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Abstract— This paper describes a criterion for qualitative
analysis of open Chemical Reaction Networks endowed with
mass-action kinetics. The method can be applied to an extremely
broad class of such open networks, and returns, as an outcome,
a classification of the possible dynamical behaviors that are
compatible with the network structure, by classifying each
species as bounded, converging to 0 or diverging to ∞.

I. INTRODUCTION AND MOTIVATIONS

This paper deals with questions of external stability for

systems with inputs. Sometimes the species concentrations

of a reaction network will remain bounded provided bounded

inputs are applied. This property is usually referred to as

Bounded Input Bounded State Stability (BIBS for short). On

the other hand, in case of systems which are not BIBS stable,

we would like to characterize which components of the state

may potentially diverge.

While precise definitions are provided later on, it is

worth mentioning that standard assumptions often result in

compartmental dynamical models, at least in the absence

of external inflows. The qualitative analysis of such

systems typically poses challenging questions. Indeed if

we consider the action of external inflows the resulting

dynamical behavior crucially depends upon a balance

between inflows and outflows. Unlike inflow rates, which

are typically a priori known (and postulated for instance

to be constant), output rates are, more often, a function

of the state and their influence can hardly be quantified

(at least a priori), thus making qualitative analysis a rather

challenging task. Indeed, such questions arise across several

domains of applications and apparently distant modeling

frameworks: not only positive compartmental systems (see

for instance [8]), but also Petri Nets (in the context of

Discrete Event Systems [4]). For instance, in the case of

logic Petri Nets, consideration of inflows (and outflows)

typically leads to infinite reachable spaces, showing that

the notion of boundedness therein adopted is somewhat

inappropriate for studying such stability issues. On the other

hand, consideration of Stochastic Timed Petri Nets (with

exponential clocks), induces countable Markov Chains, and

therefore, claiming existence of a steady-state probability

distribution for constant inflows might be difficult in

general, let alone proving boundedness of momenta of such

distributions. In the context of compartmental dynamical

systems, it is nonlinearity of the corresponding governing

equations that poses the major challenges. Indeed, for

linear compartmental systems, BIBS stability is well

understood and, in the irreducible case, equivalent to

having an Hurwitz matrix A defining the systems equations.

Moreover, all state variables are either simultaneously

bounded or simultaneously unbounded, due to existence

of a strictly positive dominant eigenvector of A (the so

called Perron-Frobenius eigenvector). The nonlinear case,

on the contrary, appears to be much more delicate and

only weak sufficient conditions are typically available for

claiming BIBS stability of general purpose systems (for

instance postulating existence of outflows in every single

state compartment whose rates, in addition, tend to infinity

as the corresponding state variables grow unbounded, see

[3]). Indeed, the most interesting cases arise when only part

of the variables are directly connected to an outflow of the

system.

This paper describes the working principles of an algo-

rithm for qualitative analysis of open Chemical Reaction Net-

works endowed with mass-action kinetics. Space constraints

do not allow a description of the algorithm itself, which is

based on branch and bound techniques, and will be detailed

in a forthcoming journal publication. Notice that, consistently

with our previous remarks, the type of kinetics considered

might have a crucial impact on the overall behavior. Indeed,

as confirmed by simulations, even the specific values of

parameters considered may heavily affect the outcome of

experiments. On the positive side, the algorithm can be

applied to an extremely broad class of such open networks,

and returns, as an outcome, a classification of the possible

dynamical behaviors that are compatible with the network

topology. Remarkably, simulations on non-trivial examples

showed that, as the kinetic constants of the network are

varied, all the predicted behaviors could be observed.

