# Flatness Based Control of Some Classes of Mechanical Systems and Chemical Processes

#### Jean LÉVINE

CAS, École des Mines de Paris

APC05 Half-day tutorial

A (10) > (10)

What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?

< ロ > < 団 > < 団 > < 団 > < 団 > <</p>

-2

- 1 What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems

(日)

-

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses
- Intersection of Oscillating Systems
  - High-Precision Positionning System
  - Crane Control

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses
- Intersection of Oscillating Systems
  - High-Precision Positionning System
  - Crane Control
- Example of Extension to Infinite Dimensional Systems

@▶ ▲ 臣▶

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses
- Intersection of Oscillating Systems
  - High-Precision Positionning System
  - Crane Control
- Example of Extension to Infinite Dimensional Systems
- 6 Conclusions et perspectives

# Contents

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses
- Intersection of Oscillating Systems
  - High-Precision Positionning System
  - Crane Control
- 5 Example of Extension to Infinite Dimensional Systems
- 6 Conclusions et perspectives

# What do DC drives, cranes, motion control systems or chemical reactors hold in common ?



Jean LÉVINE

**Flatness Based Control** 

# DC Drive

# System:

$$L\frac{d}{dt} = U - RI - K\omega$$
$$J\frac{d\omega}{dt} = KI - K_{v}\omega - C_{r}$$

Control variable: U

# DC Drive

#### System:



$$L\frac{dI}{dt} = U - RI - K\omega$$
$$J\frac{d\omega}{dt} = KI - K_v\omega - C_t$$

Control variable: U

Property of the output  $y = \omega$  (*C<sub>r</sub>* known)

$$\omega = y$$

$$I = \frac{1}{K} (J\dot{y} + K_v y + C_r)$$

$$U = L\frac{dI}{dt} + RI + Ky$$

$$= \frac{K^2 + RK_v}{K} y + \frac{RJ + LK_v}{K} \dot{y} + \frac{JL}{K} \ddot{y}$$

$$+ \frac{R}{K} C_r + \frac{L}{K} \dot{C}_r$$

イロト 人間 とくほ とくほとう

# Motion Control Stage



イロト イヨト イヨト イヨト

# Motion Control Stage



Property of the output  $y = x - \frac{r}{k}\dot{x} + \frac{1}{M}(M'_B - \frac{r^2}{k})x_B - \frac{M'_B r}{Mk}\dot{x}_B$   $x = \frac{M'_B}{k}\ddot{y} + \frac{r}{k}\dot{y} + y,$   $x_B = -\frac{M}{k}\ddot{y}$   $F = M\left(\frac{M'_B}{k}y^{(4)} + \frac{r}{k}y^{(3)} + \ddot{y}\right)$ 

ヘロン 人間 とくほ とくほ とう

#### **Overhead** Crane



イロト イポト イヨト イヨト

# **Overhead** Crane

System (2 d.o.f. case):



Property of the output y = (x, z) $X = x - \frac{\ddot{x}z}{\ddot{z} - g}$  $R = \frac{z}{\ddot{z} - g}\sqrt{\ddot{x}^2 + (\ddot{z} - g)^2}$  $\theta = \arctan\left(\frac{\ddot{x}}{\ddot{z} - \sigma}\right)$  $T = m\sqrt{\ddot{x}^2 + (\ddot{z} - g)^2}$  $F = M \frac{d^2}{dt^2} \left( x - \frac{\ddot{x}z}{\ddot{z} - g} \right) + m\ddot{x}$  $\tau = -\frac{J}{\rho} \frac{d^2}{dt^2} \left( \frac{z}{\ddot{z} - g} \sqrt{\ddot{x}^2 + (\ddot{z} - g)^2} \right)$  $+m\rho\sqrt{\ddot{x}^{2}+(\ddot{z}-g)^{2}}$ 

イロト イヨト イヨト イヨト

-2

Jean LÉVINE

# **Chemical Reactor**



イロト イポト イヨト イヨト

-2

# **Chemical Reactor**

# System (Aris & Amundson, 1958): $x_F T_F$ Q A r Bx T

$$\dot{x} = D(x_F - x) - r(x, T)$$
$$\dot{T} = D(T_F - T) + \alpha r(x, T) + Q$$
Control variable: Q

Property of the output y = x  $T = \mathcal{T}(x, \dot{x})$  solution to  $r(x, T) = D(x_F - x) - \dot{x}$   $Q = \frac{d\mathcal{T}}{dt}(x, \dot{x}, \ddot{x}) - D(T_F - \mathcal{T}(x, \dot{x}))$  $-\alpha (D(x_F - x) - \dot{x})$ 

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・



#### In all these examples

there exists an output y such that

- *y* has the same dimension as the control vector;
- all the system variables can be expressed in function of *y* and a finite number of successive derivatives.

