

]

. The additional

dynamics provided by this observer brings additional degrees
of freedom in the design, something that will be exploited
in the minimization of the sensor faults effect.

First, note that the observer error dynamics in (6) is now
given by (ė = Ae− η) which can also be represented by
the following so-called standard form:

ż =
[

A
]

z +
[

0np −In
]

[

ω

ν

]

(14)
[

ζ

ϕ

]

=

[

In
C

]

z +

[

0np 0n
Ip 0pn

] [

ω

ν

]

(15)

where
ω = fs

ν = η = K(y − ŷ) (16)

ζ = e = x− x̂

ϕ = y − ŷ

which can also be represented by Fig. 2 where the plant G
has the state space representation in (17) with the matrices
in (14)-(15) and where the controller K is given in (13).

Ĝ(s) =





A B1 B2

C1 D11 D12

C2 D21 D22



 (17)

G

K ¾

-

- -ω ζ

ν ϕ

Fig. 2. Standard setup.

Therefore, all possible observer gains for the observer in
(9)-(13) can be parameterized by the set of all stabilizing
controllers for the setup in Fig. 2. This is a standard result in
control theory [19] and, for the observer problem considered
in this paper, it can be represented by the following theorem
(as a special case of Theorem 11.4 in [19]):

Theorem 1: Let F and L be such that A+LC and A−F
are stable; then all possible observer gains K for the observer
(9)-(13) can be parameterized as the transfer matrix from ϕ

to ν in Fig. 3 with any Q̂(s) ∈ RH∞.

J

Q

¾

-

¾ ¾ν ϕ

; Ĵ(s) =





A− F + LC −L −In
F 0np In
−C Ip 0pn





Fig. 3. Parametrization of all observer gains.



3.2. State and sensor faults estimation

As mentioned earlier, our objective is to minimize (in some
sense) the effect of sensor faults (in a narrow frequency band
around a nominal frequency ωo) on the state estimation error
in order to achieve sensor faults estimation. Towards that
goal, we will denote G as the set of all scalar continuous
functions g(ω) which are symmetric around ωo, and Fs(jω)
as the fourier transform of fs(t). We will then define an
optimal observer gain in L2 sense as follows:

Definition 5: (Optimal observer gain) An observer gain is
said to be optimal with respect to the nominal frequency ωo

if the following property is satisfied for the estimation error
e(t) resulting from the sensor faults vector fs(t):
“∀ ε > 0 and ∀ g(ω) ∈ G, ∃ ∆ω > 0 such that
Fs(jω) in (18) =⇒ ‖ e ‖L2

≤ ε” .

|Fs(jω)| =

{

g(ω) ; |ω − ωo| < ∆ω
0 ; otherwise

(18)

Equation (18) means that the frequency pattern for fs(t) is
confined to the region [ωo −∆ω, ωo +∆ω]. It is easy to see
that if T̂efs

(s) is the transfer matrix from fs to e, then an
optimal observer gain is one that satisfies T̂efs

(jωo) = 0.
The following lemma shows that a static observer gain can
never be an optimal observer gain.

Lemma 1: A static observer gain (such as the constant
matrix L in (3)-(4)) can never be an optimal observer gain
according to Definition 5.
Proof : The proof follows by noting that the
transfer matrix from fs to e (as seen in (6)) is

T̂efs
(s) =

[

A− LC −L
In 0np

]

. And since the gain L

is chosen to stabilize (A − LC), then (∀ωo) jωo is not an
eigenvalue of (A − LC). Therefore, by using (8), we have

rank
(

T̂efs
(jωo)

)

= rank

[

A− LC − jωoIn −L
In 0np

]

− n.

But rank

[

A− LC − jωoIn −L
In 0np

]

= rank

[

L 0n
0np In

]

=

n+rank(L). Therefore, rank
(

T̂efs
(jωo)

)

6= 0 unless L = 0.

