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Abstract— In this paper, we present a new probabilistic
design approach based on Markov parameters identified via
subspace methods from a finite batch of input and output data.
This approach not only links closed-loop subspace identification
with optimal control; but also directly evaluates parametric
uncertainties on the identified Markov parameters. Neither
a state-space model nor its stochastic uncertainty has to
be realized in this approach. The effects of the parametric
uncertainties on the output predictor are analyzed explicitly.
Analytic solution to the probabilistic design is derived in a
closed form, which avoids computing the empirical mean of
a cost function as required by randomized algorithms. The
solution hence leads to an easily implementable cautious optimal
design, robust to the uncertainties in the identified Markov
parameters from a closed-loop plant.

I. INTRODUCTION

Model-free control design, also known as subspace predic-
tive control (SPC), is recently presented in [1], [2], [3], [4].
These methods circumvent the modeling step, and design
an LQG controller directly from the measured inputs and
outputs (I/Os) of an unknown system. The key step in an SPC
is identifying a future output predictor (in terms of Markov
parameters), which maps the past I/Os and future inputs to
the future outputs of a system. Then an LQG controller is
parameterized by the identified predictor. Since the SPCs
skip the realization of the system model and reply only on
its Markov parameters, they avoid determining the model
order and make it possible to control an infinite-dimensional
system, [5].

The existing SPC approaches suffer from one open prob-
lem, which hampers their real-life application; i.e. the ro-
bustness of the SPC against the identification errors due to
a limited number of noisy data samples. It is the purpose
of this paper to solve this problem. It will be shown that
the estimates of Markov parameters from a finite number
of noisy data are subject to two error terms. One is a
deterministic bias; and the other is a stochastic one, whose
covariance matrix can be estimated from data. The estimates
are then random, and hence uncertain.

Robust designs against random parametric uncertainties
are known as probabilistic design in the literature, [6], [7],
[8], [9], [10], [11]. In these approaches, random model
parameters are associated with a probabilistic distribution
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function (pdf); e.g. a uniform distribution. The parameters
are randomly sampled from this pdf, and parameterize a cost
function. Either the worst ([9], [11]) or the average (also
known as cautious design, see [7] and the references therein)
realization of the cost is computed and then minimized for
an optimal design. As long as a worst case is concerned,
bounded random distributions are usually assumed, [8], [9],
[11]; while a cautious design is free of this restriction,
[7], [10]. In this sense, it is natural in a cautious design
to link the uncertainties with identification errors, due to
their unbounded randomness. In the case of a state-space
model, the probabilistic designs require identifying not only
the parametric matrices (e.g. {A,B, C,D}), but also their
statistics. In fact, these statistics have to be deduced in some
way from data. In [12], it is shown that the statistics of
{A,B,C, D} can be derived from the estimated Markov
parameters and their statistics under restrictive assumptions,
e.g. consistent order estimation and infinite data horizons.
Obviously, the SPCs avoid this step by skipping the realiza-
tion of the state-space matrices; and hence enables a model-
free probabilistic design.

A major drawback with the probabilistic designs is the
computational complexity in the randomized algorithms.
This can be avoided when an analytic solution can indeed be
derived for either the worst or the expected cost. However, it
is possible to find such a closed-form solution, only when the
uncertainties enter into the model affinely, [6], [10]. Clearly,
such an affinity does not exist when the uncertainties in the
state-space matrices have to be propagated into the Markov
parameters. The SPC, as a model-free probabilistic design,
ensures this affinity; and pave the way for a closed-form
solution.

The paper is organized as follows. The errors in the
identification problem are first evaluated, when the length
of the noisy identification data is finite. In Section III, the
effects of the bias and stochastic noise in the identified
Markov parameters on the output predictor are analyzed. The
expectation of a quadratic cost function with respect to the
stochastic noise is explicitly derived in Section IV-A. The
analytic solution to the model free probabilistic design is
given in Section IV-B. The paper concludes with a simulation
example and recommendations for future work.

II. IDENTIFICATION OF MARKOV PARAMETERS FROM

FINITE DATA SAMPLES

We first formulate the problem of identifying Markov
parameters from finitely many data samples.
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Consider the innovation type state-space model:

x(k + 1) = Ax(k) + Bu(k) + Ke(k) (1)

y(k) = Cx(k) + e(k), (2)

where e(k) is assumed to be a zero-mean white noise with
a non-singular variance matrix of EET . The dimensions are
assumed to be x(k) ∈ R

n, y(k) ∈ R
�, and u(k) ∈ R

m.
We make the following assumption on the plant, which is
commonly assumed in subspace identification.

Assumption 1: D = 0; i.e. no direct feedthrough.

Assumption 2: Φ � A − KC is stable, and the system is
minimal.

Assumption 1 is to ensure a one-step delay from the inputs
to the outputs, and hence the well-posedness of the closed-
loop identification problem. Assumption 2 is actually not
restrictive, since any LTI state-space model has such an
observer form; where K is the steady-state Kalman gain,
and yields a stable Φ.