*y* is called a **flat output** and the corresponding system is said to be **differentially flat**.

#### What for?

Generate and follow fast trajectories with complex objectives, using poor actuators and sensors.





イロト イヨト イヨト イヨト

# Contents

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
  - 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses
- Intersection of Oscillating Systems
  - High-Precision Positionning System
  - Crane Control
- 5 Example of Extension to Infinite Dimensional Systems
- 6 Conclusions et perspectives

# **Recalls on Differentially Flat Systems**

©M. Fliess, J.L., P. Martin, P. Rouchon 1991.

Definition

The nonlinear system  $\dot{x} = f(x, u)$ , with  $x = (x_1, ..., x_n)$ : state and  $u = (u_1, ..., u_m)$ : control,  $m \le n$ . is (differentially) flat if and only if there exists  $y = (y_1, ..., y_m)$  such that:

- y and its successive derivatives  $\dot{y}, \ddot{y}, \dots$ , are independent,
- $y = h(x, u, \dot{u}, \dots, u^{(r)})$  (generalized output),
- Conversely, x and u can be expressed as:  $x = \varphi(y, \dot{y}, \dots, y^{(\alpha)}), \quad u = \psi(y, \dot{y}, \dots, y^{(\alpha+1)})$ with  $\dot{\varphi} \equiv f(\varphi, \psi)$ .

The vector *y* is called a **flat output**.

ヘロト ヘヨト ヘヨト ヘヨト

э

#### Main advantages of Flatness

Direct open-loop trajectory computation, without integration nor optimization.

 Local stabilization of any reference trajectory using the equivalence between the system trajectories and those of y<sup>(α+1)</sup> = v.

"Flatness-Based Control" = Trajectory Planning + Trajectory Tracking.

Alternative approach to Predictive Control (see e.g. Fliess, Marquez 2001).

イロト イヨト イヨト イヨト

#### Consequence on motion planning

To every curve  $t \mapsto y(t)$  enough differentiable, there corresponds a trajectory

 $t \mapsto \begin{pmatrix} x(t) \\ u(t) \end{pmatrix} = \\ \begin{pmatrix} \varphi(y(t), \dot{y}(t), \dots, y^{(\alpha)}(t)) \\ \psi(y(t), \dot{y}(t), \dots, y^{(\alpha+1)}(t)) \end{pmatrix}$ 

that identically satisfies the system equations.



イロト イヨト イヨト イヨト



| given                   | find                                               |  |
|-------------------------|----------------------------------------------------|--|
| $(t_i, x(t_i), u(t_i))$ | $(y(t_i),\ldots,y^{(r+1)}(t_i))$                   |  |
| $(t_f, x(t_f), u(t_f))$ | $(\mathbf{y}(t_f),\ldots,\mathbf{y}^{(r+1)}(t_f))$ |  |

- ② Build a curve  $t \mapsto y(t)$  for  $t \in [t_i, t_f]$  by interpolation, *possibly satisfying further constraints*.
- Solution Deduce the corresponding trajectory  $t \mapsto (x(t), u(t))$ .

# **Rest-to-rest trajectories:**

| given                                | thus                                         |             |    |     |
|--------------------------------------|----------------------------------------------|-------------|----|-----|
| $\dot{x}(t_i) = 0, \dot{u}(t_i) = 0$ | $\dot{y}(t_i) = \ldots = y^{(r+1)}(t_i) = 0$ |             |    |     |
| $\dot{x}(t_f) = 0, \dot{u}(t_f) = 0$ | $\dot{y}(t_f) = \ldots = y^{(r+1)}(t_f) = 0$ |             |    |     |
|                                      |                                              | ◆ 臣 ▶ ◆ 臣 ▶ | -2 | Э q |