This implies that no gain L can satisfy T̂efs
(jωo) = 0, and

therefore a static observer gain can never be an optimal
gain according to Definition 5. 4

We now consider the case of the dynamic observer intro-
duced in (9)-(13). As a result of the gain parametrization
presented in theorem 1, the transfer matrix from fs to e,
achievable by an internally stabilizing gain K, is equal to
the Linear Fractional Transformation (LFT) between T and
Q as follows [19]:

T̂efs
(s) ≡ LFT (T,Q) = T̂11(s) + T̂12(s)Q̂(s)T̂22(s) (19)

where Q̂(s) ∈ RH∞ and where T is given from

[

T11 T12
T21 T22

]

=









A− F F

0n A+ LC

0np −In
L 0n

In 0n
0pn C

0np 0n
Ip 0pn









(20)

We will denote T̂11(s), T̂12(s) and T̂21(s) by T̂1(s), T̂2(s)
and T̂3(s) respectively. The following lemma presents a
result on the invertibility of the transfer matrices T̂2(s) and
T̂3(s) at a frequency ωo (i.e, at s = jωo).

Lemma 2: The (n×n) and (p×p) matrices T̂2(jωo) and
T̂3(jωo) are invertible if jωo is not an eigenvalue of A.

Proof : By (20), T̂2(s) =





A− F F

0n A+ LC

−In
0n

In 0n 0n





=

[

A− F −In
In 0n

]

. Similarly, T̂3(s) =

[

A+ LC L

C Ip

]

.

Therefore, using the rank property in (8):

i) rank
(

T̂2(jωo)
)

= rank

[

A− F − jωoIn −In
In 0n

]

− n

ii) rank
(

T̂3(jωo)
)

= rank

[

A+ LC − jωoIn L

C Ip

]

− n

But rank

[

A− F − jωoIn −In
In 0n

]

= 2n, ∀ωo. Also,

rank

[

A+ LC − jωoIn L

C Ip

]

= rank

[

A− jωoIn L

0pn Ip

]

= n + p ; if jωo is not an eigenvalue of A. Therefore,
rank

(

T̂2(jωo)
)

= n and rank
(

T̂3(jωo)
)

= p (full ranks) if
jωo is not eigenvalue of A, and the proof is completed. 4

Based on the results in lemma 2, it can be proven that,
for T̂efs

(s) in (19), ∃ a transfer matrix Q̂(s) ∈ RH∞ that
satisfies T̂efs

(jωo) = 0 (proof is omitted). Therefore, for the
dynamic observer in (9)-(13), an optimal gain (in the sense
of Definition 5) can be found (unlike the static case). This
shows the advantage of using the dynamic observer.

To summarize, based on the previous results, we will
define an optimal residual generator as follows:

Definition 6: (Optim. residual for narrow frequency band)
An observer of the form (9)-(13) along with r = y− ŷ is an
optimal residual generator for the sensor faults identification
problem (with faults in a narrow frequency band around ωo)
if the dynamic gain K is chosen as the Linear Fractional
Transformation LFT (J,Q) in Fig. 3 where Q̂(s) ∈ RH∞

solves the problem T̂efs
(jωo) = 0 for the transfer matrix

T̂efs
(s) in (19).

Remarks
- According to the previous definition, an optimal residual

generator guarantees sensor faults estimation and at the
same time state estimation (with minimum energy for
the estimation errors). An advantage of having state es-
timation in presence of sensor faults is the possibility to
use the observer in fault tolerant output feedback control
(i.e, if a reconfiguration control action is involved).

- From the special cases of interest is the case of sensor
bias, where the previous approach can be used to get
an exact estimation of all sensor biases at the same
time. A sufficient condition is that the matrix A has
no eigenvalues at the origin.

