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Abstract— This paper deals with the long run average con-
tinuous control problem of piecewise deterministic Markov
processes (PDMP‘s) taking values in a general Borel space and
with compact action space depending on the state variable. The
control variable acts on the jump rate and transition measure
of the PDMP, and the running and boundary costs are assumed
to be positive but superiorly unbounded. Our main result is to
obtain the existence and characterization of an ordinary optimal
feedback control for the long run average cost problem using
the so-called vanishing discount approach.

I. INTRODUCTION

A general family of non-diffusion stochastic models suit-
able for formulating many optimization problems in several
areas of operations research, namely piecewise-deterministic
Markov processes (PDMP’s), was introduced in [1], [2].
These processes are determined by three local characteristics;
the flow φ, the jump rate λ and the transition measure Q.
A suitable choice of the state space and the local character-
istics provide stochastic models covering a great number of
problems of operations research [2].

This paper deals with the long run average continuous
control problem of PDMP’s taking values in a general Borel
space and can be seen as a continuation of the previous works
[3], [4]. At each point x of the state space a control variable
is chosen from a compact action set U(x) and is applied on
the jump parameter λ and transition measure Q. The goal is
to minimize the long run average cost, which is composed
by a running cost and a boundary cost, both assumed to be
positive but superiorly unbounded.

Our main result is to obtain conditions for the existence
and characterization of an ordinary optimal feedback control
for the long run average cost problem using the so-called
vanishing discount approach (see [5], page 83). As far as
the authors are aware of, this is the first time that this kind
of approach is applied to this class of Markov processes.
We take advantage of a connection for the characterization
for the optimality equation, one in terms of an one-stage
optimization equation with relaxed control space and the
other one in terms of an integro-differential equation.
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The paper is organized in the following way. In section
II we introduce some notation, basic assumptions, and the
control problems to be considered. The definition of the
ordinary and relaxed control spaces as well as some operators
required for characterizing the optimality equation. are pre-
sented in section III. In section IV we derive conditions for
the existence and characterization of an ordinary feedback
optimal control based on a connection between the discrete-
time optimality equation and an integro-differential equation.
Section V considers the discounted optimal control problem.
Our main result is presented in section VI with some con-
ditions for the existence and characterization of an ordinary
optimal feedback control for the long run average cost using
the so-called vanishing discount approach (see Theorem 6.4).

II. NOTATION AND ASSUMPTIONS

In this section we present some standard notation and some
basic definitions related to the motion of a PDMP {X(t)},
and the control problems we will consider throughout the
paper. For further details and properties the reader is referred
to [2]. The following notation will be used in this paper:
• R denotes the set of real numbers, R+ the set of positive

real numbers and Rd the d-dimensional euclidian space.
The set of natural numbers is denoted by N.

• η denotes the Lebesgue measure on R.
• For X a metric spaces, we denote B(X) as the σ-

algebra generated by the open sets of X . M(X) (re-
spectively, P(X)) denotes the set of all finite (respec-
tively probability) measures on (X,B(X)).

• Let X and Y be metric spaces. The set of all Borel
measurable (respectively bounded) functions from X
into Y is denoted by M(X; Y ) (respectively B(X; Y )).
Moreover, for notational simplicity M(X) (respectively
B(X), M(X)+, B(X)+) denotes M(X;R) (respec-
tively B(X;R), M(X;R+), B(X;R+)). C(X) denotes
the set of continuous functions from X into R.

Let E be an open subset of Rn, ∂E its boundary, and E its
closure. A PDMP is determined by its local characteristics
(φ, λ,Q) as presented below:
• the flow φ(x, t) is a function φ : Rn × R+ −→ Rn

continuous in (x, t) and such that φ(x, t+s) = φ(φ(x, t), s).
For each x ∈ E the time the flow takes to reach the
boundary starting from x is defined as t∗(x) .= inf{t >
0 : φ(x, t) ∈ ∂E}. For x ∈ E such that t∗(x) = ∞ (that is,
the flow starting from x never touches the boundary), we set
φ(x, t∗(x)) = ∆, where ∆ is a fixed point in ∂E.

