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Abstract— This paper discusses topological geometrical as-
pects and a control strategy for a distributed port-Hamiltonian
system with a non-integrable structure called a distributed
energy structure. First, we show a geometrical structure of
port variables determined by differential forms. Next, we state
the necessary condition for regarding the distributed energy
structure as a boundary energy structure which is boundary
integrable. From these results, we define the fundamental
form that generates the distributed port-Hamiltonian system
with distributed energy structures in a variational problem.
Finally, we present a new concept of boundary controls for the
distributed port-Hamiltonian system with distributed energy
structures in space-time coordinates.

I. INTRODUCTION

A distributed port-Hamiltonian system is a general frame-

work for boundary control of partial differential equa-

tions [2]. The system has two aspects: the physical system

defined by a Hamiltonian and the control system based on

passivity. If we can formulate a control object as a distributed

port-Hamiltonian system, the representations reflects many

results in analytical mechanics, and at the same time, we can

apply control strategies of port representations (i.e. damping

injection, energy shaping and port interconnection) to the

system [6], [7], [8].

A boundary integrable structure, called a Stokes-Dirac

structure, formalizes the distributed port-Hamiltonian system

in the sense of Stokes’s theorem with differential forms

(e.g. Maxwell’s equations without current densities). The

distributed port-Hamiltonian system consists of dual pairs

of variables, called boundary port variables, satisfying the

Stokes-Dirac structure. The boundary integral of the pairs of

boundary port variables is equal to the power flow through

the boundary of the system. The formalism can be extended

to a boundary non-integrable structure [2] by introducing

distributed port variables. The domain integral of the pairs

of distributed port variables expresses the distributed power

flow of the system. We call the boundary integrable (resp.

non-integrable) structure, which is defined by boundary

(resp. distributed) port variables, boundary (resp. distributed)

energy structures in the distributed port-Hamiltonian system.
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In this paper, we discuss a geometrical structure deter-

mined by differential forms and a boundary control method

for the distributed port-Hamiltonian system with the dis-

tributed energy structure. First, we show that the spaces of

differential forms defining port variables relates to the topo-

logical geometry of compact Riemannian manifolds. Next,

we state the necessary condition for regarding a distributed

energy structure as a boundary energy structure, which we

call boundary completion. From the results, we define a

fundamental form and a partition of the Hamiltonian. The

fundamental form generates the distributed port-Hamiltonian

system in terms of variational calculus. The partition of the

Hamiltonian gives the information to split a differential form

into two port variables and it is introduced from the rela-

tion between classical field equations and distributed port-

Hamiltonian systems. Finally, after extending the fundamen-

tal form to distributed energy structures, we present the new

strategy of boundary controls in space-time coordinates. The

concept holds for all distributed port-Hamiltonian systems

including distributed energy structures.

II. MATHEMATICAL PRELIMINARIES

Let M be an m-dimensional orientable C∞ Riemannian

manifold. Let d : Ωk(M) → Ωk+1(M) denote an exterior

differential operator, and let ∗ : Ωk(M) → Ωk(M) denote

a Hodge star operator, where k := m − k and Ωk(M)
is a space of differential k-forms on M . We define δ =
(−1)m(k+1)+1 ∗d∗ to be the adjoint operator of d regarding

the inner product 〈ω, η〉 =
∫

M
ω ∧ ∗η for ω, η ∈ Ωk(M).

The form ω ∈ Ωk(M) is called a closed form if dω =
0, an exact form if there exists η ∈ Ωk−1(M) such that

ω = dη, a dual exact form if there exists θ ∈ Ωk+1(M)
such that ω = δθ, and a harmonic form if △ω = 0, where

△ = dδ + δd : Ωk(M) → Ωk(M) is called the Laplacian.

We denote exact, dual exact, and harmonic k-forms on M
by ωk

E ∈ Ωk
E(M), ωk

D ∈ Ωk
D(M), and ωk

H ∈ Ωk
H(M),

respectively.

A. Distributed-port-Hamiltonian systems with distributed

energy structures

This section gives the definition of port Hamiltonian sys-

tems containing as well boundary as distributed port variables

that we shall use. It is a slightly more general definition of the

distributed port variables than in the original definition [2] in

the sense that the distributed port variables may be defined

in a different spatial domain.

Definition 2.1: Let Z be an n-dimensional C∞ manifold

with the boundary ∂Z. Let S be an l-dimensional manifold.
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Let F and E be linear spaces satisfying the complementarity

condition p + q = n + 1 given by

F = Ωp(Z) × Ωq(Z) × Ωp(∂Z) × Ωu(S) ,

E = Ωp(Z) × Ωq(Z) × Ωq(∂Z) × Ωu(S) ,
(1)

where p := n − p, q := n − q, u := n − u, 0 ≤ u ≤ l, f :=
(fp, fq, fb, fd) ∈ F is called a flow, e := (ep, eq, eb, ed) ∈
E is called a effort, and the pairs (f, e) are called power

variables.

