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ABSTRACT

The concepts related to passifiability (feedback passiv-

ity) of systems with the given output are introduced. They

are intended to study passifiability of systems with respect

to output y by output feedback based on output y1 for the

case when y1 differs from y (extended passifiability). Nec-

essary and sufficient conditions for extended passifiability

of linear systems by linear output feedback are established.

Links of the obtained results to the high gain stabilization

are shown and an extension to passifiability with different

inputs is given. The proofs are based on a version of

the celebrated Yakubovich-Kalman-Popov Lemma (KYP-

lemma) and Meerov’s results on high-gain stabilization 1

I. INTRODUCTION

During the last decade there was a growing interest in

passification (sometimes called passivation) control design

methods. A special attention was attracted to feasibility

conditions for passification and to passifiable or feedback
passive systems — ones that can be made passive by

means of state or output feedback [8], [17], [24], [27], [30],

[31], [32]. Such passifiability conditions are of interest

even for linear systems: they are used not only for linear

feedback design, but also for passivity-based design of

cascade nonlinear systems [30], [31]. Since passivity of

a linear system is equivalent to positive realness of its

transfer function, the linear passifiable (strictly passifiable)

systems were also called “almost positive real” (“almost

strictly positive real”) [22], [33]. The conditions for passi-

fiability by output feedback are of utmost importance for

applications.

Necessary and sufficient conditions for passifiability of

linear systems by linear output feedback (or existence of

a linear feedback rendering system strictly positive real)

were proposed still in the 1970s, see [10] for SIMO

systems and [11] for MIMO systems. Later they were

rediscovered and applied for SISO systems [34], [39] and

1The work was supported in part by the Russian Foundation for
Basic Research (projects 08-01-00775, 07-01-92166-CNRS) and by the
Program 22 of the Presidium of RAS (project 1.8).

for MIMO systems [1], [19], [20]. State feedback case was

considered in [23], [30]. In a number of works the problem

of positive real synthesis for systems with feedthrough

(relative degree zero case) was considered, see [35] and

references therein. The obtained results have applications

in robust control [1], [19], [34], [39], adaptive control [9],

[12], [17], [20], [22], [36], stabilization of partially linear

cascaded systems [23], [30], [31]. Note that the adaptive

output feedback control algorithms proposed in [20] (and

recalled in [24]) coincide with those of [11]. Surveys of

this area can be found in [2], [5], [13].

In this paper the passifiability of systems with respect

to output y by output feedback based on output y1 for

the case when y1 differs from y is studied. Necessary and

sufficient conditions for passifiability of linear systems by

linear output feedback are given. Loosely speaking, it is

established that a system is strictly passifiable if and only if

the ratio of the transfer functions for y1 and for y is strictly

positive real. To the best of the author’s knowledge all ex-

isting passification and passifiability results are developed

for the case when y1 coincides with y. An extension to

passifiability with different inputs is given.

The formulation of the problem and some auxiliary

concepts are introduced in Section 2. The main results

are presented in Section 3, while some extensions and

applications are discussed in Section 4.

II. PASSIVITY AND PASSIFICATION

Consider an affine in control system

ẋ = f(x) + g(x)u, y = h(x), (1)

where x = x(t) ∈ R
n, u = u(t) ∈ R

m, y = y(t) ∈
R

l are state, input and output vectors, respectively, f, h
are smooth vector-valued functions of x and g is smooth

matrix-valued function of x. In some applications (e.g.

in control of quantum-mechanical systems) the case with

complex-valued variables and parameters (x = x(t) ∈ C
n,

u = u(t) ∈ C
m, y = y(t) ∈ C

l) is also important. Such

a case will be called complex case while the case of real-

valued variables and parameters will be referred to as real
case.

We denote conjugate matrix (transposed matrix A with

complex conjugate elements) as A∗, Euclidean norm of
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a vector or matrix as |x|, degree of a polynomial ϕ as

degϕ. Notation col(x1, . . . , xN ) means that x is a column

vector composed of all components of x1, . . . , xN . Most

definitions and facts of this section can also be found in

[11], [13].

Definition 1. Let G be a prespecified m × l-matrix.