#### Consequence on trajectory tracking

Assume that  $y, \ldots, y^{(\alpha)}$  are measured or suitably estimated. There exists an **endogeneous dynamic feedback** 

$$u = \alpha(x, z, v), \quad \dot{z} = \beta(x, z, v)$$

such that the closed-loop system is **diffeomorphic** to

$$y^{(\alpha+1)} = v$$

Given a reference  $t \mapsto (y_{ref}(t), v_{ref}(t))$  with  $v_{ref}(t) = y_{ref}^{(\alpha+1)}(t)$ , to stabilize the tracking error  $\varepsilon = y - y_{ref}$  we set:

$$\varepsilon^{(\alpha+1)} = v - v_{ref} = -\sum_{i=0}^{\alpha} k_i \varepsilon^{(i)}$$

with the gains  $k_i$ ,  $i = 0, ..., \alpha$ , such that all the roots of the polynomial  $s^{\alpha+1} + k_{\alpha}s^{\alpha} + ... + k_1s + k_0$  have negative real part. Thus  $\|\varepsilon(t)\| \leq Ce^{-a(t-t_0)}$  and, by continuity, locally,  $\operatorname{dist}(x(t), x_{ref}(t)) \to 0.$ 

イロト イポト イヨト イヨト

# Some usual critics

- Flatness often understood as feedback linearization.
- questionable novelty
- not robust (model dependent)
- not physical (compensation of open-loop stable dynamics)
- inapplicable with constraints
- no systematic way to compute flat outputs
- and so on...

# Some usual critics

- Flatness often understood as feedback linearization.
- questionable novelty
- not robust (model dependent)
- not physical (compensation of open-loop stable dynamics)
- inapplicable with constraints
- no systematic way to compute flat outputs
- and so on...

#### Are they right?

No!!! See next slide...

< 4 → <

#### Benchmark :

- Displacements of an undamped pendulum
- at high speed
- without oscillation at the end
- without overshoot
- without position sensor



Thanks to the help of Micro-Contrôle

(subsidiary of Newport Corporation.).

#### Conclusions :

- no feedback linearization (only the motor position is measured)
- novelty: improvement w.r.t. input filtering
- robustness: depends only on the pendulum period
- physical aspects: no dynamical compensation (open loop)
- constraints: no problem.
- flat output computation:
  - *in the linear case*: see J.L. and D.V. Nguyen, Systems & Control Letters, 2003,
  - in the general case: J.L., Proc. NOLCOS 2004, Stuttgart.

• • • • • • • • • • • • •

DC Motor Linear Motor

# Contents

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses
- Intersection of Oscillating Systems
  - High-Precision Positionning System
  - Crane Control
- 5 Example of Extension to Infinite Dimensional Systems
- 6 Conclusions et perspectives

DC Motor Linear Motor

# DC Motor Start-Up



From rest at time  $t_i$ . To stabilized speed  $\omega_f$  at time  $t_f$ .

・ロト ・ 日 ・ ・ ヨ ・

æ

DC Motor Linear Motor

System (recall):  

$$L\frac{dI}{dt} = U - RI - K\omega$$

$$J\frac{d\omega}{dt} = KI - K_{v}\omega - C_{r}$$

Jean LÉVINE Flatness Based Control

◆□▶ ◆御▶ ◆臣▶ ◆臣▶

æ

DC Motor Linear Motor

System (recall):  

$$L\frac{dI}{dt} = U - RI - K\omega$$

$$J\frac{d\omega}{dt} = KI - K_{v}\omega - C_{r}$$

Flat output: 
$$y = \omega$$
 ( $C_r$  known)  
 $\omega = y$   
 $I = \frac{1}{K} (J\dot{y} + K_v y + C_r)$   
 $U = L\frac{dI}{dt} + RI + Ky$   
 $= \frac{K^2 + RK_v}{K} y + \frac{RJ + LK_v}{K} \dot{y} + \frac{JL}{K} \ddot{y}$   
 $+ \frac{R}{K}C_r + \frac{L}{K}\dot{C}_r$ 

◆□▶ ◆御▶ ◆臣▶ ◆臣▶

æ

DC Motor Linear Motor

#### DC Motor Start-Up Step Reference Tracking

#### Speed step reference:

$$\omega^*(t) = \omega_f H_{t_i+\varepsilon}(t), \quad U^*(t) = \frac{K^2 + RK_v}{K} \omega_f H_{t_i+\varepsilon}(t)$$
  
with  $H_{t_i+\varepsilon}(t) = \begin{cases} 0 & \text{if } t \in [t_i, t_i+\varepsilon] \\ 1 & \text{if } t \in [t_i+\varepsilon, t_f[ \end{bmatrix}$ 

