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Abstract

This paper discusses minimum variance control
(MVC) design and control performance assessment
based on the MVC-benchmark for multirate systems.
In particular, a dual-rate system with a fast control
updating rate and a slow output sampling rate is con-
sidered. The lifting technique is used as an alternative
way to derive a subspace equation, which is used to de-
sign the multirate MVC law, and to estimate the mul-
tirate MVC-benchmark variance. The multirate opti-
mal controller design is data-driven since it does not
involve solving Diophantine or Riccati equations, and
it does not even involve identification of a parametric
model. The presented MVC-benchmark variance esti-
mation algorithm is model-free because no prior knowl-
edge, namely, transfer function matrices, Markov pa-
rameters or interactor matrices, are needed. The pro-
posed methods are illustrated through a simulation ex-
ample.

1. Introduction

In many applications of electrical, mechanical and
chemical engineering, control signals and output mea-
surements need to be sampled at different rates, lead-
ing to multirate systems. The research on multirate
systems can be traced back to 1957, when the con-
cept of lifting was developed by Kranc from the switch
decomposition technique [1]. From then on, the lift-
ing technique has been a most powerful tool used for
multirate systems design and analysis. Much of the
recent work on multirate systems has been done on
the LQG/LQR design [2], the H2 design [3, 4, 5, 6],
the H∞ design [3, 7], and model identification and
validation [8, 9]. Instead of treating general multirate
systems, in this paper we consider a multirate system
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where the sampling frequency of the controller output
is M (a positive integer) times that of the plant output.
This setup captures most of the fundamental features
of multirate systems while maintains some clarity in
the exposition. There exist other cases of dual-rate
systems, e.g., those systems where the controller in-
put is fast sampled and the controller output is slowly
sampled. However, the former one is commonly used
in industry [10].

The first objective of this work is to explore a dual-
rate minimum variance control (MVC) law, when only
the system input/output data is available. For a
known system model, the principle of MVC can be ob-
tained by solving either a Diophantine equation [11] or
two Riccati equations [3] since the MVC problem can
be reformulated into an H2 optimal control problem.
Also, numerical solutions can also be found by solv-
ing a group of linear matrix inequalities [12, 13]. Un-
like these foregoing methods which require parametric
models, we will explore a method based on certain re-
sults from the area of subspace system identification
[14, 15]. Subspace identification methods, which were
developed in the late 80’s and early 90’s, allow the
identification of a system state space model directly
from the data [16, 17, 18]. The idea of designing pre-
dictive controllers using subspace system identification
techniques has been around for a few years. For in-
stance, there are the model-free LQG design [19] and
subspace predictive control design [20]. In addition,
the extended state space model is used to obtain pre-
dictive controllers [21]. A predictive control law, with
all the important predictive control features, is inves-
tigated via subspace approach in [22]. All these afore-
mentioned designs are for single-rate systems. In this
paper, we will consider the MVC design for dual-rate
systems.

The second objective of this work is to assess dual-
rate control-loop performance using input/output
data. Due to the lack of published work on multi-



rate control performance assessment, we will only re-
view the important research which has been done on
single-rate control performance assessment. For linear
systems, it is known that the MVC is the best pos-
sible control in the sense that no controllers can pro-
vide a lower closed-loop variance [23]. Many papers
[24, 25, 26, 27, 28] have shown that MVC is a use-
ful benchmark to assess control-loop performance. A
comprehensive overview of research up to 1998 on con-
trol performance assessment using minimum variance
principles can be found in [29]. To estimate the MVC-
benchmark variance by traditional performance assess-
ment algorithms, the time delay (SISO case) [24, 25] or
the interactor matrix (MIMO case) [28, 30] or the first
few Markov parameters [31] must be known a priori.
Recently, a framework based on subspace matrices is
studied to estimate the MVC-benchmark variance for
multivariate feedback control systems [32]. No prior
knowledge is needed anymore in this algorithm. Esti-
mating the dual-rate MVC-benchmark variance is an
extension of the work in [32] to dual-rate systems, but
we use a different subspace algorithm.