System (1) is called G-passive if there exists a nonnegative

scalar function V (x) (storage function) such that

V (x) ≤ V (x0) +

t∫
0

u(t)∗Gy(t) dt (2)

for any solution of the system (1) satisfying x(0) =
x0, x(t) = x. In (2) and below the asterisk denotes

transposition of the matrix and complex conjugation of

its elements which is just transposition in real case.

Definition 2. System (1) is called strictly G-passive, if

there exist a nonnegative scalar function V (x) and a scalar

function μ(x), where μ(x) > 0 for x �= 0, such that

V (x) ≤ V (x0) +

t∫
0

[u(t)∗Gy(t) − μ(x(t))] dt (3)

for any solution of system (1) satisfying x(0) = x0, x(t) =
x.

Obviously, if l = m and G = Im is identity matrix, then

G-passivity coincides with conventional passivity property.

In general case introduction of G allows designer to

balance inputs and outputs and to increase flexibility of

controller design.

In this paper we will be dealing with strict version of

G-passivity property for linear systems

ẋ = Ax+Bu, y = Cx, (4)

where x ∈ R
n, u ∈ R

m, y ∈ R
l, A,B,C are matrices of

appropriate size. For linear systems the storage function

V (x) is quadratic form V (x) = 0.5x∗Hx (or Hermitian

form in complex case), while function μ(x) is just Eu-

clidean norm of the vector: μ(x) = μ|x|2, μ > 0.
In turn, passivity is closely related to hyperstability,

introduced by V.M.Popov [28].

If the storage function V (x) is smooth, the integral

dissipation inequalities (2), (3) are equivalent to their

differential forms. For a nonlinear system (1) integral

inequality (3) is equivalent to fulfillment of the differential

dissipation inequality

∂V

∂x
(f(x) + g(x)u) ≤ u∗Gy − μ(x). (5)

For linear system (4) and for quadratic storage function

V (x) = 0.5x∗Hx integral inequality (3) is equivalent to

x∗H(Ax+Bu) ≤ u∗Gy − μ|x|2 (6)

for some μ > 0 and all x ∈ R
n, u ∈ R

m.

In its turn, dissipation inequality (5) is equivalent to the

relations

∂V

∂x
f(x) ≤ −μ|x|2, ∂V

∂x
g(x) = (Gh(x))∗, (7)

while inequality (6) is equivalent to the following matrix

relations

HA+A∗H < 0, HB = (GC)∗. (8)

The solvability conditions for (8) and related versions

of the dissipation inequalities for linear systems are given

by the seminal Yakubovich–Kalman–Popov or Kalman–

Yakubovich-Popov (KYP) lemma (for this special case

also called positive real lemma). In what follows we need

the “semi-singular” version of the KYP lemma established

by V.A.Yakubovich [38] in 1966. Introduce the following

notations2:

G = HA+A∗H+R, g = −Ha−b, Q(H) =
[− G g
g∗ �

]
,

π(s) = �+2Re b∗(sIn−A)−1a+a∗(s∗In−A∗)−1R(sIn−A)−1a,

where H = H∗ is n×n-matrix, R = R∗ is n×n-matrix,

� = �∗ is m × m-matrix, a, b are n × m-matrices. Let

m = m1 + m2, where m1,m2 are integer numbers and

let matrices �, π, a be split into the corresponding blocks

as follows:

� =
[
�11 �12

�21 �22

]
, π =

[
π11 π12

π21 π22

]
, a =

[
a1

a2

]

and �12 = �∗21 = 0, �22 = 0.
Theorem 1 (Yakubovich, 1966). Let A be a Hurwitz

matrix, �11 ≥ 0 and rank a2 = m2. Necessary and

sufficient conditions for existence of matrix H = H∗ such

that Q(H) ≥ 0 and rank Q = n+m1 are

(1) π(jω) > 0 for all real ω; (j =
√−1)

(2) lim
ω→∞ω2(π22(jω)−π21(jω) π−1

11 (jω) π12(jω)) > 0.

Note that for m2 = 0 Theorem 1 turns into “nonsingu-

lar” KYP lemma, while for m1 = 0, C = 0 it states that

solvability of matrix inequalities HA + A∗H < 0,Ha =
−b is equivalent to SPR property of the matrix function

b(sIm −A)−1a.
Let y1 = h1(x) ∈ R

l1 be another output of the system.