#### PID :

$$U = U^* - K_P(\omega - \omega^*) - K_D \dot{\omega} - K_I \int_{t_i}^t (\omega(\tau) - \omega^*(\tau)) d\tau$$

#### Constraints:

$$|U| \le U_{max}, \quad \left|\frac{dI}{dt}\right| \le \delta, \quad |I| \le I_{max}$$

Jean LÉVINE

Flatness Based Control

DC Motor Linear Motor

#### In every simulation:

- $\omega_f = 30$  rd/s, duration  $T = t_f t_i = 0.1$ s.
- Initial error  $\omega(t_i) = 0.087 \text{ rd/s} (\approx 5^{\circ}/\text{s}), C_r = 0.5 \text{ Nm}.$
- $U_{max} = 25$  V and  $I_{max} = 10$  A.
- $K_P = 0.056$ ,  $K_I = 7.45$  et  $K_D = 10^{-5}$ (time constants:  $10^{-2}$ , 6.6. $10^{-3}$  and  $4.10^{-3}$ s).

#### Variation of $\delta$ (current rate limitation):

- 100 A/s
- 95 A/s
- 3 500 A/s.

イロト イポト イヨト イヨト

DC Motor Linear Motor





Jean LÉVINE

**Flatness Based Control**
DC Motor Linear Motor





Jean LÉVINE

Flatness Based Control

DC Motor Linear Motor





Jean LÉVINE Flatnes

Flatness Based Control

DC Motor Linear Motor

## DC Motor Start-Up Flatness-Based Reference Tracking

Speed and voltage reference trajectories:

$$\omega^{**} = \omega_f \left(\frac{t - t_i}{T}\right)^2 \left(3 - 2\left(\frac{t - t_i}{T}\right)\right)$$
$$U^{**} = \frac{K^2 + RK_v}{K} \omega^{**} + \frac{RJ + LK_v}{K} \dot{\omega}^{**} + \frac{JL}{K} \ddot{\omega}^{**}$$

#### PID :

$$U = U^{**} - K_P(\omega - \omega^{**}) - K_D \dot{\omega} - K_I \int_{t_i}^t (\omega(\tau) - \omega^{**}(\tau)) d\tau$$

Same gains  $K_P$ ,  $K_I$  and  $K_D$ , same constraints, same initial errors.

イロト イヨト イヨト イヨト



Final angular speed reached in 0.1 s without overshoot, with a precision of  $\approx 0.1$  mm/s for a speed current rate limitation 50 times smaller (10A/s).

Consequences: energy savings, increased life duration.

DC Motor Linear Motor

## Linear Motor with Auxiliary Masses Single Mass Case

#### Model:

$$\begin{aligned} M\ddot{x} &= F - k(x - z) - r(\dot{x} - \dot{z}) \\ m\ddot{z} &= k(x - z) + r(\dot{x} - \dot{z}) \end{aligned}$$

#### Aims:

Rest-to-rest fast and high precision displacements.

#### Measurements:

- x and  $\dot{x}$  measured,
- *z* not measured.



In collaboration with Micro-Contrôle.

DC Motor Linear Motor

Diplacement without taking into account the auxiliary mass:

 $M\ddot{x} = F + p$  (*p* : unknown disturbance)

Rest-to-rest trajectory (p = 0):

$$\begin{aligned} x_{ref}(t) &= x_0 + (x_1 - x_0) \left(\frac{t}{T}\right)^4 \\ &\times \left(35 - 84 \left(\frac{t}{T}\right) + 70 \left(\frac{t}{T}\right)^2 - 20 \left(\frac{t}{T}\right)^3\right) \\ F_{ref}(t) &= M\ddot{x}_{ref}(t) = 420 \ M \left(\frac{x_1 - x_0}{T^2}\right) \left(\frac{t}{T}\right) \\ &\times \left(1 - 4 \left(\frac{t}{T}\right) + 5 \left(\frac{t}{T}\right)^2 - 2 \left(\frac{t}{T}\right)^3\right). \end{aligned}$$