Definition 2.2: Let us define the non-degenerate bilinear

form on the bond space F × E :

〈〈 (f1, e1), (f2, e2) 〉〉

=

∫

Z

(

e1
p ∧ f2

p + e1
q ∧ f2

q + e2
p ∧ f1

p + e2
q ∧ f1

q

)

+

∫

∂Z

(

e1
b ∧ f2

b + e2
b ∧ f1

b

)

+

∫

S

(

e1
d ∧ f2

d + e2
d ∧ f1

d

)

. (2)

Definition 2.3: Let us define the linear subspace D of F×
E such that

D = {(f, e) ∈ F × E |
[

fp

fq

]

=

[

0 (−1)rd
d 0

] [

ep

eq

]

+ Gfd , ed = − G∗

[

ep

eq

]

,

[

fb

eb

]

=

[

1 0
0 (−1)p

] [

ep|∂Z

eq|∂Z

]}

, (3)

where r = pq + 1, |∂Z is the restriction to ∂Z and G =
[Gp, Gq]

⊤ : Ωu(S) → Ωp(Z) × Ωq(Z) is a linear map

with dual map G∗ = [G∗
p, G

∗
q ] : Ωp̄(Z) × Ωq̄(Z) → Ωū(S)

satisfying
∫

Z

[

ep ∧ Gp(fd) + eq ∧ Gq(fd)
]

=

∫

S

[

G∗

p(ep) + G∗

q(eq)
]

∧ fd (4)

for all (ep, eq, fd) ∈ Ωp(Z) × Ωq(Z) × Ωu(S).
Definition 2.4: A Dirac structure is a linear subspace

D ⊂ F × E such that D = D
⊥, where ⊥ is the orthogonal

complement with respect to the bilinear form 〈〈 , 〉〉.
Theorem 2.1 ([2]): D is a Dirac structure with respect to

the bilinear form 〈〈 , 〉〉 defined in (2).

Definition 2.5: Let us consider a Hamiltonian functional

H =
∫

Z
H(ᾱq, ᾱp) defined with respect to the Hamiltonian

density:

H(ᾱq, ᾱp) : Ωp(Z) × Ωq(Z) × R → Ωn(Z) , (5)

where ᾱq ∈ Ωq(Z) and ᾱp ∈ Ωp(Z). Substituting the

following definition of power variables

fp = −
∂ᾱp

∂t
, fq = −

∂ᾱq

∂t
, ep =

∂H

∂ᾱp
, eq =

∂H

∂ᾱq
, (6)

where ∂H /∂ᾱ denotes the variational derivative of H

with respect to ᾱ [18], into (3), we get a distributed port-

Hamiltonian systems with a boundary port variables (fb, eb)
and distributed port variables (fd, ed) .

Proposition 2.2 ([2]): The energy balance of distributed

port-Hamiltonian systems is given by

dH

dt
=

∫

Z

(ep ∧ fp + eq ∧ fq) +

∫

S

ed ∧ fd

=

∫

∂Z

eb ∧ fb +

∫

S

ed ∧ fd . (7)

The first term of the right-hand side of (7) corresponds

to the flow of energy per time instant through the boundary

of the spatial domain. The second term in (7) corresponds

to the flow of energy per time distributed in the spatial

domain and may arise for instance from a current density

in Maxwell’s equations, a distributed weight in equations

of flexible beams, and a distributed dissipation in telegraph

equations, etc. In such cases the domain of the distributed

port variables are either S = Z or some connected subset.

Then the boundary control with boundary port variables

should be completed with some distributed control with

distributed port variables to stabilize the systems [5].

B. Differential geometric interpretation of distributed energy

structures

In this section we recall that, in the case when, for

topological reasons, the space of k-harmonic form is trivial,

then the distributed port variables generates a source term in

the conservation law in terms of a dual exact form. First, we

recall the following important result in differential geometry.

Proposition 2.3 (Hodge decomposition [10], [13], [11]):

On an oriented compact Riemannian manifold M , an

arbitrary k-form can be uniquely written as the sum of an

exact form, a dual exact form, and a harmonic form:

Ωk(M) = Ωk
E(M) ⊕ Ωk

D(M) ⊕ Ωk
H(M) . (8)

If we can assume Ωk
H(M) = 0 for k > 0 for an

appropriate reason (mentioned in the next section), each

differential form can be considered as a sum of an exact

form and a dual exact form.

Theorem 2.4 ([5]): Consider the Stokes-Dirac structure

(3) on a contractible manifold. Then the terms (−1)rdeq

in fp and dep in fq are exact forms and the terms Gp(fd)
in fp and Gq(fd) in fq are dual exact forms.