4. H∞ SENSOR FAULTS DIAGNOSIS

In this section, we consider two different cases: the low
frequency range and the high frequency range. For the first



case, we assume the system to be affected by sensor faults
of low frequencies determined by a cutoff frequency ωl, i.e
the frequency pattern for fs(t) is confined to the region
[0, ωl]. On the other hand, in the high frequency case, we
assume these faults to have very high frequencies above a
minimum frequency ωh, i.e the frequencies are confined to
the region [ωh,∞) . As mentioned in section 3, by using
the dynamic observer in (9)-(13), the error dynamics (due to
general sensor faults) can be represented by Fig. 2 where the
plant G has the state space representation shown in (17) with
the matrices defined in (14)-(15) and where the controller K
is given in (13). Therefore, the two previous problems can be
solved by adding weightings to the standard setup in Fig. 2
that emphasize the frequency range under consideration, and
by solving these problems as weighted H∞ control problems.

However, before introducing weightings, it is important to
note that the standard form in (14)-(15) does not satisfy all
of the regularity assumptions in the H∞ framework (Notice
that DT

12D12 is singular), and hence observer synthesis can
not be carried out directly using the standard H∞ solution.
Fortunately, regularization can be done by extending the
external output ζ in Fig. 2 to include the “scaled” vector
βν; with β > 0. It can be seen that the standard form in
(14)-(15) has now the following form:

ż =
[

A
]

z +
[

0np −In
]

[

ω

ν

]

(21)




[

e

βν

]

ϕ



 =





[

In
0n

]

C



 z +





[

0np
0np

] [

0n
βIn

]

Ip 0pn





[

ω

ν

]

(22)

which can also be represented by the standard setup shown
in Fig. 2 with the same variables in (16) , except for
redefining the matrices of Ĝ(s) in (17) and defining ζ as:
ζ
∆
=
[

e βν
]T

. All the regularity assumptions summarized
below, [19], are now satisfied iff A has no eigenvalues on
the imaginary axis:

1) (A,B2) stabilizable: satisfied for any matrix A.
(C2,A) detectable: satisfied, since (A, C) is detectable.

2) D21D
T
21 = Ip, which is nonsingular.

DT
12D12 = β2In, which is nonsingular.

3) rank

[

A− jωI B2

C1 D12

]

= 2n = full column rank ∀ω.

rank

[

A− jωI B1

C2 D21

]

= n+ p = full row rank; if jω

is not an eigenvalue of A.
4) D22 = 0.

The following lemma demonstrates a certain equivalence
relationships between the standard form in (14)-(15) and the
regularized one in (21)-(22) (proof is omitted)

Lemma 3: Let R1 be the setup in Fig. 2 associated with
(14)-(15), R2 be the one associated with (21)-(22) and
consider a stabilizing controller K for both setups. Then
‖ R̂1 ‖∞< γ if and only if ∃ β > 0 such that ‖ R̂2 ‖∞< γ.

4.1. The low frequency range case

We now consider sensor faults of low frequencies de-
termined by a cutoff frequency ωl. The SISO weighting

ŵl(s) = as+b
s

, [19], emphasizes this low frequency range
with “b” selected as ωl and “a” as an arbitrary small number.
Therefore, with a diagonal transfer matrix Ŵ (s) that consists
of these SISO weightings, the observer problem in Fig. 2 can
be modified to the weighted version in Fig. 4.

-̄ω W G

K ¾

-

- -̄ζ

ν̄ ϕ̄
≡

Ḡ

K¾

-

- -ω̄ ζ̄

ν̄ ϕ̄

Fig. 4. Weighted standard setup.

It can be seen that the augmented plant Ḡ (consisting of
the weighting W cascaded with G in (21)-(22)) is given by:

ˆ̄G(s) =





Ā B̄1 B̄2

C̄1 D̄11 D̄12

C̄2 D̄21 D̄22





=













[

Aw 0pn
0np A

] [

Ip
0np

] [

0pn
−In

]

[

0np In
0np 0n

] [

0np
0np

] [

0n
βIn

]

[

Cw C
]

