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Abstract— The paper presents a new approach to rejection of
sinusoidal disturbances acting at the output of a discrete-time
linear stable plant with unknown dynamics. It is assumed that
frequency of the sinusoidal disturbance is known, and that
the output signal is contaminated with wideband measurement
noise. It is not assumed that a reference signal, correlated with
the disturbance, is available. The proposed solution combines
the coefficient fixing technique, used to “robustify” self-tuning
minimum-variance regulators, with automatic adaptation gain
tuning. Simulation experiments confirm that, under Gaussian
assumptions, the closed-loop system converges in the mean to
the optimal one.

Index Terms: Adaptive control, system identification, distur-

bance rejection.

I. INTRODUCTION

Consider the problem of cancellation of a narrow-band

disturbance d(t), with known frequency ωo, corrupting the

output of a discrete-time, stable linear plant of unknown

dynamics governed by

y(t) = Ko(q
−1)u(t − 1) + d(t) + v(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized time, q−1

is the backward shift operator, y(t) is the system output,

Ko(q
−1) denotes unknown transfer function of the controlled

plant, u(t) is the system input and, finally, v(t) denotes a

wideband measurement noise.

We will assume that the disturbance signal can be modeled

as

d(t) = a1(t) sin ωot + a2(t) cos ωot = α
T (t)f(t) (2)

where α(t) = [a1(t), a2(t)]
T, f(t) = [sin ωot, cos ωot]

T

and a1(t), a2(t) denote unknown, slowly-varying weighting

coefficients.

Narrow-band disturbances are usually generated by rotating

elements of electro-mechanical systems and their elimination

may be a very important control task, determining quality

of the underlying technological processes such as turning,

milling, grinding etc.. In some cases a reference sensor can

be placed close to the source of vibration, providing a signal

that may be used for feedforward disturbance compensation.

We will not assume that such reference signal is available.

The problem of narrow-band disturbance rejection was con-

sidered by many authors under different methodologies, such

as internal model principle or the phase-locked loop based

approach – see e.g. the recent work of Bodson and co-

workers [1], [2], [3], [4], and Landau and co-workers [5], [6].

For an overview of different approaches see e.g. a tutorial

paper [6].

An entirely new approach to cancellation of narrow-band

disturbances, based on coefficient fixing and automatic gain

tuning, was proposed and analyzed in [7], [8]. The new

method was developed for complex-valued systems, i.e., for

systems where y(t), u(t), d(t) and v(t) are complex-valued

signals. In particular, it was assumed that disturbance has the

form

d(t) = a(t)ejωot (3)

which can be considered a complex-valued counterpart of

(2).

The main purpose of this paper is to extend the results

presented in [7] to systems with real-valued input/output

signals. This is a nontrivial task. We will show that for real-

valued systems the analysis can be performed in a similar but

not identical way as that carried for complex-valued systems.

Such analysis requires different tools and leads to different

quantitative results than those presented in [7].

II. OPEN-LOOP CASE

Since the control loop incorporates a transport delay of

one sampling interval, when shaping the input signal at the

instant t one needs an accurate one-step-ahead prediction of

d(t + 1), further denoted by d̂(t + 1|t). Similarly as in the

complex-valued case, we will base structure of the closed-

loop predictor on the form of its open-loop analog.

Consider the problem of one-step-ahead prediction/compen-

sation of a signal governed by

s(t) = d(t) + v(t) (4)

where d(t) is a harmonic disturbance, described by (2), and

v(t) denotes white measurement noise obeying

(A1) {v(t)} is a sequence of uncorrelated, normally

distributed random variables with zero mean and

variance σ2
v : v(t) ∼ N (0, σ2

v).

To proceed further we will have to make some assumptions

on the way the weighting coefficients a1(t) and a2(t),
appearing in (2), vary with time. We will assume that both

coefficients evolve, independently of each other, according
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to the random-walk (RW) model, namely1

α(t) = α(t − 1) + w(t) (5)

where

(A2) {w(t)}, independent of {v(t)}, is a sequence

of uncorrelated, normally distributed random variables

with zero mean and covariance matrix W = σ2
wI:

w(t) ∼ N (0, σ2
wI).

and I denotes a 2 × 2 identity matrix.