イロト 人間 とくほ とくほとう

DC Motor Linear Motor

#### PID controller:

$$F = F_{ref} - k_P \left( x - x_{ref} \right) - k_D \left( \dot{x} - \dot{x}_{ref} \right) -k_I \int_0^t \left( x(\tau) - x_{ref}(\tau) \right) d\tau$$



DC Motor Linear Motor

## Taking into account the auxiliary mass

$$M\ddot{x} = F - k(x - z) - r(\dot{x} - \dot{z})$$
  
$$m\ddot{z} = k(x - z) + r(\dot{x} - \dot{z})$$

#### Flat output (J.L. and D.V. Nguyen, S&CL, 2003) :

$$y = \frac{r^2}{mk}x + \left(1 - \frac{r^2}{mk}\right)z - \frac{r}{k}\dot{z}$$
$$x = y + \frac{r}{k}\dot{y} + \frac{m}{k}\ddot{y}, \quad z = y + \frac{r}{k}\dot{y}$$
$$F = (M+m)\left(\ddot{y} + \frac{r}{k}y^{(3)} + \frac{Mm}{(M+m)k}y^{(4)}\right)$$

イロト イヨト イヨト イヨト

DC Motor Linear Motor

#### Trajectory planning:

$$y_{ref}(t) = x_0 + (x_1 - x_0) \left(\frac{t}{T}\right)^5 \\ \times \left(126 - 420 \left(\frac{t}{T}\right) + 540 \left(\frac{t}{T}\right)^2 - 315 \left(\frac{t}{T}\right)^3 + 70 \left(\frac{t}{T}\right)^4\right).$$

#### PID controller:

$$F = F_{ref} - k_P \left( x - x_{ref} \right) - k_D \left( \dot{x} - \dot{x}_{ref} \right) \\ -k_I \int_0^t \left( x(\tau) - x_{ref}(\tau) \right) d\tau$$

イロト イヨト イヨト イヨト

DC Motor Linear Motor



Duration T = 0, 5s (left) and T = 0, 25s (right), error of 20% on k and r.

イロン 不良 とくほどう

DC Motor Linear Motor

#### Videos



Jean LÉVINE Flatness Based Control

DC Motor Linear Motor

## Linear Motor with Auxiliary Masses The Case of Two Masses



$$\begin{split} M\ddot{x} &= F - k(x-z) - r(\dot{x} - \dot{z}) \\ -k'(x-z') - r'(\dot{x} - \dot{z}') \\ m\ddot{z} &= k(x-z) + r(\dot{x} - \dot{z}) \\ m'\ddot{z}' &= k'(x-z') + r'(\dot{x} - \dot{z}') \end{split}$$



イロト イヨト イヨト イヨト

In collaboration with Micro-Contrôle.

DC Motor Linear Motor

#### Flatness:

$$\begin{aligned} x &= y + \left(\frac{r}{k} + \frac{r'}{k'}\right) \dot{y} + \left(\frac{m}{k} + \frac{m'}{k'} + \frac{rr'}{kk'}\right) \ddot{y} \\ &+ \left(\frac{mr' + rm'}{kk'}\right) y^{(3)} + \frac{mm'}{kk'} y^{(4)} \\ z &= y + \left(\frac{r}{k} + \frac{r'}{k'}\right) \dot{y} + \left(\frac{m'}{k'} + \frac{rr'}{kk'}\right) \ddot{y} + \frac{rm'}{kk'} y^{(3)} \\ z' &= y + \left(\frac{r}{k} + \frac{r'}{k'}\right) \dot{y} + \left(\frac{m}{k} + \frac{rr'}{kk'}\right) \ddot{y} + \frac{mr'}{kk'} y^{(3)} \\ F &= \hat{M} \ddot{y} + \hat{M} \left(\frac{r}{k} + \frac{r'}{k'}\right) y^{(3)} + \left(\frac{m}{k} \vec{M}' + \vec{M} \frac{m'}{k'} + \hat{M} \frac{rr'}{kk'}\right) y^{(4)} \\ &+ \left(\frac{mr'}{kk'} \vec{M}' + \vec{M} \frac{rm'}{kk'}\right) y^{(5)} + \frac{Mmm'}{kk'} y^{(6)} \\ \text{with } \hat{M} &= (M + m + m'), \ \vec{M} &= M + m \text{ and } \ \vec{M}' &= M + m'. \end{aligned}$$

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

DC Motor Linear Motor

#### Rest-to-rest trajectory:

$$y(t) = x_0 + (x_1 - x_0) \left(\frac{t}{T}\right)^7 \\ \times \left(1716 - 9009 \left(\frac{t}{T}\right) + 20020 \left(\frac{t}{T}\right)^2 \\ -24024 \left(\frac{t}{T}\right)^3 16380 \left(\frac{t}{T}\right)^4 - 6006 \left(\frac{t}{T}\right)^5 + 924 \left(\frac{t}{T}\right)^6 \right).$$

x and F deduced from y by the previous formulas.