Dw 0pn













(23)

where Aw = 0p, Cw = diagp(b) and Dw = diagp(a).
However, this standard form violates assumptions 1 and 3 of
the regularity assumptions summarized earlier; since (Ā, B̄2)
is not stabilizable and the rank conditions are not satisfied
at ω = 0. Therefore, we introduce the modified weighting
ŵlmod(s) = as+b

s+c
; with arbitrary small positive “c”. It

is easy to see that, with this modification, the augmented
plant Ḡ is the same as (23) except for Aw which is now
given by the stable matrix diagp(−c) and Cw given by
diagp(b − ac). Similar to the non weighted case, all the
regularity assumptions are satisfied iff A has no eigenvalues
on the imaginary axis. To this end, we define the regular H∞

problem associated with the low frequency range as follows:
Definition 7: (Low frequency H∞) Given β > 0, find S,

the set of admissible controllers K satisfying ‖ T̂ζ̄ω̄ ‖∞< γ

for the setup in Fig. 4 where Ḡ has the state space represen-
tation (23) with Aw = diagp(−c), Cw = diagp(b− ac) and
Dw = diagp(a).

Based on the previous results, we now present the main
result of this section in the form of the following definition
for an optimal residual generator in L2 sense:

Definition 8: (Optimal residual for low frequencies) An
observer of the form (9)-(13) along with r = y − ŷ is an
optimal residual generator for the sensor faults identification
problem (with faults of low frequencies below the cutoff
frequency ωl) if the dynamic gain K ∈ S∗ (the set of
controllers solving the H∞ optimal control problem in
Definition 7 with the minimum possible γ).
Comments

- A residual generator that is optimal in the sense of
Definition 8 can be found by using an iterative binary
search algorithm over the constant β (in order to achieve
the minimum possible γ for the problem in Definition 7



which has β as one of its parameters). Existing software
packages can be used to solve the regular H∞ problem
in Definition 7 for a given β.

- The constants a and c should be selected as arbitrary
small positive numbers, while b must approximately be
equal to ωl (the cutoff frequency). Different weightings
could also be used for the different sensor channels. In
this case Aw = diag(−c1, · · · , −cp), Cw = diag(b1−
a1c1, · · · , bp − apcp) and Dw = diag(a1, · · · , ap).

4.2. The high frequency range case

The SISO weighting ŵhmod(s) = s+(a×b)
εs+b

, [19], could
be selected to emphasize the high frequency range [wh,∞)
with “b” selected as wh and, “a” and “ε” > 0 as arbitrary
small numbers. Similar to the low frequency range, a regular
H∞ problem related to this case can be defined. Also, an
optimal residual generator can be defined in a similar way
to Definition 8. (details are omitted due to similarity).

5. SIMULATION RESULTS

The PROCON Level/Flow/Temperature Process Control
System (shown in Fig. 5) includes two rigs which can be ei-
ther controlled independently or by connecting them together
to achieve simultaneous level and temperature control.

Fig. 5. The Level/Flow/Temperature Process Control System.

In these simulation experiments, we consider the config-
uration obtained by connecting the two modules in cascade
as shown in Fig. 6. In this case, there are two water circuits,
namely, the hot water circuit and the cold water circuit. The
water of both circuits flows into a heat exchanger where the
heat energy can be transferred from the hot water flow into
the cold water flow. The hot water temperature is controlled
manually by the on-off switch of the heater, while the flow
rates of both circuits can be controlled through the two servo
valves connected to the computer. A level sensor is used
to measure the level of the cold water in the main upper
tank, while the temperature (at exactly one position) can be
measured through the transmitter. It is important to note that
there are 5 available positions for temperature measurement:
T1 (T2) for the hot water input flow to (output flow from)
the heat exchanger, T3 (T4) for the cold water input (output)
flow, and T5 for the cold water output flow from the cooling
radiator. In this experiment, our objective is to control the
water level and the temperature of the hot water circuit by
controlling the flow rates of the valves. According to this
configuration, the process has two inputs (the cold water
and hot water servo valves) and two outputs (the level of
the water in the upper tank and the temperature T2). The

inputs will be denoted u1 and u2 respectively and they both
have the same operating range of 0 to 4 litres/min. The
operating ranges for the outputs y1 and y2 are (0, 14 cm) and
(0, 100 Celsius) respectively. The heater set point (i.e, T1) is
chosen as 80 Celsius, while the cold water in the reservoir
is at the room’s temperature (i.e, T3 u 23 Celsius).