In the sequel, we denote by s, f respectively the past
and future horizon, in both identification and control. N
represents the number of columns in the identification data
matrices. Let t be the current time instant in the formulation
of the identification problem. We shall reserve k for the
current time instant in the control formulation.

The identification of an output predictor of the state-space
model (1) and (2) is the following least-squares problem,

Yt = CΦsXt−s + Ξ0Z[t−s,t) + Et. (3)

Ξ0 �
[
CΦs−1B CΦs−1K · · · CB CK

]
contains the

Markov parameters of the closed-loop steady-state Kalman
filter of the system (1) and (2) with the steady-state gain K.
Yt =

[
y(t) y(t+1) · · · y(t+N −1)

]
and Et =

[
e(t) e(t+

1) · · · e(t + N − 1)
]

are respectively the future output and
innovation sequence. The past I/O data are collected in

Z[t−s,t) =

⎡
⎢⎢⎢⎢⎢⎣

u(t − s) u(t − s + 1) · · · u(t − s + N − 1)
y(t − s) y(t − s + 1) · · · y(t − s + N − 1)

u(t − s + 1) u(t − s + 2) · · · u(t − s + N)
y(t − s + 1) y(t − s + 2) · · · y(t − s + N)

.

.

.
.
.
.

.

.

.
u(t − 1) u(t) · · · u(t + N − 2)
y(t − 1) y(t) · · · y(t + N − 2)

⎤
⎥⎥⎥⎥⎥⎦.

Xt−s =
[
x(t− s) x(t− s + 1) · · · x(t− s + N − 1)

]
is the

sequence of the initial states.

Vectorizing the data equation (3) results in

−→
Y t = F · Θ +

−→
E t + ΔY , (4)

where F � ZT
[t−s,t) ⊗ I�,

−→
E t � vec(Et), Θ � vec(Ξ0),

and ΔY � [IN ⊗ (CΦs)]
−→
X t−s. “⊗” stands for Kronecker

product. Before giving the solution, we need to assume the
closed-loop plant is internally stable, where the data for
the identification are collected. This is in fact a necessary
condition to ensure the signals are quasi-stationary, as com-
monly assumed in identification literature, [13]. Specifically,
we make the following assumption for the identification.

Assumption 3: The identification data are quasi-stationary
and bounded by the positive numbers, x̄, σex, σxx, as

‖x(τ)‖2 ≤ x̄, ∀t − s ≤ τ ≤ t + N − 1 ,

‖E[
−→
E t ·

−→
XT

t−s]‖2 ≤ σex <
λmin(EET )
‖CΦs‖2

, and

‖Cov(
−→
X t−s)‖2 ≤ σxx <

λmin(EET )
‖CΦs‖2

2

,

where λmin stands for the smallest eigenvalue.
Note that the upper bounds, x̄, σex, σxx, are not necessarily

known, which are in fact hard to estimate. They are only
needed to establish the following lemma.

Lemma 1: The least-squares solution of (4) is

Θ̂ � vec(Ξ̂0) = vec(Yt · Z†
[t−s,t)), (5)

where“†” stands for pseudo-inverse. Under Assumption 3,
the estimation error can be represented as

Θ̂ − Θ = δΘ + Σ1/2ε, with (6)

Σ = [Z[t−s,t)ZT
[t−s,t)]

−1 ⊗ (EET ), (7)

where Σ is the covariance matrix; while δΘ is the mean of
the bias, with a bounded 2 norm. ε ∈ R

M�×1 is a white
noise with zero mean and identity covariance matrix, where
M = s(m + �).

Proof: As a sketch of proof, note that the initial states
Xt−s and their correlation with the noise Et are generally
unknown. If Assumption 3 holds, then the contribution of
the initial states to the covariance matrix is smaller than that
of the measurement noise; and hence can be neglected by
choosing a sufficiently large s. It is then straightforward to
derive the covariance matrix, (7), based on the properties of
least squares, [13].

To ensure the existence of Σ and the solvability of Z†
[t−s,t),

we assume that Z[t−s,t) has full row rank.
Remark 1: Σ is related to the inverse of the signal to noise

ratio (SNR); i.e. the higher the SNR of the identification
signals, the lower the stochastic uncertainty on the estimated
Markov parameters.

Note that it is hard to exactly estimate δΘ. Hopefully,
this is not necessary. We will treat its effect on the output
predictor as a deterministic perturbation with bounded 2
norm in the next section.

III. THE OUTPUT PREDICTOR BASED ON THE UNCERTAIN

IDENTIFIED MARKOV PARAMETERS

Form the above section, we see that the true Markov
parameters of the plant are random in terms of the estimate,

Θ = Θ̂ + δΘ + Σ1/2ε, (8)

where the “−” sign before δΘ is changed to “+” for clarity.
Ideally, the output predictor is built from the true Θ. But
since it is estimated, we have to use the random expression
as an alternative. First, with Θ̂ we can build an f -step ahead
nominal deterministic predictor as follows.