Introduce the following extended passification problems.
Problem A1. Find m-vector function μ(y1) and m×m-

matrix function ν(y1) such that system (1) with the output

feedback

u = μ(y1) + ν(y1)v, (9)

where v ∈ R
m is new input, is strictly G-passive with

respect to output y.

Problem B1. Find m-vector function μ(y1) such that

system (1) with output feedback (9) is strictly G-passive

2Notation Re K stands for Hermitian part of the matrix: Re K =
(K + K∗)/2.
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with respect to output y with fixed m×m-matrix function

ν(y1).
For linear systems a linear passifying feedback is con-

sidered instead of (9).

The extended passification problems are formulated as

follows.

Problem AL1. Find m× l-matrix K and m×m-matrix

L such that system (4) with the output feedback

u = −Ky1 + Lv, (10)

where y1 = C1x ∈ R
l1 is the second output, v ∈ R

m is a

new input, detL �= 0 , is strictly G-passive with respect

to the output y.

Problem BL1. Find l × m-matrix K such that system

(4) with the output feedback (10) is strictly G-passive with

fixed matrix L with respect to the output y.

For complex case all the variables and functions in

(9), (10) are complex valued. G-passification gives rise

to G-passifiability problems: checking solvability of the

Problems A1,B1, AL1, BL1.

In this paper the passification and passifiability problems

AL1, BL1 for linear systems are studied. Obviously, if a

linear system is asymptotically stabilizable by an output

feedback (10), then it is strictly passifiable with respect to

the output y = B
T

Px, where P = P
T

> 0 is the matrix of

the Lyapunov function establishing its stability. However,

if the output y is specified in the problem statement,

the problem is not so trivial. Note that for C = C1

the problems AL1, BL1 coincide with problems AL, BL,

formulated and solved in [13].

III. MAIN RESULTS

In order to formulate the solutions to the above prob-

lems, introduce the following notations:

δ(s) = det(sIn − A), W (s) = C(sIn −
A)−1B,δ(s,K) = det[sIn − A(K)], W (s,K) =
C[sIn − A(K)]−1B, where K is m× l-matrix, A(K) =
A − BKC1. Obviously, δ(s,K) and W (s,K) are char-

acteristic polynomial and transfer matrix, respectively, of

the system (4) closed with the feedback

u = −Ky1 + v. (11)

Similarly, notations W1(s) = C1(sIn −
A)−1B,W1(s,K) = C1[sIn−A(K)]−1B, are introduced.

Let δ(s) = λn + δn−1λ
n−1 + . . . .

It is easy to show that the following identities are valid:

δ(s,K) = δ(s) det[Im +KW1(s)], (12)

W (s,K) = W (s)[Im +KW1(s)]−1. (13)

Similar identities hold if W is replaced with W1.
Let G be an m× l-matrix. Define a polynomial ϕ(s) =

δ(s) detGW (s) and a matrix Γ = lim
s→∞ sGW (s). The

meaning of the parallel notations ϕ1(s),Γ1 is obvious.

It is easy to show, see [11], [13] that ϕ(s), ϕ1(s) are

polynomials of degree not exceeding n − m, invariant

with respect to feedback transformation (11). Since Γ =
GCB,Γ1 = GC1B, the m × m matrices Γ,Γ1 are also

invariant with respect to the feedback transformation (11).

Definition 3. The system (4) is called G-minimum phase
if the polynomial ϕ(s) is Hurwitz (its zeros belong to the

open left half-plane). It is called strictly G-minimum phase
if it is minimum phase and det Γ �= 0, and hyper minimum
phase if it is minimum phase and Γ = Γ∗ > 0.

Since the above terms are correctly defined using the

transfer matrix of the system (4), it is no abuse to use

same terms as related to the transfer function itself.

It is worth noticing that for square systems the intro-

duced terms are related to the frequently used notion of

minimum phaseness defined via transmission zeros of the

system (4). Namely, for m = l and G = Im the roots

of the polynomial ϕ(s) coincide with transmission zeros

since ϕ(s) = det Σ, where Σ is the Rosenbrock matrix:

Σ =
[
sIn −A − B

C 0

]
.

For the non-square case the notions are different, see

example in [13].