We define the following space of functions absolutely
continuous along the flow with limit towards the boundary:
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Mac(E) =
{
g ∈ M(E); g(φ(x, t)) : [0, t∗(x)) 7→ R is

absolutely continuous for each x ∈ E and whenever t∗(x) <
∞ the limit limt→t∗(x) g(φ(x, t)) exists

}
. For g ∈ Mac(E)

and z ∈ ∂E for which there exists x ∈ E such that
z = φ(x, t∗(x)) where t∗(x) < ∞ we define g(z) =

lim
t→t∗(x)

g(φ(x, t)) (note that the limit exists by assumption).

As shown in [6], for g ∈ Mac(E) there exists a function
X g ∈ M(E) such that for all t ∈ [0, t∗(x)) g(φ(x, t)) −
g(x) =

∫ t

0
X g(φ(x, s))ds. The local characteristics λ and Q

depend on a control action u ∈ U where U is a compact
Borel space, in the following way: λ ∈ M(E × U)+ and Q
is a stochastic kernel on E given E × U.

For each x ∈ E we define the subsets U(x) of U as the
set of feasible control actions that can be taken when the
state process is in x ∈ E, that is, the control action that will
be applied to λ and Q must belong to U(x). The following
assumptions will be made throughout the paper:

A.1) For all x ∈ E, U(x) is a compact subspace of U.
A.2) The set K =

{
(x, a) : x ∈ E, a ∈ U(x)

}
is a Borel

subset of E × U.
A.3) For all x ∈ E, and t ∈ [0, t∗(x)), we have that∫ t

0
supa∈U(φ(x,s)) λ(φ(x, s), a) ds < ∞. If t∗(x) < ∞

then
∫ t∗(x)

0
supa∈U(φ(x,s)) λ(φ(x, s), a) ds < ∞.

We present next the definition of an open loop policy and
the associated motion of the controlled process. A piecewise
open loop policy U is a pair of functions (u, u∂) ∈M(N×
E×R+;U)×M(N×E;U) satisfying u(n, x, t) ∈ U(φ(x, t)),
and u∂(n, x) ∈ U(φ(x, t∗(x))) for all (n, x, t) ∈ N×E×R+.
The class of piecewise open loop policy will be denoted by
U . Given a piecewise open loop policy U = (u, u∂), one
describes the motion of the piecewise deterministic process
X(t) in the following manner. Define T0 = 0 and X(0) = x.
Assume that the process {X(t)} is located at Zn at the nth

jump time Tn then select a random variable Sn having dis-
tribution F (t) = 1 − I{t<t∗(Zn)}e−

R t
0 λ(φ(Zn,s),u(n,Zn,s))ds.

Define Tn+1 = Tn + Sn and for t ∈ [Tn, Tn+1), X(t) =
φ(Zn, t − Tn), Z(t) = Zn, τ(t) = t − Tn, N(t) = n.
Now consider a random variable Zn+1 having distribu-
tion Q(φ(Zn, Sn), u(n,Zn, Sn)); .) if φ(Zn, Sn) ∈ E, or
Q(φ(Zn, Sn), u∂(n,Zn); .) if φ(Zn, Sn) ∈ ∂E. At time
Tn+1, the process {X(t)} is defined by X(Tn+1) = Zn+1.

As in Davis [2], we consider the following assumption to
avoid any accumulation point of the jump times:

A.4) For any x ∈ E, U = (u, u∂) ∈ U , and t ≥ 0,

EU
x

[ ∞∑

i=1

I{Ti≤t}

]
< ∞

The costs of our control problem will contain 2 terms,
a running cost f and a boundary cost r, satisfying the
following properties:

A.5) f ∈M(E × U)+.
A.6) r ∈M(∂E × U)+.