Denote the deterministic prediction of the future outputs

as ŷd
[k,k+f) �

[
(ŷd(k))T · · · (ŷd(k+f−1))T

]T
; and denote
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u[k,k+f−1) by
[
uT (k) · · · uT (k+f−2)

]T
the future control

inputs. To distinguish with Z[t−s,t) in the identification
problem, we use Z̄[k−s,k) =

[
u(k−s)T y(k−s)T · · · u(k−

1)T y(k − 1)T
]T

to represent the past I/Os in the control
problem. Then the nominal deterministic predictor reads, [1],

ŷd
[k,k+f) = ΓZ̄[k−s,k) + Λ̄ · u[k,k+f−1),

Γ =

[
Γ0

.

.

.
Γf−1

]
, Λ̄ =

[
0
Λ

]
, Λ =

[
Λ1

.

.

.
. . .

Λf−1 · · · Λ1

]
.

(9)

The parameters, {Γi, Λj |i, j = 1, · · · , f −1}, are computed
by,

Γi = Ξ̂i +
∑i−1

τ=0 CΦi−τ−1K · Γτ , Γ0 = Ξ̂0,

Λj = CΦj−1B +
∑j−1

τ=1 CΦj−τ−1K · Λτ , Λ1 = CB,
(10)

here CΦτB and CΦτK, τ = 0, · · · , f − 2, are the block el-
ements of Ξ̂0; and Ξ̂i =

[
0�×i(m+�) CΦs−1B CΦs−1K · · ·

CΦiB CΦiK
]

is simply a right-shifted and zero-padded

version of Ξ̂0. We denote 0m×n as an m-by-n zero matrix;
and Im as an m-dimensional identity matrix, in the sequel.

In the case that N, s, f are finite, the error terms, δΘ and
Σ1/2ε, cannot be neglected. In fact, one needs to substitute
the true Θ expressed as a random variable in (8) into the
exact mapping from the past I/Os and states to the future
outputs with true system parameters, [1],

ŷ[k,k+f) =

⎡
⎢⎣

Ξ0
Ξ1

.

.

.
Ξf−1

⎤
⎥⎦Z̄[k−s,k) +

⎡
⎢⎢⎢⎣

CΦsx(k − s)
CΦsx(k − s + 1)

.

.

.
CΦsx(k − s + f − 1)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
bx

+

⎡
⎢⎣

0
Ψ1 0

.

.

.
. . .

. . .

Ψf−1 · · · Ψ1 0

⎤
⎥⎦ ·

⎡
⎢⎢⎣

u(k)
y(k)

.

.

.
u(k + f − 1)
y(k + f − 1)

⎤
⎥⎥⎦ + e[k,k+f), (11)

where Ψτ � CΦτ−1
[
B K

]
, τ = 1, · · · , f − 1; and Ξi is

defined in the same way as Ξ̂i but with true parameters. bx

depends on the unknown states {x(k − s), · · · , x(k − s +
f − 1)}. We will treat bx as a deterministic perturbation in

the sequel. e[k,k+f) =
[
eT (k) · · · eT (k + f − 1)

]T
are the

future unknown measurement noise.
The effects of the errors in Θ̂ on the output predictor (11)

are summarized in Lemma 2. Before giving the statement,
we first need to define the stochastic error terms as in (13)
and (14), on the next page. The matrix Ψu in (13) denotes⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

O

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 0 ΛT
1 0 ΛT

2 0 · · · 0 ΛT
f−2

0 0 I 0 0 ΛT
1 0 · · · 0 ΛT

f−3
0 0 0 0 I 0 0 · · · 0 ΛT

f−4
0 0 0 0 0 0 I · · · 0 ΛT

f−5

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 0 0 0 0 0 0 · · · 0 ΛT

1
0 0 0 0 0 0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
K∈R(f−1)m×(f−1)(m+�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)
with O denoting a (f−1)m×(s−f +1)(m+�) zero matrix.

Lemma 2: The f -step ahead output predictor based on the
biased and noisy identified Markov parameters in (5), (6),
and (7) is given by

ŷ[k,k+f) = ŷd
[k,k+f) +

[
0
L

]
· eu + L̃ · ez + L̃ · b+

L̃ · e[k,k+f) + o
(
max{‖Σ1/2‖2

2, ‖δΘ‖2
2,

‖Σ1/2‖2 · ‖CΦs‖2, ‖Σ1/2‖2 · ‖δΘ‖2}
)
, where

(15)

L =

⎡
⎢⎣

L1
L2 L1

.

.

.
.
.
.

. . .

Lf−1 Lf−2 · · · L1

⎤
⎥⎦, L̃ =

⎡
⎢⎣

L1 0
L2

.

.

.
Lf

L

⎤
⎥⎦.

(16)
L1 = I� and Lj =

∑j−1
τ=1 CΦj−1−τK · Lτ , j = 2, · · · , f .

The symbol “o(α)” stands for the terms with magnitude
equal to or below α. The stochastic perturbations, eu and
ez , are given by (13) and (14). The perturbations due to the
deterministic error δΘ are collected in b as

b = bx + bu + bz,

where bu =
[

0�×1

((Uk · Ψu) ⊗ I�) · δΘ
]

and bz = [Vk ⊗ I�] ·
δΘ.