In this paper only the case l = l1 = m = 1, i.e. SISO

system will be considered. The results for general case

will be presented elsewhere. For SISO systems G-passivity

coincides with conventional passivity. Define ψ(s) =
ϕ1(s)/ϕ(s). The function ψ(s) can be interpreted as a

relative gain ψ(s) = W1(s)/W (s). Obviously, problems

AL1 and BL1 coincide in this case. Without loss of

generality let L = 1. To simplify formulation introduce the

following property characterizing “closeness” or “friend-

liness” of the outputs y and y1 regardless their signs.

Definition 4. We say that system (4), (10) pos-

sesses F-property if either Re ψ(jω) ≥ 0 ∀ω and

Re δ(jω)/ϕ(jω) > 0 for Re ψ(jω) = 0 or Re ψ(jω) ≤
0 ∀ω and Re δ(jω)/ϕ(jω) < 0 for Re ψ(jω) = 0.

F-property holds, e.g. if outputs y and y1 coincide.

Checking F-property reduces to verifying a polynomial

frequency-domain inequality and a finite number of ra-

tional inequalities. Alternatively, it can be done using

linear matrix inequalities (LMI) approach. The following

auxiliary result provides one necessary and two sufficient

solvability conditions for the extended passification prob-

lem.

Theorem 2. 1. If the system (4) is strictly passifiable by
output feedback (10), then the polynomial ϕ(s) is Hurwitz
of degree n − 1, i.e. either function W (s) or function
−W (s) is hyper-minimum-phase.

2. If the function W (s) is hyper-minimum-phase,
deg(ϕ1(s)) = n−1 and system possesses F-property, then
the system (4) is strictly passifiable by output feedback
(10).

3. If the function W (s) is hyper-minimum-phase,
deg(ϕ1(s)) = n − 2, system possesses F-property and
δn−1 �= 0 then the system (4) is strictly passifiable by
output feedback (10).
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As was mentioned in Section II, passifiability is equiv-

alent to solvability of the following algebraic problem.

Given complex-valued matrices A, B, C, C1, G of the

dimensions n×n, n×m, l×n, m×l, respectively (m ≤ n,

l ≤ n). Find existence conditions for a Hermitian n × n
matrix H = H∗ > 0 and a complex valued m× l matrix

K such that

HA(K) +A(K)∗H < 0, (14)

HB = (GC1)∗ (15)

where

A(K) = A−BKC. (16)

The case when all matrices A,B,C,G are real valued

is called the real case. A straightforward consequence of

Theorem 2 is the following statement.
Corollary. The first condition of Theorem 2 is necessary

and two other conditions are sufficient for the existence of
the matrices H = H∗ > 0, K satisfying relations (14),
(15), (16) and being real valued in the real case.

Obviously, relations (14), (15), (16) for fixed K coincide

with the linear matrix inequalities (LMI) (6) arising in a

version of Yakubovich-Kalman-Popov lemma. Therefore

the Corollary deals with the existence of a feedback

rendering the system satisfy conditions of Yakubovich-

Kalman-Popov lemma. In other words, the Corollary can

be called the Feedback Yakubovich-Kalman-Popov lemma.

Its very special case for C1 = C was posed and solved

in [11]. Note also that the inequalities (14) are bilinear
matrix inequalities and the problem of their solvability is

in general NP -hard. However for the above special case

the solvability conditions for (14), (15), (16) are simple

and constructive.
To provide necessary and sufficient conditions for ex-

tended passifiability a kind of uniformity is needed to be

introduced into definitions.
Definition 5. The system (4) is called δ-uniformly

strictly passifiable by output feedback (10), if for any δ(s)
there exists gain K such that the system (4) with output

feedback (10) is strictly passive.
Theorem 3. The system (4) is δ-uniformly strictly

passifiable by output feedback (10) if and only if the
function W (s) is hyper-minimum-phase and the frequency-
domain inequality holds: ψ(jω) �= 0 ∀ω, where ψ(s) =
ϕ1(s)/ϕ(s).