Even though pretty naı̀ve from the practical viewpoint, such

model of variation will allow us to determine the lower bound

on the mean-squared cancellation error, and hence to evaluate

statistical efficiency of the proposed disturbance rejection

scheme in absolute terms, rather than relative terms (e.g. by

comparing it with one of the existing schemes).

Combining (2), (4) and (5) one arrives at the following state-

space equations

α(t) = α(t − 1) + w(t)

s(t) = α
T(t)f(t) + v(t) . (6)

Denote by S(t) = {s(1), . . . , s(t)} the set of measurements

available at instant t. The optimal, in the mean-square sense,

one-step-ahead predictor of s(t) has the form [11]

ŝ(t|t− 1) = E[s(t)|S(t− 1)] = d̂(t|t− 1) = α̂
T(t|t− 1)f(t)

where α̂(t|t − 1) = E[α(t)|S(t − 1)] is a one-step-ahead

predictor of α(t). The mean-squared prediction error can be

expressed in the form

E{[s(t) − ŝ(t|t − 1)]2} = E[c2(t)] + σ2
v

where

c(t) = d(t) − d̂(t|t − 1) = [α(t) − α̂(t|t − 1)]Tf(t)

will be further called cancellation error.

Under assumptions (A1) and (A2) the optimal estimates

of α(t) can be computed recursively using the celebrated

Kalman filtering (KF) algorithm

α̂(t|t) = α̂(t|t − 1) + g(t)ε(t)

α̂(t|t − 1) = α̂(t − 1|t − 1)

ε(t) = s(t) − α̂
T(t|t − 1)f(t)

g(t) =
P(t|t − 1)f(t)

σ2
v + fT(t)P(t|t − 1)f(t)

P(t|t − 1) = P(t − 1|t − 1) + σ2
wI

P(t|t) = P(t|t − 1) − P(t|t − 1)f(t)fT(t)P(t|t − 1)

σ2
v + fT(t)P(t|t − 1)f(t)

(7)

where α̂(t|t) = E[α(t)|S(t)] denotes the filtered estimate

of α(t), while P(t|t − 1) and P(t|t) are the a priori and a

posteriori error covariance matrices, respectively.

1It is interesting to notice that when α(t) obeys (5) the ratio a1(t)/a2(t)
slowly changes with time, which means that, strictly speaking, the instan-
taneous frequency of d(t) is not constant but slowly varies around ωo.

Let ξ = σ2
w/σ2

v . When the vector α(t) changes sufficiently

slowly, namely when

√
ξ =

σw

σv

≪ 1 (8)

and when the “period” of d(t), equal to To = 2π/ωo, is

sufficiently small, the matrix P(t|t−1) is in the steady state

approximately constant

E∞{[α(t) − α̂(t|t − 1)][α(t) − α̂(t|t − 1)]T}
= lim

t7→∞

P(t|t − 1) ∼= P∞

where E∞ denotes the steady-state expectation (whenever it

exists): E∞[x(t)] = limt7→∞ E[x(t)]. The limiting value of

this matrix, denoted by P∞, can be determined analytically

using the deterministic averaging approach [9]. First, when

condition (8) is fulfilled, it can be shown that for large values

of t it holds that [10] fT(t)P(t|t− 1)f(t) ≪ σ2
v , leading to

the following approximate relationship [cf. (7)]

P(t + 1|t) ∼= P(t|t − 1)

− 1

σ2
v

P(t|t − 1)f(t)fT(t)P(t|t − 1) + σ2
wI . (9)

Second, since under the conditions specified above, varia-

tions in the covariance matrix P(t|t − 1) are much slower

than in the “regression” vector f(t), one can set

P(t + 1|t) ∼= P(t|t − 1) ∼= . . .P(t − T |t − T − 1) (10)

where T denotes the width of the local averaging window.

Combining (9) with (10) one obtains

P(t|t − 1)
〈
f(t)fT(t)

〉
T

P(t|t − 1) ∼= σ2
vσ2

wI (11)

where

〈
f(t)fT(t)

〉
T

=
1

T

t∑

i=t−T+1

f(i)fT(i) .