Proof: See Appendix.
Note that the higher-order terms in o

(
max{‖Σ1/2‖2

2,
‖δΘ‖2

2, ‖Σ1/2‖2 · ‖CΦs‖2, ‖Σ1/2‖2 · ‖δΘ‖2}
)

are negligible
if the following assumption holds.

Assumption 4: ‖Σ1/2‖2, ‖CΦs‖2, ‖δΘ‖2 � 1.
In fact, the number of these terms grows exponentially

with the prediction horizon f , yielding an untractable prob-
lem unless they are ignored. Note that this is not an unre-
alistic assumption, since ‖Σ1/2‖2 � 1 can be achieved by
a large enough (but finite) N ; and ‖CΦs‖2, ‖δΘ‖2 can be
made relatively small by choosing a sufficiently large (but
finite) s.

Note that the perturbations, bz and bx, depend on the
information up to s steps prior to the current time k. Besides,
as made clear in Section IV-B, the future control inputs
depend linearly on Z̄[k−s,k). It is then easy to verify that
the following statement holds.

Proposition 1: If the closed-loop system is internally sta-
ble before the time instant k and Assumption 3 holds, then
the perturbation b has a bounded 2 norm.

This proposition allows us to treat b as a norm-bounded
perturbation, instead of exactly computing its value.

With the higher-order terms ignored, the output predictor
(15) reduces to

ŷ[k,k+f) ≈ ŷd
[k,k+f)+

[
0
L

]
·eu+L̃·ez +L̃·b+L̃·e[k,k+f).

(17)
Based on (17), we are then able to proceed to formulate an
H2 optimal control problem in the following section.

IV. CAUTIOUS H2 OPTIMAL CONTROL

A. The H2 performance criterion

We consider the general trajectory tracking problem.
Suppose the future references, r[k,k+f) = [rT (k) rT (k +
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eu =
[
(Uk · Ψu) ⊗ I�

] · Σ1/2 · ε, with Uk =

⎡
⎢⎣

0 0 · · · 0 uT (k)

0 0 · · · uT (k) uT (k + 1)

.

.

.
.
.
.

.

.

.
.
.
.

uT (k) uT (k + 1) · · · uT (k + f − 3) uT (k + f − 2)

⎤
⎥⎦. (13)

ez =
(
Vk ⊗ I�

) · Σ1/2 · ε, with Vk =

⎡
⎢⎢⎢⎣

Z̄T
[k−s,k)

Z̄T
[k−s+1,k) 01×m Z̄T

[k−s,k)Γ
T
0

Z̄T
[k−s+1,k) 01×m Z̄T

[k−s,k)Γ
T
0 01×m Z̄T

[k−s,k)Γ
T
1

.

.

.
Z̄T

[k−s+f−1,k) 01×m Z̄T
[k−s,k)Γ

T
0 · · · 01×m Z̄T

[k−s,k)Γ
T
f−2

⎤
⎥⎥⎥⎦. (14)

1) · · · rT (k+f−1)]T , are known. Let Q,R 
 0 be positive
definite weighting matrices with appropriate dimensions. Let
0 < Nc < f−1 be the control horizon; i.e. the control inputs,
u(k + i), Nc ≤ i < f − 1, are frozen to u(k + Nc − 1).
Consider the following H2 performance criterion,

J(k) = ‖ŷ[k,k+f) − r[k,k+f)‖2
Q + ‖Δu[k,k+Nc)‖2

R

−γ‖b[k,k+Nc+1)‖2
2, (18)

where γ > 0. ‖v‖2
Q � vT Qv denotes a weighted 2

norm. Δu(k + i) = u(k + i) − u(k + i − 1) is the input
change at instant k + i. b[k,k+Nc+1) represents the first
(Nc + 1) · � entries in the bias b. The last term in the
cost (18) is to cope with the deterministic disturbance, [14].
The novelty here is that b is linked with the bias in the
identified Markov parameters, instead of being treated as
an exogenous disturbance. Note that the future measurement
noise, e[k,k+f), is present in ŷ[k,k+f), (17). Minimization of
(18) ignoring the noise is equivalent to minimizing EeJ(k)
over the same set of decision variables, Δu[k,k+Nc). In this
sense, e[k,k+f) can be ignored in the sequel.

Due to the unbounded randomness of the white noise ε
in the stochastic perturbations eu and ez , we consider the
average cost; i.e. EεJ(k). Minimizing this cost is known as
cautious design in the literature, [7], [10]. The average cost
takes not only the range of the parametric uncertainties, but
also their likelihood into account; and therefore reduces the
conservativeness as in a worst-case cost, [7], [10].