2. System description and problem
statement

Figure 1. Block diagram of a sampled-data
system

Consider a discrete-time, time-invariant, linear state
space model of the form

xk+1 = Axk + Buk + Eek (1)
yk = Cxk + Duk + Fek (2)

where k is a discrete-time instance, x ∈ Rn is the state
vector, y ∈ Rm is the system output, u ∈ Rr is the sys-
tem input, and ek ∈ Rm is a standard white noise with
zero mean and identity covariance matrix. A, B, C,
D, E, F are system matrices with appropriate dimen-
sions. We assume that (C, A) is observable, (A, B) is
controllable, and u and e are independent signals. The
system is shown in Figure 1, where H and S denote
a zero-order-hold and an output sampler with inter-
val T , respectively. Thus the discrete-time state space

model of the system SPH is (A, B,C, D), and the dis-
cretized state space model of the disturbance SN is
(A,E, C, F ). In certain industrial applications [10], it
is common that the control updating rate is faster than
the output sampling rate by a certain factor. Thus we
assume that the input variable is sampled with a fast
sampling rate Tfast = T and the output variable is sam-
pled with a slow sampling rate Tslow = MTfast. The
issues investigated in this paper are to design the dual-
rate MVC law and to estimate the MVC-benchmark
variance directly from the input/output data. The
data sets are

{
uk, ∀k = k0, k0 + 1, · · · , k0 + Nu − 1,
yk, k = jM + k0, ∀j = 0, 1, · · · , Ny − 1,

where k0 ≥ 1 is the first discrete-time instance when
yk is available. The lengths of input and output data
satisfy Nu = k0 + (Ny − 1)M, which means that the
last time instance when uk is available equals to the
last time instance when yk is available.

3. A dual-rate subspace equation with
lifting approach

The two objectives of this work are both based on a
dual-rate input-output subspace equation. This sub-
space equation, also named as extended state space
model, is derived by Di Ruscio in the deterministic and
stochastic subspace system identification and realiza-
tion (DSR) algorithm [15, 33]. Here, we will derive it
for dual-rate systems with the lifting technique, which
makes the derivation simple, concise and consistent
with our subsequent performance assessment work.

3.1. Definitions

For the sake of presentation, the following defini-
tions are adopted in this paper. For a sequence of
data

st ∈ Rnr×nc , ∀t = 0, 1, · · · , k, k + 1, · · ·

with nr being the number of the rows and nc the num-
ber of the columns in st, given positive integers k, J, L
and K, the extended signal sequence sk|L ∈ RLnr×nc

is defined as

sk|L
def=




sk

sk+1

...
sk+L−1


 , (3)



and the Hankel matrix Sk|L ∈ RLnr×Knc is defined as

Sk|L
def=




sk sk+1 · · · sk+K−1

sk+1 sk+2 · · · sk+K

...
...

. . .
...

sk+L−1 sk+L · · · sk+K+L−2


 , (4)

where k is the starting index (k = k0 + JM); J is
the past horizon to define the instrumental variable
matrix; L, the number of nr-block rows in sk|L and
Sk|L, is defined as the prediction horizon. It is chosen
such that L ≥ Lmin, where the minimal number of L
is defined by [21]

Lmin
def=

{
n− rank(C) + 1 when rank (C) < n,
1 when rank (C) ≥ n.

K is the number of nc-block columns in Sk|L. In this
paper the past and prediction horizons are chosen as
J = L, and the number of block columns in Sk|L is
chosen as K = Ny − L− J [33].

3.2. Lifting and input-output subspace
equation

The dual-rate controller in Figure 1 is time-varying
due to the presence of the fast-rate hold and the
slow-rate sampler. To avoid dealing with the time-
varying system directly, let us introduce the lift-
ing technique. The slow sampled output signal is{

yk0 , · · · yk, yk+M , · · · }
, and the fast sam-

pled input signal is
{

uk0 , · · · uk, uk+1, · · · }
.