This theorem says that any port variable belongs to either

exact forms or dual exact forms on a contractible manifold.

The distributed energy structure consisting of dual exact

forms is boundary non-integrable from (7). Therefore, we

can say that the distributed energy structure is inappropriate

from the viewpoint of boundary controls.

C. Differential forms and de Rham cohomologies

This section explains why we introduce the topological as-

sumption that is contractible. The decomposition in Prop. 2.3

is significant in the sense of global topology by the following

fact.

Definition 2.6: Let Zk(M) and Bk(M) be the set of all

closed k-forms on M and the set of all exact k-forms,
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respectively:

Zk(M) = Ker
(

d : Ωk(M) → Ωk+1(M)
)

, (9)

Bk(M) = Im
(

d : Ωk−1(M) → Ωk(M)
)

. (10)

The quotient space

Hk
DR(M) = Zk(M)/Bk(M) (11)

is called the k-dimensional de Rham cohomology of M .

Theorem 2.5 (Hodge theorem [10], [13], [11]): On an

oriented compact Riemannian manifold M , the de Rham

cohomology group Hk
DR(M) and the space of harmonic

forms Ωk
H(M) are isomorphic: Ωk

H(M) ∼= Hk
DR(M).

The de Rham cohomology Hk
DR(M) is a characterization

of topological properties of manifolds [10], [16]. From de

Rham’s theorem [10], [13], one obtains that Hk
DR(M) ∼=

Hk(K; R), where Hk(K; R) is the cohomology group of

a simplical complex K with coefficients in R. As a conse-

quence, Hk
DR(M) is equivalent to the topological invariant

quantity that is calculated from the triangulation.

In other words, a differential form is defined at each local

point of the manifolds, but it essentially relates to global

topology through harmonic forms. To understand this, let us

consider the simplest situation.

Corollary 2.6 (Poincaré lemma [10], [13], [12]): The de

Rham cohomology of R
n is

Hk
DR(Rn) = Hk

DR(R0) =

{

R, if k = 0;

0, otherwise ,
(12)

where R
0 is a point.

This lemma says that there exists η ∈ Ωk−1(Rn) such

that ω = dη if ω ∈ Ωk(Rn) for k > 0 is an arbitrary

closed form. In other words, all closed forms dω = 0 are

exact forms ω = dη in local coordinates on R
n. However,

the problem of whether there globally exists such a η
depends on the properties of manifolds in general. The

de Rham cohomologies of C∞ manifolds with the same

homotopy type are isomorphic. In the case of trivial de Rham

cohomologies which are the same as R
n, a manifold is called

a contractible.

III. GEOMETRICAL STRUCTURE AND COMPLETION OF

BOUNDARY ENERGY STRUCTURES

From the previous discussion, we shall assume that in

Def. 2.5 of the port Hamiltonian system, the spatial domain is

a compact submanifold Z with boundary ∂Z of a contractible

manifold N . The algebraic topological properties of the man-

ifolds on which the port Hamiltonian system are defined will

play an essential role in the definition of the flow and effort

variables and endowing them with a bilinear product. This

section presents differential geometrical aspects arising from

this setting. First, we show that the topological assumption

of manifolds defines a geometrical structure of differential

forms. After that, we introduce a necessary condition to

regard a distributed energy structure as a boundary energy

structure. We call the structure satisfying this condition a

completion of distributed energy structures.

A. Geometrical structure of power variables

This section shows that the complementary condition

p + q = n + 1 determines the main structure of distributed

port-Hamiltonian systems defined on a compact submani-

fold Z with boundary ∂Z of an n-dimensional contractible

Riemannian manifold N . The decomposition of the flow

variables fq and fp given in Thm. 2.4 may be summarized

by the following diagram involving the exterior differential

operator d and its adjoint δ:

fp−1 = dαp−2 + αp−1

d wwpp
p

∈ Ωp−1(Z) = Ωq(Z)

fp = dαp−1 + δβp+1 ∈ Ωp(Z) = Ωq−1(Z)

fp+1 = βp+1

δ
77ppp

+ δβp+2 ∈ Ωp+1(Z) = Ωq−2(Z)

(13)

where there exists αp−1 ∈ Ωp−1(Z) for dαp−1 in fp, there

exists βp+1 ∈ Ωp+1(Z) for δβp+1 in fp, and Ωp−1(Z) =
Ωq(Z) = Ωn−q(Z) because αp−1 = eq and p + q = n + 1.