Note that

lim
T 7→∞

〈
f(t)fT(t)

〉
T

=
〈
f(t)fT(t)

〉
∞

=
1

2
I (12)

and that
〈
f(t)fT(t)

〉
T

can be closely approximated by〈
f(t)fT(t)

〉
∞

when T ≫ To. This allows one to rewrite

(11) in the form

P(t|t − 1)P(t|t − 1) ∼= P∞P∞
∼= 2 σ2

vσ2
wI

leading to

P∞
∼=

√
2 σvσwI

and to the following steady-state recursive estimation for-

mula

α̂(t + 1|t) = α̂(t|t − 1) + h∞f(t)ε(t) (13)

where h∞ =
√

2 σw/σv =
√

2ξ.

In an analogous way, assuming that the quantities α(t) and

α̂(t|t−1) change slowly compared to f(t), one can compute
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Fig. 1. Block diagram of the disturbance rejection system.

the steady-state mean-squared cancellation error yielded by

the KF algorithm

E∞[
〈
c2(t)

〉
∞

] ∼= tr{P∞

〈
f(t)fT(t)

〉
∞
}

=
1

2
tr{P∞} =

√
2 σvσw . (14)

Since Kalman filter is the optimal estimation algorithm, the

right-hand side of (14) determines the lowest achievable

value of the mean-squared cancellation error for the problem

at hand, sometimes referred to as the Bayesian Cramér-Rao

bound [12] (the classical Cramér-Rao bound does not apply

to systems/signals with random parameters).

III. ADAPTIVE FEEDBACK CONTROLLER

We will look for the control signal that minimizes the mean-

squared cancellation error for the system described by (1) –

see Fig. 1. We will assume that the controlled plant is stable

and has nonzero gain at the frequency ωo:

(A3) Ko(q
−1) =

∑
∞

i=0 fiq
−i,

∑
∞

i=0 | fi| < ∞,

Ko(e
−jωo) 6= 0

but we will not assume that its transfer function Ko(q
−1) is

known.

Vaguely speaking, to cancel sinusoidal disturbance d(t), one

should generate such sinusoidal input signal u(t) which, after

passing through the plant, will have the same shape as d(t)
but opposite polarity. Note that the steady-state response of

a linear system to the sinusoidal input signal u(t) = α
Tf(t)

can be written in the form

Ko(q
−1)αTf(t) = α

TKof(t) (15)

where

Ko =

[
Re{Ko(e

−jωo)} Im{Ko(e
−jωo)}

−Im{Ko(e
−jωo)} Re{Ko(e

−jωo)}

]

= ko

[
cos φo sinφo

− sinφo cos φo

]
.

The quantities ko = |Ko(e
−jωo)| and φo = Arg[Ko(e

−jωo)]
can be recognized as a true plant gain at the frequency ωo

and its true phase shift, respectively.

Therefore, had the matrix Ko been known, the following

disturbance rejection rule could have been used

u(t) = −α̂
T(t + 1|t)K−1

o f(t + 1) .

According to (15), for such control signal the cancellation

error can be approximately expressed in the form2

c(t) = Ko(q
−1)u(t − 1) + d(t)

∼= d(t) − α̂
T(t|t − 1)K−1

o Kof(t)

= d(t) − α̂
T(t|t − 1)f(t) = [α(t) − α̂(t|t − 1)]Tf(t)

which is identical with an analogous expression derived in

the open-loop case. Since the transfer function Ko(q
−1) is

unknown, the actual control rule will have the form

u(t) = −α̂
T(t + 1|t)K−1

n f(t + 1) (16)

where

Kn =

[
Re{Kn(e−jωo)} Im{Kn(e−jωo)}

−Im{Kn(e−jωo)} Re{Kn(e−jωo)}

]

= kn

[
cos φn sin φn

− sin φn cos φn

]

kn = |Kn(e−jωo)| , φn = Arg[Kn(e−jωo)]

and Kn(q−1) denotes the nominal (assumed) transfer func-

tion of the plant. Similarly as in [7], we will design the

one-step-ahead predictor d̂(t + 1|t) = α̂
T(t + 1|t)f(t + 1)

in such a way that will guarantee automatic compensation

of modeling errors. For this reason the nominal gain kn and

nominal phase φn will be considered nothing more than a

convenient starting point for the adaptive control algorithm.