II. BACKGROUND ON CHEMICAL REACTION NETWORKS

In this section we closely follow the definitions given

in [2]. In mathematical terms, a chemical reaction network

(“CRN”, for short) is a list of chemical reactions Ri, where

the index i takes values in R := {1, 2, . . . , nr}. In particular,

using the formalism from chemical networks theory (see [5]

for an interesting introduction to the topic), we consider a

set of chemical species Sj , j ∈ {1, 2, . . . ns} := S which

are the compounds taking part in the reactions. Individual

chemical reactions are then denoted as follows:

Ri :
∑

j∈S

αijSj →
∑

j∈S

βijSj (1)
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where the αij and βij are nonnegative integers called the

stoichiometry coefficients. The compounds on the left-hand

side are usually referred to as the reactants, and the ones

on the right-hand side are called the products, of the re-

action. Informally speaking, the forward arrow means that

the transformation of reactants into products only happens

in the direction of the arrow. It is worth pointing out that

we allow chemical reactions in which the right-hand and

left-hand side are actually empty. This case corresponds,

from a physical point of view, to outflows and inflows of the

chemical reaction. The modeling of inflows, viz. of species

whose concentration is a priori specified and unaffected by

the reaction network considered, is achieved by allowing

potentially time-varying reaction rates.

As usual, we arrange the stoichiometry coefficients into an

ns × nr matrix, called the stoichiometry matrix Γ, defined

as follows:

[Γ]ji = βij − αij , (2)

for all i ∈ R and all j ∈ S (notice the reversal of indexes).

This will be later used in order to synthetically write the

differential equation associated to a given chemical network.

Notice that we allow Γ to have columns which differ only by

their sign; this happens when there exist reversible reactions

in the network.

We discuss, next, how the speed of reactions is affected

by the concentrations of the different species. Each chem-

ical reaction takes place continuously in time, at its own

rate, possibly time-varying, which is assumed to be only a

function of the concentration of the species taking part in

it. In order to make this more precise, we define the vector

S = [S1, S2, . . . Sns
]′ of species concentrations and, as a

function of it, the vector of reaction rates

R(S, t) := [R1(S, t), R2(S, t), . . . Rnr
(S, t)]′ .

Although more general versions can be envisioned, the one

discussed throughout this paper, only deals with a special

form of reaction rates. The so called mass-action kinetics,

which correspond to the following expression:

Ri(S, t) = ki(t)

ns
∏

j=1

S
αij

j for all i = 1, . . . , nr.

With the above notations, the chemical reaction network

can synthetically be described by the following system of

differential equations:

Ṡ(t) = ΓR(S(t), t). (3)

III. A PETRI NET’S INTERPRETATION

We associate to a CRN a bipartite directed graph (i.e.

a directed graph with two types of nodes) with weighted

edges, called the species-reaction Petri net, or SR-net for

short. Mathematically, this is a quadruple

(VS , VR, E,W ) ,

where VS is a finite set of nodes, each one associated to a

species, VR similarly is a finite set of nodes (disjoint from

VS) corresponding to reactions, and E is a set of edges as

described below. (We often write S or VS interchangeably, or

R instead of VR, by identifying species or reactions with their

respective indexes; the context should make the meaning

clear.) The set of all nodes is also denoted by V
.
= VR ∪VS .

The edge set E ⊂ V ×V is defined as follows. Whenever

a certain reaction Ri belongs to the CRN:
∑

j∈S

αijSj →
∑

j∈S

βijSj , (4)

we draw an edge from Sj ∈ VS to Ri ∈ VR for all Sj’s such

that αij > 0. That is, (Sj , Ri) ∈ E iff αij > 0, and we say

in this case that Ri is an output reaction for Sj . Similarly,

we draw an edge from Ri ∈ VR to every Sj ∈ VS such that

βij > 0. That is, (Ri, Sj) ∈ E whenever βij > 0, and we

say in this case that Ri is an input reaction for Sj .

Notice that edges only connect species to reactions and

vice versa, but never connect two species or two reactions.

The last element to fully define the Petri net is the function

W : E → N, which associates to each edge a positive integer

according to the rule:

W (Sj , Ri) = αij and W (Ri, Sj) = βij .