The long-run average cost we want to minimize over U is
given by:

A(U, x) = lim sup
t→+∞

1
t
EU

x

[∫ t

0

f
(
X(s), u(N(s), Z(s),

τ(s))
)
ds +

∫ t

0

r
(
X(s−), u∂(N(s−), Z(s−))

)
dp∗(s)

]
,

where p∗(t) =
∞∑

i=1

I{Ti≤t}I{X(Ti−)∈∂E} counts the number

of times the process touched the boundary up to time t, and
we set

JA(x) = inf
U∈U

A(U, x). (1)

For the α discounted case, with α > 0, the cost we want
to minimize is given by:

Dα(U, x) = EU
x

[∫ ∞

0

e−αsf
(
X(s), u(N(s), Z(s), τ(s))

)

ds +
∫ ∞

0

e−αsr
(
X(s−), u∂(N(s−), Z(s−))

)
dp∗(s)

]

and we set

J α
D (x) = inf

U∈U
Dα(U, x). (2)

We also consider a truncated version of problem (2)
defined, for each m = 0, 1, . . ., as

Dα
m(U, x) = EU

x

[∫ Tm

0

e−αsf
(
X(s), u(N(s), Z(s), τ(s))

)

ds +
∫ Tm

0

e−αsr
(
X(s−), u∂(N(s−), Z(s−))

)
dp∗(s)

]

(3)

We need the following assumption, to avoid infinite costs
for the discounted case.
A.7) For all α > 0 and all x ∈ E, J α

D (x) < ∞.
It is clear that for all x ∈ E, 0 ≤ inf

U∈U
Dα

m(U, x) ≤
J α
D (x) < ∞.

III. DISCRETE-TIME ORDINARY AND RELAXED
CONTROLS

In this section we first present the definitions of the
discrete-time ordinary and relaxed control sets used in the
formulation of the optimality equation of the discrete-time
Markov control problem as well as the characterization of
some topological properties of these sets. In particular, by
using a result of the theory of multifunctions (see the book
by Castaing and Valadier [7]), it is shown that the set of
relaxed controls is compact. In the sequel we present some
important operators associated to the optimality equation
of the discrete-time problem as well as some mesurability
properties.
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A. Relaxed and ordinary control

We present in this sub-section the set of discrete-time
relaxed controls and the sub-set of ordinary controls. Con-
sider the Banach spaces L1(R+;C(U)) and L∞(R+;M(U))
where C(U) is equipped with the topology of uniform
convergence and M(U) is equipped with the weak∗ topology
σ(M(U),C(U)). Let Vr (respectively Vr(x) for x ∈ E)
be the set of all η-measurable functions µ defined on R+

with value in P(U) such that µ(t,U) = 1 η-a.e. (re-
spectively µ(t,U(φ(x, t))) = 1 η-a.e.). From Theorem V-
2 in [7], it follows that Vr (respectively Vr(x) for x ∈
E) are compact sets with respect to the weak∗ topol-
ogy σ(L∞(R+;M(U)), L1(R+;C(U))). Moreover, from
Bishop’s Theorem (see Theorem I.3.11 in [8]), there is a
metric such for all x ∈ E, Vr(x) is a compact set of the Borel
set Vr. Note that a sequence

(
µn

)
n∈N in Vr(x) converges

to µ if and only if

lim
n→∞

∫

R+

∫

U(φ(x,t))

g(t, u)µn(t, du)dt =
∫

R+

∫

U(φ(x,t))

g(t, u)µ(t, du)dt, (4)

for all g ∈ L1(R+;C(U)).
Therefore the set of relaxed controls are defined as follows.

For x ∈ E, Vr(x) = Vr(x) × P(
U(φ(x, t∗(x)))

)
, Vr =

Vr × P(
U

)
. The set of ordinary controls, denoted by V

(respectively V(x) for x ∈ E), is defined as above except
that it is composed by deterministic functions instead of
probability measures and thus, the set of ordinary controls is
a subset of the set of relaxed control Vr (respectively Vr(x)
for x ∈ E) by identifying any control action u ∈ U with the
Dirac measure concentrated on u. Therefore we can write
that V ⊂ Vr (respectively V(x) ⊂ Vr(x) for x ∈ E) and
from now on we will consider that V (respectively V(x) for
x ∈ E) will be endowed the topology generated by Vr.

The necessity to introduce the class of relaxed control Vr

is justified by the fact that in general there does not exist a
topology for which V and V(x) are compact sets. However
from the previous construction, it follows that Vr and Vr(x)
are compact sets.

As in [5], page 14, we need that the set of feasible
state/relaxed-control pairs is a measurable sub-set of B(E)×
B(Vr), that is, we need the following assumption.
A.8) K .=

{
(x, Θ) : Θ ∈ Vr(x), x ∈ E

} ∈ B(E)× B(Vr).
We present a sufficient condition, based on the continuity

of the sets U(x), to ensure that assumption A.8) holds. The
proof is presented in [6].