In fact, only the predictor-dependent part of J(k),

Jy(k) � ‖ŷ[k,k+f) − r[k,k+f)‖2
Q, (19)

is a function of ε, and needs to be evaluated for EεJ(k). This
is because b[k,k+Nc+1) is uncorrelated with the noise ε in
the identified parameters. Substitute (9) and (17) into (19),
take the expectation Eε, and note that r[k,k+f), ŷd

[k,k+f), and

L̃b are uncorrelated with ε (Γ, Λ, L̃ are constructed from Θ̂,
which is deterministic). Then it is straightforward to derive

EεJy(k) = ‖ŷd
[k,k+f) + L̃b − r[k,k+f)‖2

Q +

Eε

[ ∥∥[
0
L

]
· eu + L̃ · ez

∥∥2

Q︸ ︷︷ ︸
Jε(k)

]
. (20)

The following theorem shows that under the operation of
Eε, the quadratic optimization problem with the stochastic
perturbations is equivalent to a deterministic problem, with

two regularization terms on the decision variables. Before
stating the theorem, we need to define three quantities as
follows. First, let R̃ be

R̃ = q · tr(EET ) · ∑f−1
i=1 Wii, with

Wii =
[

K(f−1)m

(i−1)m+1 · Ω22 · (K(f−1)m

(i−1)m+1)
T 0(f−i)m×(i−1)m

0(i−1)m×(f−i)m 0(i−1)m×(i−1)m

]
,

(21)
where “tr” is the trace operator; and Ω22 are the last (f −
1)(m + �) rows and columns of Ω � [Z[k−s,k)ZT

[k−s,k)]
−1.

K is defined in (12). Second, define Π1 as

Π1 = q · tr(EET ) · ∑f−1
i=1[ [ If−i Γ←

f−i

] · Ω2 · (K(f−1)m
(i−1)m+1)

T 0M×(i−1)m

]
,

(22)

with Ii =
[

0i(m+�)×(s−i)(m+�)

I(s−i)(m+�)

]
, Γ←

i =
[
0 ΓT

0 0 ΓT
1 · · · 0

ΓT
i−1

]
, ∀1 ≤ i ≤ f−1. Ω2 are the last (f−1)(m+�) columns

of Ω. Finally, let Π2 be

Π2 = q · tr(EET ) ·
f∑

i=1

(ΨzΩΨT
z )ii, (23)

where (ΨzΩΨT
z )ii is the i-th diagonal block of ΨzΩΨT

z ,

with Ψz defined by Ψz =

⎡
⎢⎢⎣

Is(m+�)⎡
⎢⎣

I1 Γ←
1

...
...

If−1 Γ←
f−1

⎤
⎥⎦

⎤
⎥⎥⎦, with the

same Ii and Γ←
i as defined in (22).

Theorem 1: Let q > 0 be a scalar tuning parameter. And
let the weighting matrix Q be chosen as

Q = q · (L̃ · L̃T )−1. (24)

Then the expectation of the quadratic function Jε(k), with
respect to the noise ε in the identified Markov parameters,
takes the following closed form,

EεJε(k) =
[

Z̄[k−s,k)

u[k,k+f−1)

]T

·
[

Π2 Π1

ΠT
1 R̃

]
·
[

Z̄[k−s,k)

u[k,k+f−1)

]
,

(25)
where the weighting matrices, R̃, Π1, Π2, are respectively
given in (21), (22), and (23). Besides, R̃, Q 
 0.

Proof: The derivation of R̃, Π1,Π2 and the proof of
this theorem relies heavily on the properties of Kronecker
product and matrix trace. Due to the space limitation, we
shall refer the details to [15].
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Denote by In a column vector with n one’s. Define the
following structure matrices,

SΔ =

⎡
⎢⎣

Im

−Im Im

. . .
. . .

−Im Im

⎤
⎥⎦, S̃Δ = S−1

Δ ,

Iu =
[

INcm

0(f−Nc−1)m×(Nc−1)m If−Nc−1 ⊗ Im

]
,

Suz =
[

0m×(s−1)(m+�) Im 0m×�

0(f−2)m×(s−1)(m+�) 0(f−2)m×m 0(f−2)m×�

]
,

S̃uz = [ 0(f−1)m×(s−1)(m+�) If−1 ⊗ Im 0(f−1)m×� ],
Sb =

[
I(Nc+1)�

0(f−Nc−1)�×(Nc+1)�

]
.

Then, one can write the control changes within the control
horizon Nc as

Δu[k,k+Nc) = SΔu[k,k+Nc) − SuzZ̄[k−s,k); (26)

and similarly the control signals as

u[k,k+Nc) = S̃ΔΔu[k,k+Nc) + S̃uzZ̄[k−s,k) and

u[k,k+f−1) = Iu · u[k,k+Nc). (27)

As in [14], we freeze the deterministic perturbations at the
end of the control horizon to zero; i.e. b(k+Nc +1) = · · · =
b(k + f − 1) = 0. Then b can be written as,

b = Sb · b[k,k+Nc+1). (28)

Using (27) and (28), one can find the following relation,[
Z̄[k−s,k)
r[k,k+f)

u[k,k+f−1)
b

]
=

⎡
⎢⎢⎣

I 0 0 0
0 I 0 0

IuS̃uz 0 IuS̃Δ 0
0 0 0 Sb

⎤
⎥⎥⎦

︸ ︷︷ ︸
P

·
[

Z̄[k−s,k)
r[k,k+f)

Δu[k,k+Nc)
b[k,k+Nc+1)

]
.