The same structure exists for fq:

fq−1 = dαq−2 + αq−1

d xxqqq
q

∈ Ωq−1(Z) = Ωp+1(Z)

fq = dαq−1 + δβq+1 ∈ Ωq(Z) = Ωp(Z)

fq+1 = βq+1

δ
88qqq

+ δβq+2 ∈ Ωq+1(Z) = Ωp−1(Z)

(14)

Proposition 3.1: If Z is contractible, d and δ satisfy

di : Ωi
D(Z) → Ωi+1

E (Z) , (15)

δi+1 : Ωi+1
E (Z) → Ωi

D(Z) (16)

for 0 ≤ i ≤ n − 1.

Proof: This fact is the definition itself; however, we

shall check it. Im di = Ker di+1 and Im δi+2 = Ker δi+1.

Because the (i + 1)-th cohomology vanishes by the con-

tractible topological assumption. The (i+1)-th cohomology

is isomorphic to the space of harmonic forms. The exactness:

d ◦ d = 0 or δ ◦ δ = 0 holds.

From equations (13) and (14), we obtain the following

lemma.

Lemma 3.2: The Hodge star operators

∗ : Ωq
E(Z) → Ωp−1

D (Z); dαq−1 7→ αp , (17)

∗ : Ωp
E(Z) → Ωq−1

D (Z); dαp−1 7→ αq (18)

are isomorphisms for each subspace of fp and fq.

Proof: First, if ω is an exact form: ω = dη, ∗ω is

a dual exact form: ∗ω = δθ, because, for η ∈ Ωk(Z),
∗(ω) = ∗(dη) is equal to ∗ω = (−1)k(n−k)∗d∗(∗η) =
(−1)k(n−k)+n(k+1)+1δ(∗η). The converse case also holds.

That is, ∗(∗ω) = ∗(δθ) yields (−1)(k+1)(n−k−1)ω =
(−1)(n−k+1)(k−1)+n(k+1)+1d(∗θ) for θ ∈ Ωk(Z).

The mappings can be generalized as follows.

Proposition 3.3: The Hodge star oeprators

∗ : Ωq+i
E (Z) → Ωp−1−i

D (Z) , (19)

∗ : Ωp+j
E (Z) → Ωq−1−j

D (Z) (20)

are isomorphisms for −q ≤ i ≤ n− q and −p ≤ j ≤ n− p.
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The relation can be generalized as follows:

fq ∈ Ωq
E

∗
��

δq
// Ωq−1

D

dq−1

oo ∋ ep

eq ∈ Ωp−1
D

dp−1

// Ωp
E

δp
oo

∗

OO

∋ fp

(21)

where this commutative diagram expresses the structure of

power variables of one distributed port-Hamiltonian system.

Next, we clarify the inner product structure. The inner

product is defined by the integral of a pair of differential

forms ω, η ∈ Ωk(Z) shaping the volume form:

〈f, e〉 =

∫

Z

e ∧ f =

∫

Z

∗η ∧ ω . (22)

From the discussion in the previous section, we arrive at the

following propositions immediately.

Proposition 3.4: If we assume that ep := ∗fp and eq :=
∗fq on an oriented compact Riemannian manifold Z, then

we have the following inner product

〈f, e〉 =

∫

Z

ek
D ∧ dek−1

D + ek
E ∧ δek+1

E + ek
H ∧ fk

H , (23)

where f = fk
E +fk

D +fk
H ∈ Ωk(Z) and e = ek

E +ek
D +ek

H ∈

Ωk(Z).
Proof: Thm. 2.3 gives the following relations:

〈

dαk−1, δβk+1
〉

= 0,
〈

dαk−1, γk
〉

= 0 and
〈

δβk+1, γk
〉

=
0 for a general representation of k-forms ωk = dαk−1 +
δβk+1 + γk ∈ Ωk(Z), where dαk−1 ∈ Ωk

E(Z), δβk+1 ∈
Ωk

D(Z) and γk ∈ Ωk
H(Z). The integrand is calculated by

∗f ∧ f =
(

∗fk
E

)

D
∧ fk

E +
(

∗fk
D

)

E
∧ fk

D +
(

∗fk
H

)

H
∧ fk

H

= ek
D ∧ fk

E + ek
E ∧ fk

D + ek
H ∧ fk

H

= ek
D ∧ dek−1

D + ek
E ∧ δek+1

E + ek
H ∧ fk

H , (24)

where we used △∗f = ∗△f [11], [13] in the third term.

Proposition 3.5: If Z is contractible, the integrand of the

third term of (23): ek
H ∧ fk

H is equivalent to zero for any k.

Proof: From Thm. 2.5 and Cor. 2.6, the term becomes

zero for any k.

B. Boundary completion of distributed energy structures

We see that the inner product (23) introduced from the

topological assumption itself naturally includes a boundary

energy structure as well as a distributed energy structure. The

relations in the previous section can be generalized and are

illustrated as follows.