Therefore, the so called stoichiometry matrix is nothing

more than the classical incidence matrix of the associated

Petri Net. To illustrate these concepts, consider the following

enzymatic reaction network:

S0 + E ↔ ES0 → S1 + E ↔ ES1 → S2 + E
S2 + F ↔ FS2 → S1 + F ↔ FS1 → S0 + E

∅ → S0 S2 → ∅
(5)

This is a short hand notation for the list of chemical

reactions reported in the Table below:

R1 S0 + E → ES0 R2 ES0 → S0 + E
R3 ES0 → S1 + E R4 S1 + E → ES1

R5 ES1 → S1 + E R6 ES1 → S2 + E
R7 S2 + F → FS2 R8 FS2 → S2 + F
R9 FS2 → S1 + F R10 S1 + F → FS1

R11 FS1 → S1 + F R12 FS1 → S0 + F
R13 ∅ → S0 R14 S2 → ∅

This network can be graphically represented as in Fig. 1,

with the standard convention that reactions (transitions in

Petri Net terminology) are associated to bars (or boxes),

while species (places) are represented by circular nodes.

Several other definitions which are commonly used in the

Petri net literature will be of interest in the following. We

say that a row or column vector v is non-negative, and we

denote it by v � 0 if it is so entry-wise. We write v ≻ 0 if

v � 0 and v 6= 0. A stronger notion is instead v ≫ 0, which

indicates vi > 0 for all i.
Definition 3.1: A P-invariant (respectively T-invariant) is

any integer row (column) vector c ≻ 0 such that cΓ = 0
(respectively Γ c = 0). Its support is the set of indices {i ∈
VS : ci > 0}. 2

Notice that each P-invariant for the system (3) corresponds

to some non-negative linear first integral, that is, to a linear
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Fig. 1. Petri Net associated to a chemical reaction network

function S 7→ cS such that (d/dt)cS(t) ≡ 0 along all

solutions of (3) A P-decreasing (P-increasing) vector is any

integer row vector c ≻ 0 such that cΓ � 0, (cΓ � 0).

Our goal is to analyze the system irrespectively of

the values of unknown parameters and of rates at which

chemicals are externally provided to the system. This could

in general be a rather formidable task, and for this reason

we adopt the following assumption.

Key Hypothesis: We assume that the solutions of (3)

are such that each species Si(t), i ∈ S (and similarly each

reaction rate Rj(S(t), t)), fulfills the following trichotomy:

1) limt→+∞ Si(t) = 0;

2)

0 < lim inf
t→+∞

Si(t) ≤ lim sup
t→+∞

Si(t) < +∞

3) limt→+∞ Si(t) = +∞.

Of course this assumption does not rule out the possibility

of having complex behaviors (such as chaotic or oscillating

concentrations), and, at the same time, allows for chemical

species to also vanish to 0 or grow to ∞. What it is ruled

out, instead, is the possibility of exotic solutions which along

some time subsequence converge to 0, while along others

have a finite or infinite limit. Indeed, while it is clear that

dynamical systems can exhibit such behaviors, simulations

with meaningful practical examples, like those arising in

biochemistry, show that such assumption is indeed rather

mild and solutions satisfying the Key Hypothesis are, by far,

the most commonly met. Hence, it appears worthwhile to

pursue an analysis of the possible network’s behaviors under

the Key Hypothesis, which, on the contrary, from the analytic

point of view constitutes a major reduction in complexity.

When multiple simultaneous reactions are taken into ac-

count, the analysis may quickly become very cumbersome.

Indeed, if the network is covered by P -vectors, this entails

monotonicity of some integer combinations of state variables

and/or existence of conservation laws, which can be used to

infer the asymptotic behavior of the system. Furthermore,

such conditions are structural and do not depend upon

systems parameters. In most cases, however, there are not

enough a priori guaranteed monotonicity conditions, and the

final qualitative behavior critically depends upon the balance

between inflows and outflows. Under such premises, the

Key Hypothesis, may provide useful hints to single out the

possible qualitative dynamical behaviors associated to each

chemical species. Our main idea is to label each species with

a 0, 1 or ∞, according to whether item 1. ,2. or 3. of the Key

Hypothesis holds. Hopefully, of all possible ways of carrying

out such labelings, (namely 39 = 19683 for the network

under consideration), only few of them will be compatible

with the topology and the structural invariants of the network.