(29)
Substitute (20), (25), and (29) into EεJ(k), where J(k) is

defined by (18). By straightforward algebraic manipulations,
it is easy to show that EεJ(k) takes the compact matrix form
in (30). We shall derive a closed-form solution to optimize
this H2 performance criterion in the next section.

B. The solution to the H2 optimal control problem

So far, we have shown that the bias and noise in the
identified Markov parameters due to finite data horizon lead
to the deterministic and stochastic perturbations in the output
predictor. We have accounted for the stochastic perturbation
in the average sense. In this section, we consider the worst-
case H2 performance against the deterministic perturbation;
and design optimal control inputs by minimizing this worst
performance. Specifically, we have to solve the following
problem,

min
Δu[k,k+Nc)

max
b[k,k+Nc+1)∈L2

EεJ(k), (31)

where b[k,k+Nc+1) ∈ L2, according to Proposition 1. The
main result is summarized in the following theorem.

Theorem 2: Let the following saddle condition be satis-
fied,

γ · I 
 (
1/q · I −F · G−1 · FT

)−1
, where (32)

F = S̃T
ΔIT

u Λ̄T L̃−T Sb and G = −S̃T
ΔIT

u · (q · Λ̄T L̃−T ·[
0 0
0 I(f−Nc−1)�

]
L̃−1Λ̄ + ST

ΔRSΔ + R̃
) · IuS̃Δ.

Then the “minmax” optimality of (31) holds. The optimal
control changes are solved analytically as

Δu∗
[k,k+Nc)

= −A(BZ̄[k−s,k) + Cr[k,k+f)), where (33)

A = [S̃T
ΔIT

u · (Λ̄T Q̄Λ̄ + ST
ΔRSΔ + R̃) · IuS̃Δ]−1,

B = S̃T
ΔIT

u (Λ̄T Q̄Γ + ΠT
1 − ST

ΔRSuz) +
S̃T

ΔIT
u · (Λ̄T Q̄Λ̄ + ST

ΔRSΔ + R̃) · IuS̃uz,

C = −S̃T
ΔIT

u Λ̄T Q̄,

Q̄ = q · L̃−T ·
[

γ
γ−q

I(Nc+1)�

I(f−Nc−1)�

]
· L̃−1.

Proof: The proof is based on the saddle point condition
for solving “minmax” problems. Similar procedures can be
found e.g. in [4], [16]. We shall refer the details to [15].

A simple choice of γ is γ = α · q < 1, with q < 1, α > 1,
which satisfies (32) and yields the matrix Q̄ 
 0 and hence
guarantees the existence of the inverse in A. The online
implementation of the control law (33) just boils down to
solving the least squares problem (5) and computing a couple
of algebraic expressions, (10), (16), (21), (22), and (33).

V. A SIMULATION EXAMPLE

As a case study, we consider the regulating problem of
the following system,

(1 − 0.8z−1)y(k) = (z−1 − 0.9z−2)u(k) + e(k), (34)

where e(t) is a zero-mean white noise, with a variance of
SST = 0.25. 2000 I/O samples are generated for identifying
Ξ̂0 from a closed-loop experiment with an initial controller
u(k) = 0.5(r(k) − y(k)), where the reference signal r(k)
is set to a zero-mean white noise with a standard derivation
of 0.1 (i.e. small SNR). The past and future horizon are
respectively set as s = 10 and f = 10. In this case,
‖Σ‖2 = 0.07, ‖CΦs‖2 ≈ 0, and ‖δΘ‖2 ≈ 0; i.e. Assumption
4 holds. The other parameters are chosen as Nc = 7, R =
0.01I, α = 2, q = 0.45. We compare the optimal solution
with the nominal design as proposed in [1], which minimizes
the quadratic cost,

‖ŷd
[k,k+f) − r[k,k+f)‖2

Q︸ ︷︷ ︸
Jd

y (k)

+‖Δu[k,k+f−1)‖2
R, (35)

where we choose the same Q,R, s, f as in the cautious
design. r(k) = 0, to regulate the system to the origin. The
predictor, ŷd

[k,k+f), in (35), is formulated from Ξ̂0, without
considering its bias and noise. The closed-loop responses
using the two control schemes are illustrated in Fig. 1. It is
clear that the cautious design drives the system to the origin;
while due to the large stochastic errors of Ξ̂0, the nominal
design destabilizes the system.

To explain the effectiveness of the cautious design, the
following four cost functions are compared; EεJy(k) as in
(20), Jd

y (k) in (35), the cost Jy(k) as computed by using
the true Ξ0 in ŷd

[k,k+f) as in (35), and the randomized costs
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EεJ(k) =

⎡
⎢⎢⎣

Z̄[k−s,k)
r[k,k+f)

Δu[k,k+Nc)
b[k,k+Nc+1)

⎤
⎥⎥⎦

T

·PT ·

⎡
⎢⎢⎣

ΓT QΓ + Π2 + ST
uzQSuz −ΓT Q ΓT QΛ̄ + Π1 − ST

uzRSΔ ΓT QL̃
−QΓ Q −QΛ̄ −QL̃

Λ̄T QΓ + ΠT
1 − ST

ΔRSuz −Λ̄T Q Λ̄T QΛ̄ + ST
ΔQSΔ + R̃ Λ̄T QL̃

L̃T QΓ −L̃T Q L̃T QΛ̄ L̃T QL̃ − γI

⎤
⎥⎥⎦ ·P ·

⎡
⎢⎢⎣

Z̄[k−s,k)
r[k,k+f)

Δu[k,k+Nc)
b[k,k+Nc+1)

⎤
⎥⎥⎦ . (30)
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Fig. 1. The outputs of the closed-loop plant with both the cautious H2

controller and the SPC controller.