· · · Ωq+1
E>>

~~

∗
��

Ωq
E

0oo
>>

~~

∗
��

Ωq−1
E

0oo

>>
~~

∗
��

Ωq−2
E

0oo

>>
~~

∗
��

· · ·
oo

· · · Ωq+1
DOO

∗

Ωq
D

0oo

dp``BBB

OO

∗

∗̃
~~|||

Ωq−1
D

0oo

dp−1``BBB

OO

∗

∗̃
~~||

Ωq−2
D

0oo

dp−2``BB

OO

∗

∗̃

~~|||

· · ·
oo

· · ·
//Ωp−2

D>>
~~

0 //

dp−2   B
B

Ωp−1
D>>

~~

0 //

dp−1   B
BB

Ωp
D>>

~~

0 //

dp   B
BB

Ωp+1
D>>

~~

· · ·

· · ·
//Ωp−2

E 0
//Ωp−1

E 0
// Ωp

E 0
//Ωp+1

E
· · ·

where oo // means the correspondence of the pairs of orthog-

onal subspaces in a space of differential forms, 0 is a zero

map, and ∗̃ defines the dual pair with respect to the inner

product on ∂Z:

∗̃ : Ωq−1+i
D (Z)|∂Z → Ωp−1−i

D (Z)|∂Z (25)

for 1 − q ≤ i ≤ n − q. In this diagram, the boundary

energy structure corresponds to the center parallelogram

consisting of {Ωp
E(Z), Ωp−1

D (Z), Ωq
E(Z), Ωq−1

D (Z)}, which

is equivalent to (21), and the distributed energy structure

corresponds to the adjacent spaces {Ωp
D(Z), Ωq

D(Z)}.

Here, the correspondence indicates that the distributed

energy structure is one of spaces of other parallelograms

arrayed symmetrically in the diagram. Here, one question

arises, that is, whether we can construct a new boundary

energy structure for the boundary control of the distributed

energy structure. The following answers this question.

Definition 3.1: We define the set of subspaces of differ-

ential forms:

Zi = {Ωp+i
E (Z), Ωp−1+i

D (Z), Ωq−i
E (Z), Ωq−1−i

D (Z)} (26)

Si = {Ωp+i
D (Z), Ωq−i

D (Z)} . (27)

A distributed port-Hamiltonian system over Z0 with dis-

tributed energy structures over S0 is called boundary com-

plete if there exist other distributed port-Hamiltonian systems

Zi for i = ±1 including the distributed energy structures

over S0 as boundary energy structures.

Theorem 3.6: The following are necessary conditions to

be boundary complete for a distributed port-Hamiltonian

system over Z0 with a distributed energy structure over S0:

1) There exists a pair of distributed port-Hamiltonian sys-

tems over Zi without a distributed energy structure over

Si for i = −1, 1.

2) q ≥ 2, p ≥ 2 and n ≥ 3.

Proof: The previous diagram clearly proves the theo-

rem; however, it is difficult to see this fact without an illus-

tration. 1) Obviously, we should find two systems defined

over Z1 including Gp(fd) ∈ Ωp
D(Z) and Z−1 ∈ Ωq

D(Z)
including Gq(fd). 2) If the two systems exist, q − 2 ≥ 0
and p − 2 ≥ 0 are necessary, at least. Thus, we have

p − 2 = n − q − 1 ≥ 0. This means n ≥ q + 1.

IV. BOUNDARY OBSERVATION OF DISTRIBUTED ENERGY

STRUCTURE BY USING THE TIME COORDINATE

The completion of the boundary energy structure is the-

oretically realizable; however, this concept might be am-

biguous in a practical situation. In this section, we present

a new control strategy to change the obstruction of the

distributed energy structure into a useful structure in the

sense of boundary controls.

A. Partition of the Hamiltonian

First, we define the fundamental form that yields dis-

tributed port-Hamiltonian systems by differentiation.

Definition 4.1: Define the map

W k
n : Ωk(Z) × Ωk(Z) → Ωn(Z);

cei
dxk ∧ cfi

dxk 7→
∂H

∂ai

dai

dt
dxn (28)
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for k < n and i = p or q, where cei
(x), cfi

(x) are the

coefficients of k-, k-forms, respectively, k := n − k and

H(aq(t), ap(t)) is the function of t.
Note that the definition of the Hamiltonian is changed from

(5) into the function H(aq(t), ap(t)).
Proposition 4.1: W k

n is a surjection.

Proof: The number of basic 1-forms generating k-forms

is the combination nCk. An n-form is a monomial.

Proposition 4.2: The inverse map (W k
n )−1 = Wn

k such

that

Wn
k : Ωn(Z) → Ωk(Z) × Ωk(Z);

∂H

∂ai

dai

dt
dxn 7→ cei

dxk ∧ cfi
dxk (29)

is not an injection for k 6= n.