By the definition in equation (3), the control sig-
nals can be stacked as vectored-valued sequences as
u =

{
uk0|M , · · · , uk|M , uk+M |M , · · ·}. After lifting,

both the signal dimension and the underlying period
are increased by a factor of M . The lifted system GM

from u to y is single-rate and linear time-invariant [34].
From the fast-rate plant model (A,B, C,D), where D
can be set to a zero matrix without loss of generality,
GM can be written as [3]:

xk+M = AMxk + Buk|M , (5)
yk = Cxk + DMuk|M (6)

where B = [ AM−1B · · · AB B ] ∈ Rn×Mr

is the lifted external input matrix, and DM =
[ 0 · · · 0 ] ∈ Rm×Mr is the lifted direct control
input-to-output matrix. Again, by lifting yk and uk|M
with the user chosen prediction horizon L, equation (6)
can be written as

yk|L = OLxk + HLuk|LM , (7)

where OL, the dual-rate extended observability matrix
for the pair (C, AM ), is defined as

OL
def=




C
CAM

...
CAM(L−1)


 ∈ RLm×n,

and the lower block triangular Toeplitz matrix HL ∈
RLm×LMr is defined as

HL
def=




DM 0 · · · 0
CB DM · · · 0

CAMB CB · · · 0
...

...
. . . 0

CA(L−2)MB CA(L−3)MB · · · DM




.

(8)
Then it can be obtained from (5, 7) that [14]

yk+M |L = OLxk+M + HLuk+M |LM

= OL(AMxk + Buk|M ) + HLuk+M |LM

= M̃yk|L + Ñuk|(L+1)M (9)

where M̃ and Ñ are defined as

M̃
def= OLAM (OT

LOL)−1OT
L ,

Ñ
def=

[
OLB HL

]− M̃
[

HL 0Lm×Mr

]
.

The subspace model in (9) is disturbance free. The
disturbance is in the slow sampling rate and the cor-
responding discrete-time state space model is as (AM ,
Es, C, Fs), where the subscript s denotes the slow
sampling rate. This model can also be obtained from
the fast-rate noise model (A, E, C, F ) by lifting and
inner-outer factorization [13]. So by taking into ac-
count the disturbance, via similar derivation as in (9),
it can be seen that

yk+M |L = M̃yk|L + Ñuk|(L+1)M + T̃ ek|L+1 (10)

where ek|L+1 is defined in (3), T̃
def=

[
OLEs Hs

L

]−
M̃

[
Hs

L 0Lm×m

]
, and Hs

L ∈ RLm×Lm is defined as

Hs
L

def=




Fs 0 · · · 0
CEs Fs · · · 0

CAMEs CEs · · · 0
...

...
. . . 0

CA(L−2)MEs CA(L−3)MEs · · · Fs




.

(11)
From (10), it can be observed that

Yk+M |L = M̃Yk|L + ÑUk|(L+1)M + T̃Ek|L+1 (12)

where the data matrices Yk+M |L, Yk|L, Uk|(L+1)M and
Ek|L+1 are defined as in (4). Equations (10) and (12)
are equivalent, and they both are input-output equa-
tions for dual-rate systems.



3.3. Determination of subspace matrices

Since the subspace matrices M̃ , Ñ and T̃ in (10,
12) will play important roles in the later dual-rate
MVC controller design and MVC based performance
assessment, in this part we will show how to determine
them directly from the open-loop input/output data.
The estimation steps come from the DSR algorithm
[15, 33]. It is important to mention that estimating
the subspace matrices is not equivalent to estimating
system matrices of the lifted system, since the sys-
tem parameters AM , B, C, DM , Es and Fs are never
explicitly calculated. This is the reason we refer our
methods as data-driven or model free. The sketch to
determine the subspace matrices mainly comprises a
QR decomposition [15, 33]. After structuring the data
matrix in the left-hand side of (13) from the open-loop
input/output data set, the QR decomposition of the
data matrix can be computed as