Under (16) the output of the system can be approximately

written down in the form

y(t) ∼= c(t) + v(t) (17)

where

c(t) = [α(t) − BT
α̂(t|t − 1)]Tf(t)

and

B = K−1
n Ko =

[
Re{β} Im{β}

−Im{β} Re{β}

]
, β =

Ko(e
−jωo)

Kn(e−jωo)
.

Note that the quantity |β| = ko/kn is the gain modeling

error, and the quantity Argβ = φo − φn = ∆φ constitutes

the phase error.

The one-step-ahead predictor of α(t) will be computed

recursively using

α̂(t + 1|t) = α̂(t|t − 1) + Mf(t)y(t) (18)

where

M =

[
Re{µ} −Im{µ}
Im{µ} Re{µ}

]

and µ denotes a complex-valued adaptation gain. For the

real-valued adaptation gain (Im{µ} = 0) the second term

on the right-hand side of (18) takes the form µf(t)y(t) and

resembles the analogous term in (13). Later on we will show

that application of a complex-valued gain is crucial as it

allows one to compensate phase errors.

2For some further comments on this approximation see Remark 2 at the
end of this section
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Substituting the right-hand side of (17) into (18) one obtains

α̂(t + 1|t) = α̂(t|t − 1) + Mf(t)fT(t)[α(t)

− BT
α̂(t|t − 1)] + Mf(t)v(t) . (19)

Let

∆α̂(t) = α(t) − BT
α̂(t|t − 1) .

Combining (5) and (19) one arrives at Combining (5) and

(19) one arrives at

∆α̂(t + 1) = (I − BTMf(t)fT(t))∆α̂(t)

− BTMf(t)v(t) + w(t + 1) (20)

∼= (I − BTM/2)∆α̂(t) − BTMf(t)v(t) + w(t + 1)

where, similarly as in Section II, the approximation stems

from the averaging theory. This leads to

E[∆α̂(t + 1)] = (I − BTM/2)E[∆α̂(t)] . (21)

Note that the matrix BTM can be expressed in the form

BTM =

[
Re{βµ} −Im{βµ}
Im{βµ} Re{βµ}

]
.

When

(1 − Re{βµ}/2)
2

+ (Im{βµ}/2)
2

< 1 (22)

both eigenvalues of the matrix I − BTM/2 lie inside the

unit circle in complex plane, leading to E[∆α̂(t)] 7−→
t7→∞

0,

which entails E∞[c(t)] = 0. This means that when the

asymptotic stability condition (22) is fulfilled, the steady-

state mean value of the cancellation error is zero even if

β 6= 1, i.e., even if the assumed values of the gain and phase

shift differ from the true values.

We will derive expression for the mean-squared cancelling

error. Observe that

E∞[
〈
c2(t)

〉
∞

] = E∞[∆α̂
T(t)

〈
f(t)fT(t)

〉
∞

∆α̂(t)]

= E∞[||∆α̂(t)||2]/2 . (23)

Due to mutual orthogonality of ∆α̂(t), v(t) and w(t + 1),
after squaring both sides of (20) and taking expectations one

obtains

E[||∆α̂(t + 1)||2 = E[∆α̂
T(t)(I − f(t)fT(t)MTB)×

× (I − BTMf(t)fT(t))∆α̂(t)]

+ fT(t)MTBBTMf(t)E[v2(t)] + E[||w(t + 1)||2] .
(24)

Since BBT = |β|2I, MMT = |µ|2I, fT(t)f(t) ≡ 1 and

MTB + BTM = (βµ + β∗µ∗)I = 2Re[βµ]I, where ∗
denotes complex conjugation, one obtains

fT(t)MTBBTMf(t) = |βµ|2

Σ(t) = (I − f(t)fT(t)MTB)(I − BTMf(t)fT(t))

= I − f(t)fT(t)MTB − BTMf(t)fT(t)

+ |βµ|2f(t)fT(t)

and, using averaging

E[∆α̂
T(t)Σ(t)∆α̂(t)] ∼= E[∆α̂

T(t) < Σ(t) >∞ ∆α̂(t)]

∼= {1 − Re[βµ] + |βµ|2/2}E[||∆α̂(t)||2] .