イロト イヨト イヨト イヨト



Without taking into account the auxiliary masses (same PID controller as in the single mass case) duration T = 0, 25s, error of 20% on k and  $r_{\pm}$ 



Taking into account the auxiliary masses (same PID controller with rest-to-rest reference trajectory) duration T = 0, 25s, error of 20% on k and  $r_{(2)}$ ,  $r_{(2$ 

DC Motor Linear Motor

### Videos



Jean LÉVINE Flatness Based Control

Positionning Systems Crane

## Contents

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses
- Intersection of Oscillating Systems
  - High-Precision Positionning System
  - Crane Control
- 5 Example of Extension to Infinite Dimensional Systems
- 6 Conclusions et perspectives

Positionning Systems Crane

#### Flatness-based control of oscillating systems High-precision positionning system



イロト イポト イヨト イヨト

Positionning Systems Crane

#### Flatness-based control of oscillating systems High-precision positionning system



lat output  

$$= x - \frac{r}{k}\dot{x} + \frac{1}{M}(M'_B - \frac{r^2}{k})x_B - \frac{M'_B r}{Mk}\dot{x}_B$$

$$x = \frac{M'_B}{k}\ddot{y} + \frac{r}{k}\dot{y} + y,$$

$$x_B = -\frac{M}{k}\ddot{y}$$

$$F = M\left(\frac{M'_B}{k}y^{(4)} + \frac{r}{k}y^{(3)} + \ddot{y}\right)$$

イロト イヨト イヨト イヨト

Positionning Systems Crane

### Rest-to-rest trajectories

#### Initial and final conditions:

|             | initial time $t_0$                 | final time $t_1$                                     |
|-------------|------------------------------------|------------------------------------------------------|
|             | $x(t_0) = x_0$                     | $x(t_1) = x_1$                                       |
| stage       | $\dot{x}(t_0) = 0,$                | $\dot{x}(t_1) = 0,$                                  |
|             | $F(t_0) = 0$                       | $F(t_1) = 0$                                         |
| base        | $x_B(t_0) = \dot{x}_B(t_0) = 0$    | $x_B(t_1) = \dot{x}_B(t_1) = 0$                      |
|             | $y(t_0) = x_0$                     | $y(t_1) = x_1$                                       |
| flat output | $\dot{y}(t_0) = \ddot{y}(t_0) = 0$ | $\dot{\mathbf{y}}(t_1) = \ddot{\mathbf{y}}(t_1) = 0$ |
|             | $y^{(3)}(t_0) = y^{(4)}(t_0) = 0$  | $y^{(3)}(t_1) = y^{(4)}(t_1) = 0$                    |

10 conditions  $\implies$  9th degree polynomial:

 $y(t) = y_0 + (y_1 - y_0) \tau^5 (126 - 420\tau + 540\tau^2 - 315\tau^3 + 70\tau^4)$ with

$$\tau=\frac{t-t_0}{t_1-t_0}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

-2

Positionning Systems Crane



Stage (left) and base (right) rest-to-rest displacements.

ヘロン 人間 とくほ とくほ とう

Positionning Systems Crane

#### Closing the loop...

Recall: base position and velocity not measured.  $F = F_{ref} - k_P \left( x - x_{ref} \right) - k_D \left( \dot{x} - \dot{x}_{ref} \right) \\
-k_I \int_{t_0}^{t} \left( x(\tau) - x_{ref}(\tau) \right) d\tau$ 

#### ... in the classical way

 $x_B$ : perturbation. Model in this case:  $M\ddot{x} = F$ and reference trajectories:  $x_{ref} = y, F_{ref} = M\ddot{y}$ .

#### ... in the flatness-based way

Reference trajectories  $x_{ref}$  and  $F_{ref}$  defined as before.