Proposition 3.1: Assumption A.8) is satisfied
if for all convergent sequence {xn}n∈N in E
U(x) = ∩n∈N ∪m≥nU(xm) = ∪n∈N ∩m≥nU(xm),
where limn→∞ xn = x.

B. Discrete-time operators and measurability properties

In this sub-section we present some important operators
associated to the discrete-time optimality equation as well
as some measurability properties. We consider the following

notation for x ∈ E, y ∈ E and µ ∈ P(
U

)
, g ∈ M(E)

bounded from below, and w ∈M(E × U):

Qg(x, µ) =
∫

U

∫

E

g(z)Q(x, u; dz)µ(du),

λQg(x, µ) =
∫

U
λ(x, u)

∫

E

g(z)Q(x, u; dz)µ(du),

Λµ(y, t) =
∫ t

0

∫

U
λ(φ(y, s), u)µ(du)ds,

w(x, µ) =
∫

U
w(x, u)µ(du).

The following operators will be associated to the opti-
mality equations of the discrete-time problems that will be
presented in the next sections. For x ∈ E, Θ =

(
µ, µ∂

) ∈
Vr, g ∈ M(E) bounded from below, w1 ∈ M(E × U)
bounded from below, w2 ∈M(∂E ×U), and α ≥ 0, define:

Gαg(x, Θ) .=
∫ t∗(x)

0

e−αs−Λµ(x,s)λQg(φ(x, s), µ(s))ds

+ e−αt∗(x)−Λµ(x,t∗(x))Qg(φ(x, t∗(x)), µ∂),
(5)

Lαw1(x, Θ) .=
∫ t∗(x)

0

e−αs−Λµ(x,s)w1(φ(x, s), µ(s))ds,

(6)

Hαw2(x, Θ) .= e−αt∗(x)−Λµ(x,t∗(x))w2(φ(x, t∗(x)), µ∂).
(7)

It will be useful in the sequel to define the function Lα(x, Θ)
as follows: Lα(x, Θ) .= LαIE×U(x, Θ). In particular for α =
0 we write for simplicity G0 = G, L0 = L, H0 = H ,
L0 = L.

The next proposition presents some important measurabil-
ity properties of the operators (5), (6), (7) and its proof can
be found in [6].

Proposition 3.2: Let α ∈ R+, g ∈ M(E) be bounded
from below, w1 ∈ M(E × U) be bounded from below,
and w2 ∈ M(∂E × U). Then the mappings Gαg(x, Θ),
Lαw1(x, Θ), and Hαw2(x, Θ) defined on E×Vr with values
in R are B(E × Vr)-measurable.

For α ≥ 0, h ∈M(E) bounded from below and ρ ∈ R we
present now the (ordinary) one-stage optimization operator
Tα(ρ, h) and the relaxed one-stage optimization operator
Rα(ρ, h) as follows. For x ∈ E set

Tα(ρ, h)(x) = inf
Θ∈V(x)

{
−ρLα(x, Θ)+

Lαf(x,Θ) + Hαr(x, Θ) + Gαh(x, Θ)
}

, (8)

Rα(ρ, h)(x) = inf
Θ∈Vr(x)

{
−ρLα(x, Θ)+

Lαf(x,Θ) + Hαr(x, Θ) + Gαh(x, Θ)
}

. (9)

In particular for α = 0 we write for simplicity T0 = T ,
R0 = R. We have the following measurable selector sets:
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SU =
{

u ∈M(E,U) : (∀x ∈ E), u(x) ∈ U(x)
}

,

SV =
{

(ν, ν∂) ∈M(E,V) : (∀x ∈ E),
(
ν(x), ν∂(x)

) ∈ V(x)
}

,

SVr =
{

(µ, µ∂) ∈M(E,Vr) : (∀x ∈ E),
(
µ(x), µ∂(x)

) ∈ Vr(x)
}

.