This leads to the following steady-state relationship

E∞[||∆α̂(t)||2] = {1 − Re[βµ] + |βµ|2/2}E∞[||∆α̂(t)||2]
+ |βµ|2σ2

v + 2σ2
w .

Finally, solving the above equation with respect to

E∞[||∆α̂(t)||2], one arrives at [cf. (23)]

E∞[
〈
c2(t)

〉
∞

] = E∞[||∆α̂(t)||2]/2

=
σ2

w + |βµ|2σ2
v/2

Re[βµ] − |βµ|2/2
. (25)

Denote by µopt the gain that minimizes the mean-squared

cancellation error. Straightforward calculations lead to

µopt = arg min
µ∈C

E∞[
〈
c2(t)

〉
∞

]

=
1

β

[
−ξ +

√
ξ2 + 2ξ

]
. (26)

When the slow variation condition (8) is fulfilled one obtains

µopt
∼=

√
2ξ/β = h∞/β and

E∞[
〈
c2(t)

〉
∞

|µ = µopt] ∼=
√

2 σvσw . (27)

Note that the right-hand side of (27) coincides with the right-

hand side of (14). This means that, no matter how large

the gain and phase mismatch, one can always choose such

value of the adaptation gain µ that will make the disturbance

rejection scheme statistically efficient. In next section we will

propose a method for automatic adjustment of the adaptation

gain µ.

Remark 1

Suppose that, analogously as in the Kalman filter algorithm

(13), a scalar, real-valued gain µ > 0 is used in (18) instead

of the matrix gain M, i.e. that M = µI. Then, under (8), it

holds that

µ′

opt = arg min
µ∈R+

E∞[
〈
c2(t)

〉
∞

] ∼=
√

2ξ /|β|

and

E∞[
〈
c2(t)

〉
∞

|µ = µ′

opt]
∼=

√
2 σvσw

cos ∆φ
(28)

where ∆φ = Argβ, which means that even if µ is chosen

in the optimal way, for large phase errors one may face sub-

stantial loses in rejection efficiency. Application of a matrix

gain is therefore a necessary condition for compensation of

phase modeling errors. It allows one to avoid performance

degradation.

Remark 2

When deriving the expression (25), describing dependence of

the mean-squared cancellation error on µ, we have exploited

the steady-state approximation (15), stemming from the

fact that linear systems basically scale and shift in phase

sinusoidal inputs. Another source of approximation errors
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Fig. 2. Comparison of theoretical values of the mean-squared cancellation
error, obtained using the steady-state plant approximation (solid line), with
the experimental values (crosses).

is due to averaging. A special simulation experiment was

arranged to check how well the resulting theoretical formula

fits the true error values. The simulated discrete-time plant

Ko(z) =
0.0952

1 − 0.9048z−1
(29)

was adopted from [4] and corresponds to a continuous-

time plant with transfer function P (s) = 1/(1 + 0.01s)
sampled at the rate of 1 kHz. Simulations were carried

for σv = 0.1 and for 4 different rates of amplitude vari-

ation σw ∈ {0.0001, 0.0005, 0.001, 0.005}, in the absence

of modeling errors (β = 1). For each (σw, µ) pair the

experiment, covering 20000 time-steps, was repeated 500

times for different realizations of {v(t)} and {w(t)}. In all

cases α(0) was set to [1, 1]T and α̂(0) was set to [0, 0]T.

The results, summarized in Fig. 2, were obtained by means of

combined ensemble and time averaging, after discarding the

first 10000 samples (to ensure that the steady-state conditions

are reached). Note the good agreement of experimental

values with theoretical expectations for the considered (and

practically meaningful) range of adaptation gains.