・ロト ・ 四ト ・ ヨト ・ ヨト

Positionning Systems Crane



**Classical controller**: 25 mm displacement of the stage in 0.25s (left), base displacement (center) and stage acceleration (right).



**Flatness-based controller**: 25 mm displacement of the stage in 0.25s (left), base displacement (center) and stage acceleration (right).

Positionning Systems Crane

## Crane Control

## Model (recall)

$$\begin{split} m\ddot{x} &= -T\sin\theta\\ m\ddot{z} &= -T\cos\theta + mg\\ M\ddot{X} &= F - \lambda(\dot{X}) + T\sin\theta\\ \frac{J}{\rho}\ddot{L} &= -\tau - \mu(\frac{\dot{L}}{\rho}) + T\rho\\ x &= L\sin\theta + X\\ z &= L\cos\theta \end{split}$$



イロト イポト イヨト イヨト

Positionning Systems Crane

#### Flatness (recall) :

$$\begin{cases} x = L\sin\theta + X\\ z = L\cos\theta \end{cases} \iff \begin{cases} (x - X)^2 + z^2 = L^2\\ \tan\theta = \frac{x - X}{z} \end{cases}$$
$$\begin{cases} m\ddot{x} = -T\sin\theta\\ m\ddot{z} = -T\cos\theta + mg \end{cases} \iff \begin{cases} \tan\theta = \frac{\ddot{x}}{\ddot{z} - g}\\ T^2 = m^2\left(\ddot{x}^2 + (\ddot{z} - g)^2\right) \end{cases}$$
$$\tan\theta = \frac{x - X}{z} = \frac{\ddot{x}}{\ddot{z} - g} \implies X = x - \frac{\ddot{x}z}{\ddot{z} - g} \end{cases}$$

## Summary: (x, z) flat output

$$X = x - \frac{\ddot{x}z}{\ddot{z} - g}, L = \left( (x - X)^2 + z^2 \right)^{\frac{1}{2}}, \tan \theta = \frac{\ddot{x}}{\ddot{z} - g}$$
$$T = m \left( \ddot{x}^2 + (\ddot{z} - g)^2 \right)^{\frac{1}{2}}$$

(日) (四) (日) (日) (日)

æ

Positionning Systems Crane

Rest-to-rest trajectory of the load

$$x_{ref}(t) = x_i + (x_f - x_i) \left(\frac{t - t_i}{t_f - t_i}\right)^5 \\ \times \left(126 - 420 \left(\frac{t - t_i}{t_f - t_i}\right) + 540 \left(\frac{t - t_i}{t_f - t_i}\right)^2 - 315 \left(\frac{t - t_i}{t_f - t_i}\right)^3 + 70 \left(\frac{t - t_i}{t_f - t_i}\right)^4\right).$$

straight line :  $z_{ref}(x) = z_i + \frac{z_f - z_i}{x_f - x_i} (x - x_i)$ 

parabola: 
$$z_{ref}(t) =$$
  
 $z_i + (z_f - z_i) \left( \frac{x_{ref}(t) + x_i - 2\bar{x}}{x_f + x_i - 2\bar{x}} \right) \left( \frac{x_{ref}(t) - x_i}{x_f - x_i} \right)$ 

Positionning Systems Crane



Jean LÉVINE Flatness Based Control

Positionning Systems Crane

#### Output Feedback Trajectory Tracking

Only X,  $\dot{X}$ , L and  $\dot{L}$  measured ((x, z,  $\theta$ ) not measured).

PID controller:  

$$F = F_{ref} - k_{F,P}(X - X_{ref}) - k_{F,D}(\dot{X} - \dot{X}_{ref})$$

$$\tau = \tau_{ref} + k_{\tau,P}(L - L_{ref}) + k_{\tau,D}(\dot{L} - \dot{L}_{ref})$$

#### Theorem (consequence of the LaSalle Theorem):

To every rest-to-rest trajectory and every  $k_{F,P}$ ,  $k_{F,D}$ ,  $k_{\tau,P}$ ,  $k_{\tau,D} > 0$ , there correspond a tubular neighborhood of the trajectory such that for every initial condition in this neighborhood and every perturbation such that the trajectory remains in it, the closed-loop system with the above PID controller is asymptotically stable.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Positionning Systems Crane