Remark 3.3: Notice that u ∈ SU characterizes what we
call an ordinary feedback control since the control law u(x)
only depends on the value of the state variable x. On the
other hand (ν, ν∂) ∈ SV characterizes a deterministic (also
called ordinary) control law for the one stage problem since
that, starting from x, it defines the control law for all t ∈
[0, t∗(x)) through the function ν(x, t) and at t = t∗(x) (if
t∗(x) < ∞) through ν∂ . Finally (µ, µ∂) ∈ SVr characterizes
a relaxed control law for the one stage problem since that,
starting from x, it defines a probability over the feasible
control actions for all t ∈ [0, t∗(x)) through the probability
measure µ(x, t) and at t = t∗(x) (if t∗(x) < ∞) through the
probability measure µ∂ .

We have the following result showing that there exists a
natural mapping from SU into SV.

Proposition 3.4: If û ∈ SU then the mapping ûφ : x →(
û(φ(x, .)), û(φ(x, t∗(x)))

)
of the space E into V belongs

to SV.
Proof: From Lemma A.3 in [9] and item (i) of Lemma

3 in [10] it follows that the mapping x → û(φ(x, .)) of the
space E into M(R+,U) is measurable. Moreover, for all
(x, t) ∈ E × R+, û(φ(x, t)) ∈ U(φ(x, t)). Therefore, ûφ

belongs to SV.

IV. ORDINARY OPTIMAL FEEDBACK CONTROL

In this section we will study the existence and characteri-
zation of and ordinary optimal feedback measurable selector
for the relaxed one-stage optimization operator. For α ≥ 0,
h ∈M(E) bounded from below, ρ ∈ R and x ∈ E set

w(x) = Rα(ρ, h)(x). (10)

We present next the assumptions and results that will guar-
antee some convergence and lower semicontinuity properties
with respect to the weak∗ topology of the operators (5), (6),
(7) that appear in the one-stage optimization problem (10).
From now on we will consider the following assumptions.
A.9) For each x ∈ E, λ(x, .) : U(x) 7→ R+ is continuous.

A.10) There exists a sequence of measurable functions
(fj)j∈N in M(E × U)+ such that for all y ∈ E,
fj(y, .) ↑ f(y, .) as j →∞ and fj(y, .) ∈ C(U(y)).

A.11) There exists a sequence of measurable functions
(rj)j∈N in M(∂E × U)+ such that for all z ∈ ∂E,
rj(z, .) ↑ r(z, .) as j →∞ and rj(z, .) ∈ C(U(z)).

A.12) For all x ∈ E and g ∈ B(E), Qg(x, .) : U(x) 7→ R is
continuous.

A.13) There exists ξ ∈M(E)+, ξ ≥ 0, such that

a) λ(y, a) ≥ ξ(y) for all y ∈ E and a ∈ U(y),

b)
∫ t∗(x)

0

e−
R t
0 ξ(φ(x,s))dsdt < ∞,

c) e−
R t∗(x)
0 ξ(φ(x,s))ds = 0 whenever t∗(x) = ∞,

d)
∫ t∗(x)

0

e−
R t
0 ξ(φ(x,s))ds×

supa∈U(φ(x,t)) f(φ(x, t), a)dt < ∞.
The next proposition presents some important convergence
results of the operators (5), (6), (7) with respect to the weak∗

topology (recall (4) for the convergence in this topology).
The proof of the proposition is in [6].

Proposition 4.1: Consider α ∈ R+ and a non increasing
sequence of positive numbers {αk}, αk ↓ α, a sequence of
functions hαk

∈M(E) uniformly bounded from below by a
positive constant Kh (that is, hαk

(y) ≥ −Kh for all y ∈ E).
Set h = lim

k→∞
hαk

. For x ∈ E, consider Θn =
(
µn, µ∂,n

) ∈
Vr(x) and Θ =

(
µ, µ∂

) ∈ Vr(x) such that Θn → Θ. We
have the following results:

a) lim
n→∞

Lαn
(x, Θn) = Lα(x, Θ).

b) lim
n→∞

Lαn
f(x, Θn) ≥ Lαf(x,Θ).

c) lim
n→∞

Hαnr(x, Θn) ≥ Hαr(x, Θ).

d) lim
n→∞

Gαnhαn(x, Θn) ≥ Gαh(x, Θ).

The lower semicontinuity properties mentioned at the
beginning of this section follow easily from this proposition
as stated in the next corollary.