Proof: From Prop. 4.1, the map is one-to-one if k = n.

However, in the other cases, the inverse of the projection

is not uniquely determined because of the difference in the

number of coefficients of differential forms.

Definition 4.2: A uniquely defined Wn
i is called a parti-

tion of the Hamiltonian if information on the coefficients of

the differential forms ce and cf is given.

These definitions are used in the following proposition.

Theorem 4.3: Consider an m-dimensional manifold M
containing an n-dimensional submanifold N ⊂ M such that

n = m − 1. We define the fundamental (m − 1)-form

Θ = (−1)n−qdt ∧ eq ∧ ep −H(aq, ap) ∧ dsn

∈ Ωm−1(M) , (30)

where ep ∈ Ωn−p(M), eq ∈ Ωn−q(M), dsn ∈ Ωn(M)
which consists of basic forms dx1, · · · , dxn generated

by spatial variables s of (t, s) = (x0, x1, · · · , xn) and

H(aq(t), ap(t)) is the Hamiltonian density. Then dΘ ≡ 0
with a partition of the Hamiltonian Wn

p and Wn
q is a suffi-

cient condition for yielding the distributed port-Hamiltonian

system.

Proof: A direct calculation leads to the following:

dΘ = (−1)n−qdt ∧ deq ∧ ep + dt ∧ eq ∧ dep

−
∂H

∂ap

dap

dt
dt ∧ dxn −

∂H

∂aq

daq

dt
dt ∧ dxn . (31)

By using Wn
p and Wn

q , we get

dΘW = (−1)rdt ∧ ep ∧ deq + dt ∧ eq ∧ dep

− dt ∧ cep
dxp ∧ cfp

dxp − dt ∧ ceq
dxq ∧ cfq

dxq

= (−1)rdt ∧ ep ∧ deq + dt ∧ eq ∧ dep

+ dt ∧
∂H

∂ᾱp
∧

(

−
dᾱp

dt

)

+ dt ∧
∂H

∂ᾱq
∧

(

−
dᾱq

dt

)

,

(32)

where i := n− i. Substituting (3) with fd = ed = 0 and (6)

into the last equation, we get dΘW = 0.

The fundamental form Θ is related to classical field

theory [17].

Corollary 4.4: ∗Θ is equivalent to the Poincaré-Cartan

fundamental form in the case of a hyper regular Lagrangian.

Proof: Applying the Hodge star operator to the left-

hand side of (30), we get

∗Θ = ∗ (eq ∧ dt ∧ ep −H(aq, ap)dsn)

= ceq
cep

ds1 −H(aq, ap)dt , (33)

where ds1 is the spatial 1-form and ceq
, cep

are coefficients

of eq, ep, respectively. H is uniquely determined by the

Legendre transformation of a hyper regular Lagrangian.

Thus, the distributed port-Hamiltonian system possessing

the partition of the Hamiltonian is a more detailed represen-

tation than the classical field equations.

Theorem 4.5: The partition of the Hamiltonian is the

necessary condition to formulate a classical field equation

as a distributed port-Hamiltonian system.

Proof: From Cor. 4.4, distributed port-Hamiltonian sys-

tems correspond to classical field equations with the partition

of a hyper regular Lagrangian.

In some practical cases, the partition of Hamiltonian is

given as a problem setting (e.g. Maxwell’s equation, etc. [2]).

B. Extension of fundamental forms

In this section, we extend the fundamental form to a wider

form that also yields a distributed energy structure. From

Thm. 2.4, the distributed energy structure is not defined as an

exact form, but a dual exact form. However, from the consid-

erations in the previous section, there exists other distributed

port-Hamiltonian systems including the distributed energy

structure as a boundary energy structure by the boundary

completion. Then such a boundary energy structure should

be formulated with the fundamental form. To expand the

fundamental form, we must first make some preparations.

Definition 4.3: Let us define the following projection:

♭ : Ωm(M) → Ωm−1(N); dΘ 7→ (∂t⌋dΘ) |N , (34)

where N ⊂ M and ∂t⌋ := (∂/∂t)⌋ is the contraction with

respect to dt.
Definition 4.4: Let us define the following injection:

♯ : Ωm(M) → Ωm+1(L); dΘ 7→ dt̃ ∧ dΘ , (35)

which is induced by the inclusion ι : M →֒ L such that

(t, x) 7→ (t̃, t, x) in local coordinates, where L is the

extended manifold with a new time coordinate t̃.
Proposition 4.6: Consider a distributed port-Hamiltonian

system determined by Φ := ♭(dΘ). The power balance of the

distributed port-Hamiltonian system is expressed by Φ|t1 −
Φ|t0 = 0.