Fig. 6. Structure of the connected rigs.

Using the first principle physical laws, a model of the
process can be developed. However, this model is highly
nonlinear and many of its parameters are unknown. There-
fore, identification experiments are conducted, and based on
the operating point (u1 = 2.8 litres/min, u2 = 0.8 litres/min,
y1 = 6.35 cm and y2 = 35 Celsius) a 5th order state space
model of the form (ẋ = Ax + Bu; y = Cx + Du) is
identified, where u =

[

u1 u2
]T

and y =
[

y1 y2
]T

(see
Appendix I for the system matrices). This model is used
to demonstrate the proposed observer-based sensor faults
identification schemes. Towards that goal, the system is
controlled to stabilize the output at y1 = 8 cm and y2 = 40
Celsius as seen in Fig. 7 .
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Fig. 7. Actual system outputs for the controlled process.

Case study 1: In this case, the system is assumed to be
affected by sensor biases, where both measured outputs are
affected by piecewise constant faults. This is the special case
where ωo = 0 for the problem in section 3.2, and since the
matrix A in Appendix I has no eigenvalues on the origin, an
optimal observer gain that can estimate both sensor biases
can be designed. This optimal gain K, in our case, is the
LFT in Fig. 3 with Q̂(s) as follows:

Q̂(s) = Q̂(0) =













104.9570 −116.5842
−75.2350 −356.1628
−6.8637 783.5496
−74.8358 −694.0620
36.3072 112.4389













(24)

Using this observer gain with the observer IC as
[

0 0 0.1 0 0.005
]

, two biases simultaneously chang-
ing with time are successfully estimated as seen in Fig. 8.
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Fig. 8. (a) Bias estimation for y1 (b) Bias estimation for y2 .

The state and output estimation errors also converge to zero
in this case.
Case study 2: In this case, we consider the case of low
frequency sensor faults (in the range [0, 5 rad/sec]). Using
the H∞ design introduced in section 4.1 (and with the
weighting selections as a = 0.01, b = 5 and c = 0.001), the
optimal observer gain is obtained by solving the H∞ problem
in Definition 7 using the command hinfsyn in MATLAB, with
minimum γ as 0.1 and with β = 1. Using this observer for
the faulty outputs in Fig. 9, a correct estimation of the low
frequency sensor faults is shown in Fig. 10. The maximum
error in that case was 0.0839 for the first fault estimation,
and 0.2787 for the second fault estimation.
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Fig. 9. Outputs y1 and y2 affected by low frequency sensor faults.
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Fig. 10. (a) Fault estimation for y1 (b) Fault estimation for y2 .

6. CONCLUSION

In this paper, we considered the use of a dynamic ob-
server structure for the sensor faults diagnosis problem. This
structure offers extra degrees of freedom over the classical
Luenberger structure and we showed how this freedom can
be used for the sensor faults and state estimations problems.
For the narrow frequency band case, the problem was shown
to be equivalent to an output zeroing problem for which a
dynamic gain is necessary. The use of appropriate weightings
to transform this problem into a standard H∞ optimal control
problem was also demonstrated. The introduced strategies
were applied through simulations to the PROCONTM

level/flow/temperature process training system.

APPENDIX I
SYSTEM MATRICES

A =













−0.0084 −0.0012 0.0155 0.0280 0.0017
−0.0046 −0.0352 −0.0227 0.0150 0.0082
−0.0825 −0.0122 −0.0773 0.0661 0.3209
−0.2105 0.0336 −0.0929 −0.3418 −0.1551
0.0388 −0.0754 −0.1532 0.0126 −0.1602













C =

[

−6.7795 −0.7974 0.0766 0.1585 0.0444
−0.1862 19.2450 −0.4087 −0.0602 −0.3102

]

B =













0.0028 −0.0022
−0.0016 0.0118
−0.1157 0.2819
−0.2818 −0.1153
0.0552 −0.2418













, D =

[

0 0.0090
0 −0.0388

]
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