In the following we would like to illustrate ideas to design an

algorithm for the explicit enumeration of all such meaningful

labelings. To this end, the following Lemma classifying the

possible dynamical behaviors of scalar linear time-varying

systems, is crucial:

Lemma 3.2: Consider the time-varying scalar linear sys-

tem given below:

ẋ(t) = −a(t)x(t) + b(t) (6)

where a(t) and b(t) are continuous non-negative scalar

functions of time, satisfying the trichotomy expressed in

the Key Hypothesis. Then, if x(t) also fulfills the Key

Hypothesis, the only compatible dynamical behaviors are

listed in the table below:

a(t)\b(t) 0 1 ∞

0 u ∞ ∞
1 0 1 ∞
∞ 0 0 u

where u stands for undetermined.

The proof of Lemma 3.2 relies on the explicit solution

formula available for scalar linear time-varying equations (6)

and is omitted for space reasons.

Thanks to mass-action kinetics and in the absence of auto-

catalytic reactions, viz. reactions comprising an identical

species among reactants and products, it is easy to recognize

the structure of equation (6) in the update equation of each

species. In particular, the coefficient b(t) can be simply

computed as the sum of the rates of incoming reactions,

while a(t) is the sum of the rates of outgoing reactions

divided by the concentrations of the species itself (this can

be always done without harm, since a reactant species is also

a factor of the corresponding reaction rate). Let us carry out

this simple computation just once, for illustrating purposes,

relatively to the species S0(t) of network (5). Its update

equation reads:

Ṡ0(t) = −k1S0(t) · E(t) + k2ES0(t) + k12FS1(t) + k13

Hence, the coefficients a(t) and b(t) are given respectively

by:

a(t) = k1E(t) b(t) = k2ES0(t) + k12FS1(t) + k13.

Thus, labels associated to a(t) and b(t) can be computed

as a function of the labels attached to the species. To this

end, it is enough to define a suitable set of rules, defining

how the product and sum operations behave as a function
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of individual labels. It is straightforward to verify that the

tables given below can be employed to compute the labels

attached to the sum and product of functions:

+ 0 1 ∞

0 0 1 ∞
1 1 1 ∞
∞ ∞ ∞ ∞

· 0 1 ∞

0 0 0 u

1 0 1 ∞
∞ u ∞ ∞

where u stands for undetermined.

The idea is to test each labeling of all species by comput-

ing potential labels associated to the corresponding reaction

rates and finally those associated to the coefficients a(t)
and b(t) in the update equation of individual species. Then,

thanks to Lemma 3.2, we can verify consistence of the label

of species Si with that obtained from the table of the basis

of the resulting a(t) and b(t) coefficients.

Another significant consistency check can be performed

on the basis of P -invariant P -decreasing and P -increasing

vectors associated to the Net.

To this end for a given vector v, we denote by O(v) the set

of out-flowing reactions, that is: O(v) = {Rj : v′Γej < 0}
(with ej the j-th element of the canonical basis of Rnr ) and

by I(v) the set of in-flowing reactions, that is: I(v) = {Rj :
v′Γej > 0}. With this notation we are able to clarify what

kind of consistency checks can be performed on the basis of

P -invariants.

Lemma 3.3: Let Σ ⊂ S be the support of a P -vector v.

Let S(t) be a solution of (3) satisfying the Key Hypothesis

and L(Si), L(Rj) be respectively the labels associated to

species Si and reaction Rj . Then, label patterns fulfill:

• P-invariant: ∀Si ∈ Σ, L(Si) ∈ {0, 1}
• P-decreasing vector: ∀Si ∈ Σ, L(Si) ∈ {0, 1} and

∀Rj ∈ O(v), L(Rj) = 0
• P-increasing vector: ∃Si ∈ Σ : L(Si) ∈ {1,∞} and

(

∄ Si ∈ Σ : L(Si) = ∞
)

⇒
(

∀Rj ∈ I(v), L(Rj) =
0
)