Corollary 4.2: Consider h ∈M(E) bounded from below.
We have the following results:

a) Lα(x, Θ) is continuous on Vr(x).
b) Lαf(x, Θ) is lower semicontinuous on Vr(x).
c) Hαr(x, Θ) is lower semicontinuous on Vr(x).
d) Gαh(x, Θ) is lower semicontinuous on Vr(x).

Proof: By taking αk = α ≥ 0, hαk
= h in Proposition

4.1 the results follow.
We show next that under assumptions A.9)-A.13) there

exists an ordinary feedback optimal control (see Remark 3.3)
for the one-stage optimization equation (10). First we need
the following definition.

Definition 4.3: Consider w ∈ M(E) and h ∈ M(E)
bounded from below. Denote by û(w, h) ∈ SU the mea-
surable selector satisfying

inf
a∈U(x)

{f(x, a)− λ(x, a)
[
w(x)−Qh(x, a)

]
} =

f(x, û(w, h)(x))− λ(x, û(w, h)(x))
[
w(x)

−Qh(x, û(w, h)(x))
]
,

inf
a∈U(z)

{r(z, a) + Qh(z, a)} = r(z, û(w, h)(z))

+ Qh(z, û(w, h)(z)),

and ûφ(w, h) ∈ SV the measurable selector derived from
û(w, h) as in Proposition 3.4.
The existence of û(w, h) follows from assumptions A.9)-
A.12) and Theorem 3.3.5 in [5].
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The next theorem was proved in [6]. This proof follows
similar lines as in [3], [4], where the connection between w
with α = 0 and the control problem (1) was also established.

Theorem 4.4: Let α ≥ 0, ρ ∈ R+ and h ∈ M(E) be
bounded from below. Suppose that the function w defined
in equation (10) is such that w(x) ∈ R for all x ∈ E.
Then w ∈ Mac(E) and the feedback measurable selector
ûφ(w, h) ∈ SV (see Definition 4.3) satisfies the following
one-stage optimization problems:

Rα(ρ, h)(x) = Tα(ρ, h)(x) = −ρLα(x, ûφ(w, h)(x))
+ Lαf(x, ûφ(w, h)(x)) + Hαr(x, ûφ(w, h)(x))
+ Gαh(x, ûφ(w, h)(x)).

Note that in particular we have from the previous theorem
that Rα(ρ, h)(x) = Tα(ρ, h)(x).

V. OPTIMALITY EQUATION FOR THE DISCOUNTED CASE

In this section we derive under the assumptions made
in the previous sections an optimality equation for the
discounted optimal control problem (2). As usual in this
kind of problem we characterize first the optimality equation
for the truncated on the jump times Tm problems (3) and
then take the limit as m → ∞. Throughout this section we
consider α > 0 fixed. For any g ∈M(E)+, we set Wg as the
function on E defined as Wg(x) = Rα(0, g)(x) for x ∈ E.
The following proposition is an immediate consequence of
the results derived in the previous section.

Proposition 5.1: We have that W maps M(E)+ into itself
and there exists û ∈ SU such that ûφ ∈ SV and satisfies

Wg(x) = Lαf(x, ûφ(x)) + Hαr(x, ûφ(x))+
Gαg(x, ûφ(x)). (11)

Proof: From Theorem 4.4, we obtain the first equality
and the existence and characterization of û ∈ SU such that
ûφ ∈ SV satisfies equation (11). Now applying Proposition
3.2 and by using the fact that f ∈ M(E × U)+ and r ∈
M(∂E × U)+, we obtain that Wg ∈M(E)+.

By using the fact that W is a monotone operator, the
sequence of functions (vm)m∈N ∈ M(E)+ defined as
vm+1 = Wvm, v0 = 0, is monotone non-decreasing. We
have the following proposition, proved in [6]. Similar results
can be found in [3], [4].

Proposition 5.2: For all x ∈ E and m ∈ N we have that
vm(x) = inf

U∈U
Dα

m(U, x).