(denoted by Jr
y (k)) as computed by replacing Ξ̂0 in Jd

y (k)
with the estimates, vec(Ξ̃0) = vec(Ξ̂0) + Σ1/2ε, from 2000
realizations of ε. Since ‖δΘ‖2 ≈ 0, the bias b in (20) is
ignored. Obviously, EεJy(k) > Jd

y (k), due to the regulariza-
tion term, EεJε(k). Note that the four cost functions depend
also on Z̄[k−s,k),u[k,k+f−1), which are different among the
four designs, due to the different control strategies. In the
following analysis, the same Z̄[k−s,k),u[k,k+f−1) are used
among the four costs, such that the statistics of the costs
depend only on those of the noise ε.

The simulation results are shown in Fig. 2, where the
costs along the prediction horizon [20, 30) are considered.
Z̄[10,20),u[20,29) generated by the cautious design are used
in the other three cost functions. The 2000 costs, Jr

y (20),
are counted in 1000 bins in the histogram, on which the
other three cost values are marked by lines. Fig. 2 clearly
shows that EεJε(20) approximately equals the numerical
mean of Jr

y (20), i.e. 1.46× 104. EεJε(20) upper bounds the
cost incurred by using the true system parameters, Jy(20).
However, Jd

y (20) underestimates the true cost, Jy(20); and
hence leads to instability of the closed loop.

VI. CONCLUSIONS

In this paper, we have introduced a model-free proba-
bilistic design, which is robust to the uncertain Markov
parameters identified from a closed-loop plant. The effect
of the errors in the identified Markov parameters on the
output predictor is explicitly analyzed. An optimal control
law is derived in closed form. This approach solves the
open problem on the robustness of SPCs against finite-
horizon identification. The simulation example verifies the
effectiveness of this approach in robustifying the closed-loop
performance.
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Eε Jy(20)

Jy(20)

Jy
d(20)

Fig. 2. The four different cost functions evaluated along the prediction
horizon [20, 30).

There is still one open problem for SPCs; i.e. the closed-
loop stability under finite future prediction horizon. The
challenge in ensuring the stability lies in the dynamic model
hidden behind the Markov parameters. In fact, it is still an
open problem to guarantee the closed-loop stability, when a
dynamic model is missing. Other extensions of the proposed
approach include handling constraints in the model free
probabilistic design framework, and the recursive solutions.
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APPENDIX

PROOF OF LEMMA 2

We only derive the stochastic errors,
[
0 LT

]T ·eu and L̃ez ,
in (15). For this, we leave out δΘ and bx respectively from
(8) and (11) for clarity. The inclusion of these two terms
leads to the deterministic perturbation, L̃ · b, which simply
follows from the same lines of derivation. The higher order
terms, o(·) in (15), are ignored based on Assumption 4. In
the sequel, we shall use (Σ1/2)n2

n1
to denote the partition

of the matrix, Σ1/2, from the n1-th till the n2-th row. For
instance, as a part of Θ,

−−→
CK can be represented as

−−→
CK =

vec(CK) + (Σ1/2)M�
(s−1)(m+�)�+m�+1 · ε.

We prove the result by induction as follows.
First, for τ = 0, substitute the true Θ in (8) into the

estimate ŷ(k) = Ξ0Z̄[k−s,k) in (15); and vectorize the
equation (note that vec(ŷ(k)) = ŷ(k)); i.e.

ŷ(k) = (Z̄T
[k−s,k) ⊗ I�) · Θ = (Z̄T

[k−s,k) ⊗ I�) · (Θ̂ + Σ1/2ε)
= (Z̄T

[k−s,k) ⊗ I�) · Θ̂ + (Z̄T
[k−s,k) ⊗ I�) · Σ1/2ε

= Ξ̂0 · Z̄[k−s,k) + (Z̄T
[k−s,k) ⊗ I�) · Σ1/2ε.

Now, suppose the following expression holds,

ŷ[k,k+i) = ŷd
[k,k+i) +

[
0

Li−1

]
· e(1:i−1)

u + L̃i · e(1:i)
z , (36)

where e(1:i−1)
u collects the first (i − 1)� rows of eu (same

definition for e(1:i)
z ). ŷd

[k,k+i) is defined in (9). Li−1, L̃i are

Li−1 =

[
L1

.

.

.
. . .

Li−1 · · · L1

]
, L̃i =

[
L1

.

.

.
. . .

Li · · · L1

]
.