IV. ASYMPTOTIC P-VECTORS AND T-VECTORS ANALYSIS

As a by-product of the species labeling procedure, one

also obtains a vector of corresponding labels attached to

reactions. In this respect, it is not unfrequent in the search

of labelings which are consistent with the network topology,

to find reactions with a 0 label. This implies that, at least

asymptotically, that reaction can be regarded as switched off

or not being part of the network any longer. Therefore, for

each given species and reaction labeling, it is meaningful

to define the set R+ ⊂ R of reactions whose attached

label is different from 0. Accordingly, we may reduce the

dimension of the stoichiometry matrix Γ by only keeping the

columns corresponding to reactions in R+. We call this new

matrix Γ̃. This may alter in a significant way the P -vectors

associated to the net, so that, indeed, new P -decreasing and

P -invariant vectors can possibly be found. The asymptotic

P -vectors analysis is based on this very idea: namely, once

a candidate labeling is provided, compute the P -decreasing

vectors associated with the reduced network Γ̃. Then, make

sure that the following constraints are fulfilled:

1) each P -decreasing vector of Γ̃ is also a P -invariant

2) for each P -increasing vector of Γ̃ which is not also

a P -invariant, make sure that there exists at least one

species in its support labeled with ∞.

3) the reduced network is covered by T-increasing vec-

tors.

We show next, by contradiction, that P -decreasing vectors

of Γ̃ which are not also P -invariant cannot exists. Let c ≻ 0
be such that cΓ̃ ≺ 0. Let us consider the derivative of cS(t)
along solutions of (3); by definition of Γ̃ we have indeed:

cṠ(t) = c





∑

j:Rj=0

(βj − αj)kjS
αj (t)



 + cΓ̃R̃(S(t), t) (7)

where R̃(S, t) corresponds to the vector of reaction rates

obtained from R(S, t) by removing reactions with 0 asymp-

totic rate. Indeed, the first term at the right hand side of

(7) tends to 0 asymptotically, so that, for some T > 0
there exists k > 0 with the property that cṠ(t) ≤ −k
for all t ≥ T . This yields a contradiction, since it implies

cS(t) ≤ cS(T ) − k(t − T ), and hence cS(t) → −∞ as

t → +∞ which is absurd. A symmetric argument shows that,

for each P -increasing vector which is not a P -semiflow we

obtain cṠ(t) ≥ k for all t ≥ T for positive k and T . Hence

cS(t) → +∞ as t → +∞, thus implying that at least one

place of the support of c should have an ∞ label.

Dually, we may consider the asymptotic T-vectors asso-

ciated to the reduced network. Indeed, partitioning Γ as

[Γ̃,Γ0] and R(S, t) = [R̃(S, t)′, R0(S, t)′]′, with Γ0 contains

the columns of Γ associated to reactions with 0 asymp-

totic rate, and R0(S, t) the expression of the corresponding

kinetics, we have, by simple integration: S(t) − S(0) =
Γ̃

∫ t

0
R̃(S(τ), τ) dτ + Γ0

∫ t

0
R0(S(τ), τ) dτ . Hence, dividing

by t and letting t → +∞ in both sides, possibly along a

subsequence, for the sake of limit existence (either finite or

infinite), we obtain S̄ = Γ̃R̄ where S̄ = limn→+∞[S(tn) −
S(0)]/tn � 0 and R̄ belongs to the set of asymptotic

averages of R̃(S(t), t), and hence, by construction it fulfills

R̄ ≫ 0 . Indeed, Γ̃R̄ � 0 which shows that the reduced

network is covered by T -increasing vectors.