### Reduced size US Navy crane (B. Kiss, J.L., P. Müllhaupt 2000)



Jean LÉVINE Flatness Based Control

æ

イロト イヨト イヨト イヨト

Positionning Systems Crane

## More and more difficult: the juggling robot



Jean LÉVINE Flatness Based Control

æ

ヘロン 人間 とくほど 人間と

## Contents

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses
- Flatness-Based Control of Oscillating Systems
  - High-Precision Positionning System
  - Crane Control

## 5 Example of Extension to Infinite Dimensional Systems

Conclusions et perspectives

### Example of Extension to Infinite Dimensional Systems Polymerization Reactor (N. Petit et al., J. Process Control, 2002)

Model (delayed system)

$$\dot{Q}_a = u(t-\delta) - \frac{1}{\tau} Q_a$$
  
$$\dot{X} = Q_a(\alpha X + \beta) - \gamma X + \xi \frac{X}{1-X}$$
  
$$\dot{C}_{H_2} = \nu - g(C_{H_2}, Q_a)$$
  
$$\dot{\lambda} = \frac{1}{\tau} \left( a \log C_{H_2} + b - \lambda \right)$$
  
$$y_1 = \varphi \frac{X}{1-X}$$
  
$$y_2 = exp(\lambda)$$



 $Q_a$  amount of catalyst, X rate of solid,  $C_{H_2}$  concentration of hydrogen,  $\lambda$  log of melt-index of polymer, u amount of input catalyst per unit of time,  $\nu$  amount of input hydrogen per unit of time per unit of yolume.

## Flat output: $(X, \lambda)$

$$Q_{a} = \frac{\dot{X} + \gamma X - \xi \frac{X}{1-X}}{\alpha X + \beta}$$
$$u(t - \delta) = \dot{Q}_{a} + \frac{1}{\tau} Q_{a} \stackrel{\Delta}{=} U(X, \dot{X}, \ddot{X})$$
$$C_{H_{2}} = \exp\left(\frac{1}{a} \left(\tau \dot{\lambda} + \lambda - b\right)\right)$$
$$v = \dot{C}_{H_{2}} + g(C_{H_{2}}, Q_{a}) \stackrel{\Delta}{=} N(X, \dot{X}, \lambda, \dot{\lambda}, \ddot{\lambda})$$

#### Consequences:

Motion planning as in the finite dimensional case. Trajectory tracking controller using the deviations with respect to the predicted references.

イロト イヨト イヨト イヨト

## Contents

- What Do Some Classes of Mechanical and Chemical Systems Hold in Common ?
- 2 Recalls on Differentially Flat Systems
- 3 Comparisons with classical approaches
  - DC Motor Start-Up
  - Linear Motor with Auxiliary Masses
- Intersection of Oscillating Systems
  - High-Precision Positionning System
  - Crane Control
- 5 Example of Extension to Infinite Dimensional Systems
- 6 Conclusions et perspectives

# Conclusions et perspectives

## Numerous industrial applications:

- asynchronous motors (Schneider-Electric)
- mecatronics (Bosch)

o . . .

- automotive equipements (Valeo, Bosch, PSA, Siemens Automotive (IFAC Congress Applications Paper Prize 2002 to Horn, Bamberger, Michau, Pindl))
- underwater applications (IFP)
- high-precision positionning (Micro-Contrôle)
- magnetic bearings (Alcatel, Axomat GmbH)
- chemical reactors (Total-Fina-Elf)
- biotechnological processes (Ifremer)

イロト イポト イヨト イヨト
Introduction Flat Systems Comparisons Oscillating systems Extensions Conclusion

Flat output computation: linear motor with a single auxiliary mass

Model (recall)

tł

$$M\ddot{x} = F - k(x - z) - r(\dot{x} - \dot{z})$$
  
$$m\ddot{z} = k(x - z) + r(\dot{x} - \dot{z})$$

Setting 
$$s = \frac{d}{dt}$$
:  
 $(Ms^2 + rs + k)x = (rs + k)z + F$   
 $(ms^2 + rs + k)z = (rs + k)x$ 

## Definition polynomials:

$$x = P_x(s)y, \quad z = P_z(s)y, \quad F = Q(s)y$$
  
(ms<sup>2</sup> + rs + k)P<sub>z</sub>(s) = (rs + k)P<sub>x</sub>(s)  
nus P<sub>x</sub>(s) = (ms<sup>2</sup> + rs + k)P\_0, \quad P\_z(s) = (rs + k)P\_0.