Proof: Φ is integrable with respect to t. Further, Φ is

equivalent to dH /dt =
∫

Z
e ∧ f if the Hamiltonian density

H is time invariant, where Z ⊂ N .

Thus, the system representation Φ ≡ 0 in dΘ = dt ∧ Φ
can be restricted to Ωm−1(M) by removing dt. This setting

can be illustrated as follows:

Θ
d
��

Φ ∈ Ωm−1(N)

dΘ
♭

@@����
∈ Ωm(M)
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If we attempt to add a distributed energy structure to the

fundamental form, from (13), (14) and Prop. 3.4, we might

select a candidate

∆′ = dt ∧ (ep)E ∧ δβp+1

+ dt ∧ (eq)E ∧ δβq+1 ∈ Ωm(M) (36)

such that dΘ + ∆′ ≡ 0 determines the distributed port-

Hamiltonian system with distributed energy structures. Note

that we cannot differentiate ∆′ any longer, because ∆′ is

already on the space with the maximum degree: Ωm(M).
However, distributed port-Hamiltonian systems exist to be

the completion of the distributed energy structure in fact.

Next, we shall check that the candidate is true.

The boundary completion can be considered to be a prob-

lem of finding other fundamental forms: Θ1 and Θ2 besides

Θ which generates the original system. More precisely, the

following holds.

Theorem 4.7: The following fundamental forms yield dis-

tributed port-Hamiltonian systems which are required for the

boundary completion of the distributed energy structures:

Θ1 = dt ∧ ep
D ∧ eq−2

D , Θ2 = dt ∧ eq
D ∧ ep−2

D , (37)

where Θ1, Θ2 ∈ Ωm−1(M).
Proof: A direct calculation leads to the following:

d(dt ∧ ep
D ∧ eq−2

D )

= dt ∧
{

dep
D ∧ eq−2

D + (−1)pep
D ∧ deq−2

D

}

♭
= d∗eq−1

E ∧ ∗ep+1
E + (−1)p∗eq−1

E ∧ d∗ep+1
E

= (−1)(p+1)(n−p−1)∗d∗eq−1
E ∧ ep+1

E

+ (−1)p(−1)(q−1)(n−q+1)eq−1
E ∧ ∗d∗ep+1

E

= (−1)n−pδeq−1
E ∧ ep+1

E − eq−1
E ∧ δep+1

E

= −{(−1)qδeq−1
E ∧ ep+1

E + eq−1
E ∧ δep+1

E } (38)

and

d(dt ∧ eq
D ∧ ep−2

D )

= dt ∧
{

deq
D ∧ ep−2

D + (−1)qeq
D ∧ dep−2

D

}

♭
= d∗ep−1

E ∧ ∗eq+1
E + (−1)q∗ep−1

E ∧ d∗eq+1
E

= (−1)(q+1)(n−q−1)∗d∗ep−1
E ∧ eq+1

E

+ (−1)q(−1)(p−1)(n−p+1)ep−1
E ∧ ∗d∗eq+1

E

= (−1)n−qδep−1
E ∧ eq+1

E − ep−1
E ∧ δeq+1

E

= −{(−1)pδep−1
E ∧ eq+1

E + ep−1
E ∧ δeq+1

E } , (39)

where
♭
= means the restriction to the n-dimensional subman-

ifold N ⊂ M and ∗ is the Hodge star operator over N . We

can see that the last equations of (38) and (39) include the

distributed energy structure (36).

C. Utilization of the time coordinates

This section shows another fundamental form that deter-

mines the distributed energy structure. The new fundamental

form is not an n-form but an (n + 1)-form on an extended

manifold.

In (30), the restrictions of forms dt in the first term

and dsn in the second term are introduced to define the

independent equations with respect to dt in dΘ. Now, we

consider the time coordinate as a non-special variable, that

is, we regard t as one of spatial variables. In this case, we

can basically carry out the same procedure as in Thm. 4.3 to

define a distributed port-Hamiltonian system with space-time

coordinates. However, we cannot use the time coordinate as

an auxiliary variable like dt in (30). By introducing an extra

time coordinate t̃, we can define the fundamental form Ξ in

the same way as Θ. That is, we can define the injection

♯ : Ωm(M) → Ωm+1(L);

Ξ = eq−1
E ∧ ep+1

E + ep−1
E ∧ eq+1

E

7→ Ψ = dt̃ ∧ eq−1
E ∧ ep+1

E + dt̃ ∧ ep−1
E ∧ eq+1

E . (40)

Using the form Ψ , the following relations hold.