1√
K




Uk|(L+1)M

W
Yk|L

Yk+M |L


 = RQ (13)

=




R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44







Q1

Q2

Q3

Q4


 ,

where W =
[

Y T
k0|J UT

k0|JM

]T

denotes the past in-
formation. The QR decomposition can be treated as
a data compression step, i.e., the data matrix can be
compressed to a usually much smaller lower triangular
matrix R which contains the relevant information of
the system. By certain derivations [15], the subspace
matrices can be obtained as follows:

M̃ = R42R
†
32

Ñ = (R41 − M̃R31)RT
11(R11R

T
11)

−1

T̃ = R43 − M̃R33

where the superscript † denotes the Moore-Penrose
pseudo inverse.

4. Data-driven MVC law design

4.1. Control objective and prediction
model

The control objective for the system in Figure 1 can
be expressed as

Jmvc
def= min E[yT

k yk] = min lim
N→∞

1
N

N∑

k=1

yT
k yk (14)

It can be seen that the subspace input-output equa-
tions (10) and (12) contain inherent relationship be-
tween the past and the future control/output signals.
In the next part a prediction model is derived to
present this relationship explicitly.

Proposition 1: The prediction model for the future
outputs is

ŷk+M |L =Pyyk−(L−1)M |L + PL−1uk−(L−1)M |(L−1)M

+ FL+1uk|(L+1)M , (15)

and the terms are given by

Py = M̃L, (16)

PL−1 = [ p1 p2 · · · pL−1 ],

FL+1 = [ f1 f2 · · · fL+1 ],

where

pi =
i∑

j=1

Hj+L−i,j ∀i = 1, · · · , L− 1, (17)

fi =
L−i+2∑

j=1

Hj,j+i−1 ∀i = 2, · · · , L + 1, f1 =
L∑

j=1

Hj,j .

(18)

Hi,j denotes the sub-block of the Hankel Matrix H,

which is structured by the subspace matrices M̃ and
Ñ :

H =




Ñ

M̃Ñ
...

M̃L−1Ñ


 =




H11 H12 · · · H1,L+1

H21 H22 · · · H2,L+1

...
...

. . .
...

HL1 HL2 · · · HL,L+1


 .

(19)
Proof. Omitted due to the limit of space. The

prediction model for the single-rate case can be found
in [21]. ¥

4.2. Computing MVC control law
Proposition 2: Considering the prediction model in

(15), the L-step ahead optimal control variables, which
minimize the control objective

Jmvc = min yT
k+M |Lyk+M |L, (20)

can be computed as

uk|(L+1)M =− (FT
L+1FL+1)−1FT

L+1(M̃yk−(L−1)M |L
+ PL−1uk−(L−1)M |(L−1)M ). (21)

The equivalence of (20) and (14) was shown in [19]
when the past horizon is infinity.
Proof. By inserting (15) into (20) and setting



∂Jmvc/∂uk|(L+1)M = 0, the optimal control variables
can be obtained. ¥

After the optimal control sequence uk|(L+1)M is
known, the first row block of uk|(L+1)M , uk|M , is im-
plemented as the receding horizon MVC law.

5. Estimation of the MVC-benchmark
variance directly from input/output
data

In [32], it presents the extended output yk|L of the
process (in Figure 1) as

yk|L = OLxt + HLuk|L + Hs
Lek|L,

and the output variance under MVC can be written as

Jmvc
def= min E[yT

k yk] = trace(min E[ykyT
k ])

= trace (I −HLH†
L)Hs

L,1H
sT
L,1(I −HLH†

L)T

(22)

where HL is defined as in (8) except for M = 1; Hs
L

is defined as in (11), and Hs
L,1 denotes the first block

column of Hs
L. Equation (22) shows that the Jmvc

can be estimated if HL and Hs
L,1 are known. In the

following part, we will see how to estimate these two
matrices for dual-rate systems. From (15, 16) it can
be seen that