IV. SELF-OPTIMIZING CONTROLLER

In this section we will design an adaptive algorithm for

on-line tuning of a complex-valued adaptation gain µ. We

will adjust µ recursively by minimizing the following local

measure of fit, made up of exponentially weighted system

outputs

V (t;µ) =
1

2

t∑

i=1

ρt−iy2(i;µ) .

The forgetting constant ρ (0 < ρ < 1) decides upon the

effective averaging range. To evaluate the estimate µ̂(t) =
arg minµ∈C V (t; µ) we will use the recursive prediction error

(RPE) approach [14]

µ̂(t) = µ̂(t − 1) − [V ′′(t; µ̂(t − 1))]
−1

V ′(t; µ̂(t − 1))

where

V ′(t; µ̂(t − 1)) ∼=
(

∂y(t; µ̂(t − 1))

∂µ

)∗

y(t; µ̂(t − 1))

V ′′(t; µ̂(t− 1)) ∼= ρV ′′(t− 1; µ̂(t− 2))+

∣∣∣∣
∂y(t; µ̂(t − 1))

∂µ

∣∣∣∣
2

and symbolic differentiation with respect to a complex vari-

able is defined as [15]

∂

∂µ
=

1

2

[
∂

∂Re[µ]
− j

∂

∂Im[µ]

]
.

and usually referred to as Wirtinger (or CR) calculus. Using

Wirtinger calculus one obtains

∂y(t)

∂µ
= − fT(t)BT ∂α̂(t|t − 1)

∂µ
∂α̂(t + 1|t)

∂µ
=

∂α̂(t|t − 1)

∂µ
+ Mf(t)

∂y(t)

∂µ

+
∂M

∂µ
f(t)y(t) . (30)

Note that
∂M

∂µ
=

1

2

[
1 j

−j 1

]
= H . (31)

Since the matrix B is not known, the obtained recursive

formulas can’t be used in their present form. To circumvent

this problem we will use the coefficient fixing technique

introduced in [7], namely we will set β = |µ|/µ, which

leads to3

BT = |µ|M−1 (32)

and results in the following modified recursions

∂y(t)

∂µ
= −cµf

T(t)M−1 ∂α̂(t|t − 1)

∂µ
∂α̂(t + 1|t)

∂µ
=

∂α̂(t|t − 1)

∂µ
+ Mf(t)

∂y(t)

∂µ

+ Hf(t)y(t) . (33)

Using averaging the second recursion in (33) can be rewritten

in the following approximate form

∂α̂(t + 1|t)
∂µ

= (I − cµMf(t)fT(t)M−1)
∂α̂(t|t − 1)

∂µ

+ Hf(t)y(t)

∼= (1 − |µ|/2)
∂α̂(t|t − 1)

∂µ
+ Hf(t)y(t)

Hence, to guarantee stable operation of (33), one must

request that |1 − |µ|/2| < 1 which is equivalent to |µ| < 4.

Note that the stability condition does not put any constraint

on the phase of µ.

3According to (26), for the optimal choice of µ the matrix gain MB
T =

BM
T, determining properties of the closed-loop system, reduces to h∞I.

Note that (32), which entails MB
T = |µ|I, preserves structure of the

optimal solution.
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Let r(t) = V ′′(t; µ̂(t − 1)), zy(t) = ∂y(t; µ̂(t − 1))/∂µ
and zα(t) = ∂α̂(t + 1|t; µ̂(t − 1))/∂µ. The proposed dis-

turbance rejection algorithm with automatic gain tuning can

be summarized as follows

zy(t) = −|µ̂(t − 1)|fT(t)M̂−1(t − 1)zα(t − 1)

zα(t) = zα(t − 1) + M̂(t − 1)f(t)zy(t) + Hf(t)y(t)

r(t) = ρr(t − 1) + |zy(t)|2

µ̂(t) = µ̂(t − 1) − z∗y(t)y(t)

r(t)

M̂(t) =

[
Re{µ̂(t)} −Im{µ̂(t)}
Im{µ̂(t)} Re{µ̂(t)}

]

α̂(t + 1|t) = α̂(t|t − 1) + M̂(t)f(t)y(t)

u(t) = − α̂(t + 1|t)K−1
n f(t + 1) (34)

Remark

The control rule (16) was based on an implicit assumption

that Kn = Ko, i.e. that β = 1. A similar technique, called

coefficient fixing, is often used to “robustify” self-tuning

minimum-variance regulators [16], [17]. In both cases, under

certain conditions, the modeling biases are automatically

compensated when estimation is carried in a closed loop.