δ
(

dt̃ ∧ eq−1
E ∧ ep+1

E

)

= −dt̃ ∧
{

(−1)qδeq−1
E ∧ ep+1

E + eq−1
E ∧ δep+1

E

}

, (41)

δ
(

dt̃ ∧ ep−1
E ∧ eq+1

E

)

= −dt̃ ∧
{

(−1)pδep−1
E ∧ eq+1

E + ep−1
E ∧ δeq+1

E

}

, (42)

where δ consists of ∗ on M . Identifying t with t̃, (41)

and (42) correspond to dΘ1 and dΘ2, respectively. These

relations are summarized as follows:

Θ1

d
��

Θ2

d
��

∈ Ωm−1(N)

dΘ1 + dΘ2 = δΨ Ξ

♯~~~~
~~

∈ Ωm(M)

Ψ

δ

OO

∈ Ωm+1(L)

(43)

In the above extension, it seems that dt̃ is useless because

it doesn’t have any relation to the system representation.

However, the new coordinate t̃ plays an important role in

a distributed port-Hamiltonian system with a space-time

energy balance. To explain this, we introduce a more general

expression defining the extra time coordinate t̃ as follows.

Proposition 4.8 (Cylinder construction [14]): Let I =
[0, 1] be the unit interval on the t̃-axis and (t̃, x) ∈ I × M
be a product space of I and an m-dimensional manifold. We

consider the following maps which identify (t̃, x)|t̃=0 with

(t̃, x)|t̃=1:

j1 : M → I × M ; ji(x) = (1, x) , (44)

j0 : M → I × M ; j0(x) = (0, x) . (45)

These maps induce the pull-back

j∗i : Ωk(I × M) → Ωk(M) (46)

for i = 0, 1 (e.g. j∗1ω is calculated by substituting t̃ = 1 and

dt̃ = 0 to ω ∈ Ωk(I × M).). Thus, we can define

K : Ωk+1(I × M) → Ωk(M) (47)
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such that K(dω) + d(Kω) = j∗1ω − j∗0ω. K is defined on

monomials by the formulas

K
(

c(t̃, x) dxk+1
)

= 0 , (48)

K
(

c(t̃, x) dt̃dxk
)

=

(
∫ 1

0

c(t̃, x)dt̃

)

dxk , (49)

where c(t̃, x) is the coefficient.

This proposition is used in the converse of the Poincaré

Lemma, which says that there exists an exact k-form for a

closed (k + 1)-form on a contractible manifold.

By using the above setting, let us consider the system in

space-time coordinates. The term dt∧eq∧ep of (30) changes

to eq ∧ ep. Thus, either effort eq or ep increases the number

of forms by 1 for the form dt.
Theorem 4.9: Consider the distributed port-Hamiltonian

system in space-time coordinates by setting p̃ = p + 1 and

ñ = n + 1. The fundamental form is

Θ′ = dt̃ ∧ ẽq ∧ ẽp −H(aq, ap) ∧ dxn+1 ∈ Ωm(L) , (50)

where L ≃ I × M is an (m + 1)-dimensional manifold,

ẽp ∈ Ωn−p+1(L) and ẽq = eq ∈ Ωn−q(L).
Proof: We obtain f̃p ∈ Ωp−1(L), f̃q = fq ∈ Ωq(L) and

r̃ = pq+p−1 from the setting. We only have to perform the

same procedure as in Thm. 4.3, by identifying dai/dt̃ with

dai/dt for i = p, q.

Finally, we can formulate the distributed port-Hamiltonian

system in space-time coordinates with Θ′ in the same way

as δΨ . The concept of the given system is illustrated in Fig.

1 [left].

∂(R × Z) in M

∂Z

Z R × Z

−→ R

t0 t1

∂(R × Z) in M

−→ R

t0 t1

Fig. 1: Energy structures in space-time coordinates

The power balance of the (ordinal) distributed port-

Hamiltonian systems on Z from t0 to t1 is defined on

∂Z. The power balance of the distributed port-Hamiltonian

systems with distributed energy systems on Z from t0 to t1
should be defined on Z itself. For the new distributed port-

Hamiltonian systems with the time coordinate on R×Z from

t0 to t1, the power balance is defined on ∂(R×Z). That is,

to calculate the power balance from t0 to t1, we only have to

observe the distributed energy structure at t0 and t1 while the

boundary energy structure is being observed on the boundary

R]t0,t1[×∂Z. This result corresponds to a practical situation;

for example, if we consider a distributed dissipative element

to be time invariant and we know the dissipation structure,

we can calculate the power balance on the boundary without

observation of the distributed energy structure. Furthermore,

this procedure can be extended to observation on a closed

boundary ∂(R×Z), which is equal to R[t0,t1]×∂Z (see Fig.

1 [right]) because both sides in Fig. 1 are homotopic to each

other.

V. CONCLUSIONS

This paper presented a new concept of boundary controls

in space-time coordinates by examining topological geomet-

rical aspects of a distributed port-Hamiltonian system with a

distributed energy structure.
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