V. SIMULATION RESULTS

In the present Section we illustrate the outcome of the an-

alyzer for the special enzymatic reaction network considered

in (5). To express our results we list the species in the fol-

lowing order: [S0, S1, S2, E, F,ES0, ES1, FS2, FS1]. We

run the analyzer by letting R13 have a 1 label, (which

stands for a persistently active input, for instance a con-

stant one). The analysis shows that only 6 labelings are

compatible with the topology considered here, namely:
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Species I II III IV V VI

S0 ∞ ∞ 1 ∞ ∞ ∞
S1 1 1 1 ∞ ∞ ∞
S2 0 1 1 0 1 1
E 0 0 1 0 0 0
F 1 1 1 0 0 0

ES0 1 1 1 1 0 1
ES1 0 0 1 0 1 1
FS2 0 1 1 0 0 0
FS1 1 1 1 1 1 1

Simulations show that the most intuitive situation, scenario

III, in which all species stay bounded and bounded away

from zero, only appears for sufficiently small input values.

As the input grows different type of phenomena occur. In

particular, an excess of S0, leads to a rapid combination with

E molecules, which, as a result, tend to disappear so that,

overall, the conversion of S0 to S1 and ultimately S2 may

slow down and asymptotically stop. Let us concentrate next

on scenario V. The labels corresponding to species concen-

trations and reaction rates are displayed in Fig. 3. Notice

that arcs have been drawn with lines of different thickness

according to the label of the corresponding reaction, namely

thin line for reactions with a 0 label and thick line for

reactions with a 1 label. In this scenario, reaction R14, which

is an outflow of the system, is asymptotically active. Hence,

a positive average outflow spills out of the chemical reaction

network, which, intuitively, entails a positive average inflow

and a path which connects such inflow (namely R13), to the

transition R14. It is easy to verify by inspection that such a

path does not exist in scenario V, as R14 is not reachable

from R13 by only following thick edges. Indeed, the reduced

net obtained by taking out transitions with 0 label is not

covered by T -increasing vectors. Then, this scenario can

be discarded. Alternatively, the scenario could be discarded

by performing an asymptotic P -invariant analysis. Namely,

by verifying that [0, 1, 0, 0, 0, 0, 1, 0, 1, 0] is a P -decreasing

vector for the matrix Γ̃ but it is not at the same time a

P -invariant. Hence, it violates both conditions exposed in

Section IV.

We consider next scenario II. The corresponding labels

are displayed in Fig. 2. Notice that, in this hypothetical

scenario, reaction R14 is active, and indeed a path with

positive reaction average rates connects R13 to the outflow

R14. However, a formal verification shows that the reduced

network is not covered by T-increasing vectors. Hence, this

scenario can also be discarded. Indeed, from the physical

point of view, S2 represents a doubly phosphorilated ver-

sion of S0, and hence, only species containing S0 can be

accounted for such transfer flow. Enzyme F , on the other

hand, favors certain chemical reactions but does not carry

itself molecules of S, whereas the only active path from R13

to R14 goes precisely through F . Hence, we are only left

with 4 possible distinct scenarios. Simulations show that all

of them are actually observed for suitable choices of kinetic

constants and initial conditions. The most common situation,

at least for a random sampling of kinetic parameters with

uniform distributions in a logarithmic scale, are scenarios I

οο

1

1

1 1
1

11

1

1 1 1
1

1

1

1

1

1 0

0

0
0

0

Fig. 2. Scenario II: species and reaction labels
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1 0
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0
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1

1

1

1

1
1

Fig. 3. Scenario V: species and reaction labels

and VI. Scenario IV is rather unfrequent in the considered

parameters space, nevertheless it appeared in a small fraction

of our simulations.

VI. DISCUSSION AND CONCLUSIONS

A. The analysis technique

We have presented an analysis technique for open chemi-

cal reaction networks which enables, on the basis of purely

topological and structural hypothesis, to rule out dynamical

behaviors which are not compatible with the given structure.

The analysis technique assumes some a priori knowledge on

the possible systems trajectories (the so called Key Hypoth-

esis) which states three alternatives for the asymptotic prop-

erties of individual concentrations of each chemical species.

Though not easily justifiable from a purely mathematical

point of view, such assumptions appear to be rather mild in

practical examples arising from biochemistry. Remarkably,

while each concentration is free to exhibit any out of 3 pre-

specified asymptotic features, the overall network turns out

to be highly constrained, by its own topology and regardless

of potentially unknown parameters entering the equations,

in terms of the possible combinations of such individual

behaviors.