Substitution β = |µ|/µ can be considered a modified version

of the coefficient fixing technique. Even though the assumed

value of β usually differes from the true one, the values

of µ̂(t), computed using the algorithm (34), converge in the

mean to the optimal value µopt. One can show that, similarly

as in the case of complex-valued systems, the substitution

β = 1 (which might look as a more “natural” choice) does

not allow one to compensate phase modeling errors greater

than π/2 – see [7] for more details.

V. SAFEGUARDS

Following [7] we will propose several modifications increas-

ing robustness of the proposed disturbance rejection scheme.

First, to avoid erratic behavior of the algorithm during

startup/transient periods, it is advisable to set the maximum

allowable values for |µ̂(t)| , |µ̂(t)−µ̂(t−1)| and r(t), further

denoted by µmax, ∆µmax and rmax, respectively. These are

typical “safety valves” used in adaptive control.

Second, to improve numerical stability of the recursive algo-

rithm used for computation of sensitivity derivatives zy(t) =
∂y(t)/∂µ and zα(t) = ∂α̂(t + 1|t)/∂µ, one can replace

the term |µ| on the right-hand side of (33) with cµ, where

cµ is a small positive constant. Note that this is equivalent

to setting βµ = cµ, or equivalently BT = cµM
−1. Due to

normalization introduced by the RPE approach this modifica-

tion has usually minor influence on the steady-state values of

µ̂(t), but it may be quite helpful during all transient periods.

Additionally, and quite importantly, tracking properties of

the algorithm modified in the way described above do not

depend on the modeling error β – for more details see [8].

Denote by sat(x, a), x ∈ C, a ∈ R+, a complex-valued

saturation function

sat(x, a) =

{
x, if |x| ≤ a

a
x

|x| , if |x| > a .

Then the modified disturbance rejection algorithm that com-

bines all “fixes” described above can be summarized as

follows

zy(t) = −cµf
T(t)M̂−1(t − 1)zα(t − 1)

zα(t) = zα(t − 1) + M̂(t − 1)f(t)zy(t) + Hf(t)y(t)

ρ(t) = 1 − cρ|µ̂(t − 1)|
r̃(t) = ρ(t)r(t − 1) + |zy(t)|2
r(t) = min(r̃(t), rmax)

∆µ(t) = sat
(
z∗y(t)y(t)/r(t), ∆µmax

)

µ̃(t) = µ̂(t − 1) − ∆µ(t)

µ̂(t) = sat(µ̃(t), µmax)

M̂(t) =

[
Re{µ̂(t)} −Im{µ̂(t)}
Im{µ̂(t)} Re{µ̂(t)}

]

α̂(t + 1|t) = α̂(t|t − 1) + M̂(t)f(t)y(t)

u(t) = − α̂
T(t + 1|t)K−1

n f(t + 1) (35)

VI. SIMULATION RESULTS

A. Steady-state performance

The purpose of this simulation experiment was to examine

the steady-state error compensation capabilities of the al-

gorithm (34). None of the proposed safety jacketing mea-

sures was applied. The only user-dependent tuning “knob”

ρ was set to 0.9999. Simulations were carried for the

Guo & Bodson’s plant (29) with the following measurement

noise and sinusoidal disturbance settings: σv = 0.1, σw =
0.001/

√
2, ω0 = 0.1, α(0) = [0.5, 0.5]T . In the absence

of modeling errors the optimal value of µ is under such

conditions equal to µopt = h∞ = 0.01.

Table I shows the mean-squared output errors observed for

different values of β (12 selections, characterized in terms

of magnitude and phase errors). All numbers were obtained

by means of combined ensemble (100 realizations of {v(t)}
and {w(t)}) and time (t ∈ [10001, 40000]) averaging, after

the algorithm has reached its steady-state behavior.