Since the functions vm ∈ M(E)+ are non-decreasing,
there exists v ∈ M(E)+ such that vm ↑ v, and recalling
from Proposition 5.2 that vm(x) = inf

U∈U
Dα

m(U, x) ≤ J α
D (x),

it follows that v ≤ J α
D . We need the following propositions:

Proposition 5.3: If h ∈ M(E)+ is such that h(x) ≥
Wh(x) then h(x) ≥ J α

D (x).
Proof: By using Theorem 4.4 with ρ = 0, we obtain

that there exists ûφ ∈ SV such that

h(x) ≥ inf
Υ∈V(x)

{
Lαf(x, Υ) + Hαr(x, Υ) + Gαh(x, Υ)

}

= Lαf(x, ûφ(x)) + Hαr(x, ûφ(x)) + Gαh(x, ûφ(x)).

Define w(x) = Lαf(x, ûφ(x)) + Hαr(x, ûφ(x)) +
Gαh(x, ûφ(x)). Clearly w(x) ≥ 0. Following the same
arguments as in [3], [4] (see also [6]), we have that that
there exists Û ∈ U such that for all m ∈ N,

Dα
m(Û , x) ≤ −E

bU
x

[
e−αt∧Tmw

(
X(t ∧ Tm)

)]
+ h(x)

≤ h(x).

From assumption A.4) (which implies that Tm →∞ P
bU

a.s.), we have that

E
bU
x

[∫ t

0

e−αs
[
f
(
X(s), û(N(s), Z(s), τ(s))

)]
ds

+
∫ t

0

e−αsr
(
X(s−), û∂(N(s), X(s−))

)
dp∗(s)

]
≤ h(x),

and taking the limit as t →∞ we obtain that h(x) ≥ J α
D (x).

Proposition 5.4: We have that v(x) = Wv(x).
Proof: Let us show first that v(x) ≤ Wv(x). By using

the definition of W we have for any Υ ∈ Vr(x) that

vm+1(x) ≤ Lαf(x, Υ) + Hαr(x,Υ) + Gαvm(x, Υ).

Taking the limit as m ↑ ∞ and from the monotone con-
vergence theorem we get that v(x) = limm→∞ vm+1(x)
≤ Lαf(x, Υ)+Hαr(x, Υ)+Gαv(x, Υ) showing that v(x) ≤
Wv(x). From Proposition 5.1, there exists for any m ∈ N,
um ∈ SU such that

Wvm(x) =Lαf(x, um
φ (x)) + Hαr(x, um

φ (x))+
Gαvm(x, um

φ (x)).

Fix x ∈ E. Since um
φ (x) ∈ V(x) ⊂ Vr(x) and Vr(x) is

compact we can find a further subsequence, still written as
um

φ (x) for notational simplicity, such that um
φ (x) → Θ̂ ∈

Vr(x). From Proposition 4.1,

v(x) = lim
m→∞

vm+1(x)

= lim
m→∞

{
Lαf(x, um

φ (x)) + Hαr(x, um
φ (x))+

Gαvm(x, um
φ (x))

}

≥ Lαf(x, Θ̂) + Hαr(x, Θ̂) + Gαv(x, Θ̂)

≥ inf
Θ∈Vr(x)

{
Lαf(x, Θ) + Hαr(x, Θ) + Gαv(x, Θ)

}

= Wv(x),

giving the result.
We have the following theorem characterizing the opti-

mality equation for the discounted optimal control problem
(2) and showing the convergence of the truncated problems.

Theorem 5.5: We have that vn ↑ J α
D and J α

D (x) =
WJ α

D (x).
Proof: All we need to show is that J α

D (x) ≤ v(x). But
this is immediate from Propositions 5.4 and 5.3.
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VI. THE VANISHING APPROACH

Our final main result presents conditions for the existence
and characterization of an ordinary optimal feedback control
for the long run average cost using the so-called vanishing
discount approach (see Theorem 6.4). First we have the
following result, which traces a parallel with the Abelian
Theorem.

Proposition 6.1: We have that

lim sup
α↓0

αJ α
D (x) ≤ JA(x).

Proof: See Theorem 1, chapter 5 in [11].
We shall add the following assumptions for the discounted

problems:
A.14) There exists a state x0 ∈ E, numbers β > 0, C ≥ 0,

Kh ≥ 0, and a nonnegative function b(.) such that
for all x ∈ E and α ∈ (0, β], ρα ≤ C, where ρα =
αJ α

D (x0) and −Kh ≤ hα(x) ≤ b(x) where hα(x) =
J α
D (x)− J α

D (x0).