B. Potential impact

The analysis proposed may have potential benefits in

many relevant challenges that experimental biologists are
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constantly faced with; we list some of the most obvious ones,

without aim of completeness:

1) Validation or falsification of modeling hypotheses: a

very difficult task and a preliminary step in trying

to estimate quantitative mathematical models of bio-

logical networks appears to be the formulation of a

plausible network layout which could justify the ex-

perimental data. Our tool appears to give theoretically

sound criteria for ruling out topologies which are not

compatible with experimental data observed. This can

be done even before attempting to estimate the actual

parameters characterizing the system, which is usually

a very time-consuming and costly task and even on the

basis of very partial data, such as measures of only a

subset of the species which are believed to interact

within a given chemical network.

2) Iterative formulation of hypothesis: though a reverse

algorithm has not been developed yet, namely an algo-

rithm which starting from a given observed experimen-

tal labels vector (or why now a set of them) goes about

extracting all the possible networks topologies which

are consistent with it, it is clear that our consistency

check should provide an insight in the process of

iteratively upgrading hypothetical networks topologies

to match the data observed.

3) Experiment design: what are the meaningful experi-

ments which will allow to discriminate between two

equally plausible hypothesis. Not all experiments have

this potential; however, if among the consistent be-

haviors there exists at least one which is respectively

allowed by one topology and not by the other it

might be a good idea to try to actually experimentally

observe this behavior on the real system. If it is indeed

observed, then one hypothesis can be discarded.

4) Synthesis of chemical networks with prescribed behav-

ior: as usual a powerful analysis can be the starting

point for a synthesis process. Of course the major

difficulty will, in this respect, be the possibility of

actually tuning the kinetic parameters in order to

reproduce a desired behavior; a preliminary step, in

any case, would be the individuation of the required

network topology.

C. Relation to previous literature on closed CRN

When applied to closed CRN, the algorithm only returns 0
and 1 labels as an outcome (indeed boundedness of solutions

is a priori guaranteed). Since unboundedness is not an issue

for closed systems, processing a CRN with this algorithm

amounts to studying persistence of a chemical reaction

network, viz. non-extinction (not even asymptotically) of

all its chemical species. This property, in the continuous

set-up we are dealing with, though formulated in terms of

species concentrations, rather than reaction rates, can be

thought of as an analogue of Liveness for Petri Nets. See [1]

for considerations along these lines. Indeed, it is possible

to show that if a set of 0 labels exist as an output of

the algorithm, then this set is necessarily a siphon of the

associated Petri Net. Indeed, this result is consistent with the

main result in [2], where it is shown that whenever solutions

approach the boundary of the positive orthant (even without

assuming the Key Hypothesis), then the corresponding set

of variables which tend to 0 needs to be a siphon for the

associated Petri Net. In particular, it must be a critical siphon,

that is a siphon, which does not include the support of

any P -semiflows of the net. Accordingly, a siphon which

includes the support of a P -semiflow is called a structurally

non-emptiable siphon and none of its species can ever

asymptotically decay to zero (notice the similarity with the

so called siphon-trap condition). Hence, sufficient conditions

for persistence clearly show that, at least in the case of closed

systems, remotion of the Key Hypothesis does not include

other types of convergence patterns to zero as far as state

variables are concerned.

D. Description of the Algorithm

Efficient implementation of the algorithm is based on the

selective exploration of the tree of all possible labelings. In

particular, rather than proceeding with the computation of all

possible labelings and some a posteriori check of consistency,

we gradually update the currently explored configuration by

making use of indeterminate labels, viz. labels corresponding

to the following 7 different possibilities: 0, 1, ∞, 01, 1∞,

0∞, 01∞. Those involving more than one symbol are meant

to be associated to state variables for which more than one

possible asymptotic behavior is still plausible and has to

be simultaneously taken into account. The tree is explored

thanks to a branch and bound technique which performs

consistency checks all the way down from the root to the

leaves. In such a way, incompatible labelings are discarded

much earlier in the construction of the tree.
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