IV. PROOF OF MAIN RESULTS

The proofs are based upon two auxiliary lemmas. The

first one is just another version of the Yakubovich-Kalman-

Popov lemma which deals with positive definite solutions

of matrix relations (8) and can be easily derived from

Theorem 1.
Lemma 1. Let A0, B,C0 be matrices of dimensions n×

n, n × n, n ×m, m × n respectively, and rankB = m.
Let

Π(s) = 2 ReC0(sIn −A0)−1B. (17)

For the existence of n× n matrix H = H∗ > 0 such that

HA0 +A0H < 0, HB = C∗
0 , (18)

which is real valued in the real case, the following
conditions are necessary and sufficient:

i) det(sIn −A0) is a Hurwitz polynomial;
ii) Π(jω) > 0 for all ω ∈ R

1,
iii) lim

ω→∞ω2Π(jω) > 0.
The second lemma is the core result of Meerov’s high

gain stabilization theory [25], [26].

Lemma 2. The polynomial δ(s,K) = δ(s) +Kϕ1(s),
where δ(s), ϕ1(s) are polynomials, is Hurwitz for all K >
K0 for some K0 if and only if ϕ1(s) is Hurwitz with

positive coefficients and either (A) degϕ1(s) = n − 1 or

(B) degϕ1(s) = n− 2 and δn−1 > 0.

Proof of Theorem 2. In view of Lemma 1 and dis-

cussion in Section II feasibility of passification problem

is equivalent to solvability of conditions i), ii), iii) of

Lemma 1. Necessary condition (Statement 1) follows from

representation of the closed loop transfer function

W (s,K) = ϕ(s)[δ(s) −Kϕ1(s)]−1. (19)

and the following property of strictly positive real (SPR)

functions [29]: both numerator and denominator of an SPR

function are Hurwitz polynomials and their degrees differ

not greater than by one.

To prove Statement 2 assume that its conditions are

fulfilled and choose K such that matrix A0 = A−BKC1,

satisfies conditions i), ii), iii) of Lemma 1.

Condition i) follows immediately from Lemma 2. To

prove Condition ii) note that inequality ReW (s,K) > 0
is equivalent to inequality Re[W (s,K)−1] > 0. Evaluation

of Re[W (jω,K)−1] yields

Re[W (jω,K)−1] = Re
δ(jω)
ϕ(jω)

+KRe
ϕ1(jω)
ϕ(jω)

. (20)

Represent δ(s)/ϕ(s) in the form δ(s)/ϕ(s) = s +
δn−1/ϕn−1 + δ̄(s)/ϕ(s), where δ̄(s) is a polynomial of

degree less than n − 1. Substitute s = jω into (20) and

take real part:

Re[W (jω,K)−1] = 0+
δn−1

ϕn−1
+Re

δ̄(jω)
ϕ(jω)

+KReψ(jω).

(21)

Let Reψ(jωl) = 0, l = 1, . . . , N. Since

lim|ω|→∞ Reψ(jω) > 0, there exists ε > 0 such that

infω Reψ(jω) > 0 for ω ∈ Ωε, where Ωε = {ω : |ω −
ωl| > ε}. In view of boundedness of Re(δ(jω)/ϕ(jω) the

required inequality is valid for sufficiently large negative

K. On the other hand, for ω∈̄Ωε for sufficiently small ε
the required inequality holds too.

Let us verify the limit relation iii). For large ω we have:

ω2Re W (jω,K) =

ω2Re
ϕn−1(jω)n−1 + O(ωn−2)

(jω)n + δn−1(jω)n−1 +Kϕ1,n−1(jω)n−1 + O(ωn−2)
=
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ω2Re
ϕn−1 + O(1/ω)

jω + δn−1 +Kϕ1,n−1 + O(1/ω)
=

ω2
[ ϕn−1

jω + δn−1 +Kϕ1,n−1
+

ϕn−1

−jω + δn−1 +Kϕ1,n−1

]
+

O(1/ω) = ω2 ϕn−1(δn−1 +Kϕ1,n−1)
ω2 + (δn−1 +Kϕ1,n−1)2

+ O(1/ω).

Therefore lim|ω|→∞ ω2Re W (jω) = ϕn−1(δn−1 +
Kϕ1,n−1) and the required inequality is valid for suffi-

ciently large negative K. Statement 2 is proved.

Statement 3 is proved along similar lines.

Instead of lim|ω|→∞ Reψ(jω) > 0 the relation

lim|ω|→∞ ω2Reψ(jω) > 0 is used in this case.