We shall then derive the i-th and the (i + 1)-th block row
of respectively eu and ez (corresponding to ŷ(k+ i)). Based
on (11), ŷ(k + i) is predicted by,

ŷ(k + i) = [ CΦi−1B · · · CB ] · u[k,k+i)+
ΞiZ̄[k−s,k) + [ CΦi−1K · · · CK ] · ŷ[k,k+i)

� ϕ1 + ϕ2 + ϕ3.
(37)

Substituting (36) into ϕ3 leads to,

ϕ3 = [ CΦi−1K · · · CK ]·[
ŷd

[k,k+i) +
[

0
Li−1

]
· e(1:i−1)

u + L̃i · e(1:i)
z

]
.

(38)

The first term on the right hand side equals

vec
(
[CΦi−1K · · ·CK] · ŷd

[k,k+i)

)
=

(
(ŷd

[k,k+i))
T ⊗ I�

)·[
vec([CΦi−1K · · ·CK]) +

⎡
⎢⎢⎢⎣

(Σ1/2)
(s−i+1)(m+�)�

(s−i)(m+�)�+m�+1

.

.

.

(Σ1/2)M�
(s−1)(m+�)�+m�+1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
TK

·ε
]
.

The matrix TK can be rewritten in a compact form as

[ ⎡
⎢⎢⎣ O2

0 I� 0 0 0 · · · 0 0 0
0 0 0 I� 0 · · · 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 0 · · · I� 0 0
0 0 0 0 0 · · · 0 0 I�

⎤
⎥⎥⎦

︸ ︷︷ ︸
SΣ∈Ri�×i(m+�)

⊗I�

]
·Σ1/2,

where O2 is an i� × (s − i)(m + �) zero matrix. Therefore,(
(ŷd

[k,k+i))
T ⊗ I�

) · TK · ε =
[(

[uT (k) · · ·uT (k + i − 2)]·⎡
⎢⎣ 0

ΛT
1 ΛT

2 · · · ΛT
i−1

ΛT
1 · · · ΛT

f−3

. . .
.
.
.

ΛT
1

⎤
⎥⎦ · SΣ

) ⊗ I�

]
· Σ1/2 · ε+

[(
[ Z̄T

[k−s,k)Γ
T
0 · · · Z̄T

[k−s,k)Γ
T
i−1 ] · SΣ

) ⊗ I�

] · Σ1/2 · ε
=

[(
[ uT (k) · · · uT (k + i − 1) ] · ΨΛ

) ⊗ I�

] · Σ1/2 · ε+
(ΨΓ ⊗ I�) · Σ1/2 · ε,

where with the zero matrices, O3 ∈ R
im×(s−i)(m+�) and

O4 ∈ R
1×(s−i)(m+�), ΨΛ,ΨΓ are defined as

ΨΛ =

⎡
⎢⎢⎣ O3

0 0 0 ΛT
1 0 ΛT

2 0 · · · 0 ΛT
i−1

0 0 0 0 0 ΛT
1 0 · · · 0 ΛT

i−2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0 0 0 0 · · · 0 ΛT
1

0 0 0 0 0 0 0 · · · 0 0

⎤
⎥⎥⎦

ΨΓ = [ O4 0 Z̄T
[k−s,k)Γ

T
0 0 · · · 0 Z̄T

[k−s,k)Γ
T
i−1 ] .

Note that uT (k + i − 1) is appended to uT
[k,k+i−1); and

correspondingly m rows of zeros (emphasized in ΨΛ) are
padded on the bottom of SΣ to get ΨΛ.

Ignoring the products of the bias and noise in Θ with
e(1:i−1)

u , e(1:i)
z , the last two terms in (38) reduces to

[CΦi−1K, · · · , CK] ·
[

0
Li−1

]
· e(1:i−1)

u =

[CΦi−2K, · · · , CK]Li−1e
(1:i−1)
u =[Li, · · · , L2] · e(1:i−1)

u ,

[CΦi−1K, · · · , CK]L̃ie
(1:i)
z = [Li+1, · · · , L2]e

(1:i)
z .

By similar manipulations, ϕ1, ϕ2 are derived as follows.

ϕ2 = Ξ̂i · Z̄[k−s,k) + ([Z̄T
[k−s+i,k), 01×i(m+�)] ⊗ I�)Σ1/2ε.

ϕ1 = (uT
[k,k+i) ⊗ I�

) · [vec([CΦi−1B, · · · , CB])+
(ΨI ⊗ I�) · Σ1/2 · ε]; where, with O5 ∈ R

im×(s−i)(m+�),

ΨI =

⎡
⎢⎣ O5

Im 0 0 0 · · · 0 0 0
0 0 Im 0 · · · 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 0 0 0 · · · 0 Im 0

⎤
⎥⎦.

Assemble ϕ1, ϕ2, ϕ3 together into (37). Note that ([1]),

ŷd(k + i) = (uT
[k,k+i) ⊗ I�

) · vec([CΦi−1B, · · · , CB])+
Ξ̂i · Z̄[k−s,k) +

(
(ŷd

[k,k+i))
T ⊗ I�

) · vec([CΦi−1K · · ·CK]).

Then, by straightforward arrangement of the terms, the
proof of Lemma 2 is completed.
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