Argβ[ ˚ ] |β| = 0.25 |β| = 1 |β| = 4

0 1.0105 1.0106 1.0109

60 1.0105 1.0106 1.0109

120 1.0105 1.0106 1.0109

180 1.0105 1.0106 1.0109

TABLE I

STEADY-STATE MEAN-SQUARED OUTPUT-ERROR E∞[y2(t)] · 10−2

MEASURED FOR DIFFERENT MAGNITUDE AND PHASE MODELING

ERRORS. THE THEORETICAL LOWER ERROR BOUND IS IN THIS CASE

EQUAL TO 1.01·10−2
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Note that the proposed control scheme is insensitive to

phase errors and almost insensitive to magnitude errors. In

all cases considered the mean-squared output errors are by

less than 0.1% larger than the minimum error achievable

when µ is set to its optimal value µopt = h∞/β and

not estimated. For the mean-squared cancellation errors the

analogous degradation does not exceed 6%. This means

that the proposed disturbance rejection scheme is doing a

remarkably good job in compensating modeling errors and

optimizing the closed-loop system performance.

B. Transient performance

The objective of this experiment was to demonstrate the

ability of the proposed algorithm to cope with sudden plant

changes. The Guo & Bodson’s (29) plant was switched at

the instant t = 15000 to second-order nonminimum phase

plant with a pair of complex poles at ω = ω0, described by

K1(z) =
0.1 − 0.14z−1

1 − 1.8507z−1 + 0.8649z−2
.

Fig. 3 shows averaged results of 100 simulation runs, ob-

tained for the algorithm (35) with the following settings:

cµ = 0.005, ρ = 0.999, µmax = 0.05, ∆µmax = µ̂(t −
1)/50, rmax = 400. The nominal plant gain was fixed at

kn = 1. The corresponding modeling errors were equal to:

|β| = 0.708, Argβ = −42.2˚ for t < 15000 and |β| = 2.91,

Argβ = −84˚ for t ≥ 15000. The adaptation was started

with zero initial conditions, except for µ(0) = 0.02, r(0) =
100.

As expected, the algorithm converges in the mean to the

optimal steady-state settings. Additionally, it deals favorably

both with the initial convergence problem and with abrupt

plant change. When the experiment was started or when a

change to the plant dynamics occurred, the magnitude of

the adaptation gain µ̂(t) temporarily increased to quickly

compensate large initial modeling errors; later on it gradually

decayed to settle down around its optimal steady-state value.

Note very quick response to phase errors and (usually) much

slower response to magnitude errors – the effect caused by

diverse sensitivity of system output to two types of modeling

errors.

VII. CONCLUSION

The problem of elimination of a sinusoidal disturbance of

known frequency, acting at the output of an unknown linear

stable plant was considered. It was not assumed that a

reference signal, correlated with disturbance, is available.

The proposed solution is based on coefficient fixing – the

technique originally developed for the purpose of adap-

tive minimum-variance control – combined with automatic

adjustment of the adaptation gain. Computer simulations

confirm that when the amplitude of the disturbance evolves

according to the random-walk model, the resulting regulator

converges locally in the mean to the optimal (minimum-

variance) regulator.
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Fig. 3. Mean transient behavior of the disturbance rejection algorithm
(average results of 100 simulation runs). Solid lines – ensemble averages
of the estimated values, dotted lines – optimal steady-state values.
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[8] Niedźwiecki, M. and M. Meller (2008). Tracking analysis of an
adaptive vibration controller. Proc. 47th CDC, Cancun, Mexico.

[9] Bai, E.-W., L.-C. Fu and S. Sastry (1988). Averaging analysis for
discrete time and sampled data adaptive systems. IEEE Trans. Circuits

and Systems, vol. 35, 137–148.
[10] Benveniste, A. and G. Ruget (1982). A measure of the tracking

capability of recursive stochastic algorithms with constant gains. IEEE

Trans. Automat. Contr., vol. 25, 788–794.
[11] Lewis, F.L. (1986). Optimal Estimation. Wiley. New York.
[12] van Trees, H.L. and K.L. Bell, Eds. (2007). Bayesian Bounds for

Parameter Estimation and Nonlinear Filtering/Tracking. Wiley, New
York.
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