ŷk|L =M̃Lyk−LM |L + PL−1uk−LM |(L−1)M

+ FL+1uk−M |(L+1)M

=LwWp + HLuk|LM ,

where Wp =
[

yT
k−LM |L uT

k−LM |LM

]T

denotes the
past information and Lw is the linear operator of Wp.
The estimation of HL, ĤL, can be determined as

ĤL = [ h1 h2 · · · hL ] (23)

where

hi =
L−i+1∑

j=1

Ĥj,j+i, ∀i = 1, · · ·L, (24)

and Ĥ is the estimation of the Hankel Matrix defined
in (19). Ĥs

L,1 can be obtained as

Ĥs
L,1 =

L∑

j=1

Λj,j+1 (25)

where Λ is defined as

Λ =




T̃

M̃ T̃
...

M̃L−1T̃


 =




Λ11 Λ21 · · · Λ1,L+1

Λ21 Λ22 · · · Λ2,L+1

...
...

. . .
...

ΛL1 ΛL1 · · · ΛL,L+1


 .

(26)

Table 1. Results of the simulation example
Output data set length 6000
Theoretical minimum variance 2.4838
Simulated minimum variance 2.5150
Estimated minimum variance 2.4633

The derivation of (23-25) is omitted. Therefore, the
estimated MVC-benchmark variance can be computed
as

Ĵmvc = trace (I − ĤLĤ†
L)Ĥs

L,1Ĥ
sT
L,1(I − ĤLĤ†

L)T .
(27)

Notice that Hs
L,1 is preferably estimated from a set of

representative close-loop routine operating data [32].
Then the close-loop performance index can be com-
puted as the ratio between the estimated MVC-
benchmark variance and the current output variance.

6. A simulation example

In order to illustrate the developed algorithms, a
numerical example is shown in this section . The open-
loop system model is taken from [15] except that one
time delay is added to the process. The process and
disturbance models are

P = z−1 0.5
1− 0.9z−1

, N =
1− 0.3z−1

1− 0.9z−1

with the sampling period Tfast = 1 sec. The system
output signal is slow sampled with the sampling period
Tslow = 2 sec. The lifted system model (M = 2) and
the slow-rate disturbance model are

P = z−1
[

0.45
1−0.81z−1

0.5
1−0.81z−1

]
,

Ns =
1.576 + 0.1713z−1

1− 0.81z−1
.

The theoretical minimum variance is calculated as
Jmvc = 2.4838. From the system input/output data,
where the input is a white noise of unit variance,
the dual-rate MVC law is computed as K(z) =[

0.7710 0.9145
]T

when L = J = 1. The sim-
ulated close-loop variance under K(z) and the esti-
mated MVC-benchmark variance are listed in Table 1.
It can be seen that the error between the simulated
minimum variance and the theoretical minimum vari-
ance is small, and the difference between the estimated
MVC-benchmark variance and the theoretical value
is negligible. Thus, this numerical example validates
both the data-driven dual-rate MVC design algorithm
and the control performance assessment method.



7. Conclusion and future work

In this paper, the data-driven minimum variance
control (MVC) problem and the MVC-benchmark
variance estimation were discussed for a dual-rate sys-
tem. A subspace input-output equation is derived by
the lifting technique to obtain a prediction model. The
dual-rate optimal controller design is data-driven since
it only requires a set of input/output open-loop ex-
perimental data and the process model is not needed
anymore. The presented MVC-benchmark variance es-
timation algorithm requires a set of open-loop experi-
mental data plus a set of close-loop routine operating
data. These two proposed methods were illustrated
through a numerical example. Based on the work we
have done so far, it will be of interest to extend current
results to the case where the control objective takes
both the output variable and the input variable into
account, i.e., to design multirate predictive controllers
via data-driven approach.
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