We have the following propositions:
Proposition 6.2: There exists a decreasing sequence of

positive numbers αk ↓ 0 such that ραk
→ ρ and for all

x ∈ E, limk→∞ αkJ αk(x) = ρ.
Proof: See Lemma in [5], page 88.

Proposition 6.3: Set h = lim
k→∞

hαk
. Then for all x ∈ E,

h(x) ≥ −Kh and h(x) ≥ T (ρ, h)(x).
Proof: From Proposition 5.1 and Theorem 5.5 we have

that the following equation is satisfied for each α > 0 and
x ∈ E:

hα(x) = Tα(ρα, hα)(x) = −ραLα(x, uα
φ(x))+

Lαf(x, uα
φ(x)) + Hαr(x, uα

φ(x)) + Gαhα(x, uα
φ(x)), (12)

for uα
φ ∈ SV. For x ∈ E fixed and for all k ∈ N,

uαk

φ (x) ∈ V(x) ⊂ Vr(x) and since Vr(x) is compact we
can find a further subsequence, still written as uαk

φ (x) for
notational simplicity, such that uαk

φ (x) → Θ̂ ∈ Vr(x).
Combining Proposition 4.1 and equation (12),

h(x) = lim
k→∞

hαk
(x) = lim

k→∞

{
−ραk

Lαk
(x, uαk

φ (x))+

Lαk
f(x, uαk

φ (x))Hαk
r(x, uαk

φ (x)) + Gαk
hαk

(x, uαk

φ (x))
}

≥ −ρL(x, Θ̂) + Lf(x, Θ̂) + Hr(x, Θ̂) + Gh(x, Θ̂). (13)

Therefore, from Theorem 4.4, it follows h(x) ≥
R(ρ, h)(x) = T (ρ, h)(x), showing the result

Our final result establishes the existence and characteriza-
tion of an optimal control strategy for the long run average
cost problem. We need to reinforce assumption A.13) by the
following hypothesis:

A.15) The mapping ξ ∈M(E)+ defined in assumption A.13)
satisfies

∫ t∗(x)

0
e−
R t
0 ξ(φ(x,s))dsdt < K%, for all x ∈ E

where K% ∈ R.

Theorem 6.4: Suppose that assumptions A.1)-A.15) hold.
Then there exists h ∈ E bounded from below such that
h(x) ≥ T (ρ, h)(x). Set w = T (ρ, h) and γ̂ = û(w, h) ∈ SU
be an optimal measurable selector as defined in Definition
4.3. Let Γ̂φ = (γ̂φ, γ̂φ,∂) be as in Proposition 3.4 and
define the control Û = (û, û∂) by û(n, x, t) = γ̂φ(x, t),
û∂(n, x) = γ̂φ,∂(x). Then Û ∈ U is optimal. Moreover,
ρ = JA(x) = A(Û , x).

Proof: Combining Theorem 4.4 and Proposition 6.3 and
along the same lines as in [3], [4] (see also [6]), it follows
that Û ∈ U defined as above satisfies

E
bU
x

[ ∫ t∧Tm

0

[
f
(
X(s), û(N(s), Z(s), τ(s))

)]
ds+

∫ t∧Tm

0

r
(
X(s−), û∂(N(s), X(s−))

)
dp∗(s)

]

≤ E
bU
(x,k)

[
ρ[t ∧ Tm]− w

(
X(t ∧ Tm)

)]
+ w(x).

Combining Proposition 6.3 and assumption A.15), we ob-
tain that w(x) ≥ −ρK% − Kh. Moreover, we have, from
assumption A.4) that Tm →∞ P

bU a.s. . Consequently,

E
bU
x

[ ∫ t

0

[
f
(
X(s), û(N(s), Z(s), τ(s))

)]
ds+

∫ t

0

r
(
X(s−), û∂(N(s), X(s−))

)
dp∗(s)

]

≤ ρ t + ρK% + Kh + w(x),

showing that ρ ≥ A(Û , x). From Proposition 6.1 and
Proposition 6.2, we have ρ ≤ JA(x) completing the proof.
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