Proof of Theorem 3. Necessity. The HMP property of

W (s) follows from SPR property [29]. Let Reψ(jω0) = 0
for some real ω0. Choosing δ(s) such that Re δ(jω0)

ϕ(jω0)
< 0

we get a contradiction since in this case no appropriate K
exists as seen from (20).

Sufficiency. Without loss of generality assume that

Reψ(jω) > 0 for all real ω, i.e. ψ(s) is SPR. Then either

deg(ϕ) = n − 1, or deg(ϕ) = n − 2, see [29]. However,

in the case deg(ϕ) = n − 2 condition iii) of Lemma

1 is violated for any K for sufficiently large positive

δn−1, i.e. system is not passifiable. Again, without loss

of generality assume that Reψ(jω) > 0 for all real ω.
The arguments in the proof of the previous theorem show

that infω Reψ(jω) > 0. Since all terms in (21) depending

on δ(s) are bounded from above over ω axis for any

polynomial δ(s), the required K does exist.

V. HIGH GAIN PASSIFIABILITY

It is seen from the proofs of the above theorems that

they are based on high gain arguments, i.e. if the required

gain exists, an appropriate high gain does exist too. The

situation is similar to the case C = C1, see [10], [11]. It

motivates the formulation of the following problem: find

necessary and sufficient conditions for feasibility of high

gain passification. The answer is provided by the following

theorem.

Theorem 4. The system (4) is strictly passifiable by
output feedback (10) with all sufficiently large K if and
only if the transfer function W (s) is hyper-minimum-phase
(polynomial ϕ(s) is Hurwitz of degree n − 1) and either
(A) deg(ϕ1(s)) = n−1 and system possesses F-property,
or (B) deg(ϕ1(s)) = n− 2, system possesses F-property
and δn−1 �= 0.

Proof. Sufficiency follows from Theorem 2. To prove

necessity, assume without loss of generality that the system

is passifiable as K → +∞ and pick up a sufficiently

large positive K such that W (s,K) is SPR. Then ϕ(s) is

Hurwitz of degree n − 1 and its coefficients are positive,

i.e. W (s) is hyper-minimum-phase. As in the proof of

Theorem 2 note that inequality ReW (jω,K) > 0 is

equivalent to inequality Re[W (jω,K)−1] > 0. Since the

left-hand part in (20) is positive, F-property follows. SPR

property implies also that that either deg(ϕ1(s)) = n− 1
or deg(ϕ1(s)) = n − 2. In the case deg(ϕ1(s)) = n − 2
condition δn−1 > 0 follows from representation (21).

VI. PASSIFIABILITY WITH RESPECT TO GIVEN INPUT

Since passivity is widely applied for control design, the

proposed results apply to a number of problems. A dual

set of results is related to passivity with respect to different

inputs. Consider a system

ẋ = Ax+Bu+B1v, y = Cx, (22)

and the problem of existence of a feedback

u = −Ky (23)

rendering the closed loop system (22), (23) passive from

input v to output y. Such a problem for the state feedback

case (y = x) was studied in [3], [4], [6] (in [6] also for

full order dynamic output feedback) by LMI approach.

It is easy to see that passivity from input v to output y
is equivalent to existence of a matrix H = H∗ > 0 and a

feedback gain K such that

HAK +A∗
KH < 0, HB1 = C∗, AK = A−B1KC.

(24)

After the change of variables H → P−1, AK →
A∗

K , B1 → C∗, C → B∗
1 the relations (24) transform

into (14), (15), (16) and Theorems 2-4 apply. Since the

change AK → A∗
K does not change conditions of The-

orems 2-4, the answers to the new set of problems are

given by Theorems 2-4 where function ψ(s) is replaced

by ψ̄(s) = ϕ̄(s)/ϕ(s), where ϕ̄(s) = δ(s)C(sI−A)−1B1.

VII. CONCLUSIONS

The presented passification feasibility results can be use-

ful for design purposes in various situations. For example,

they justify design of SPR system based on providing some

minimum phase property and applying high gain output

feedback, extending existing applications in adaptive con-

trol designs, see [10], [11], [37], [21], [33], [22], [24]

to the case of “indirect” passification and “nonmatched”

nonlinearities.

One can also mention passification based synchroniza-

tion for nonlinear Lurie systems

ẋ=Ax+Bf0(y)+B1u, y=Cx (25)

and adaptive synchronization of systems

ẋ=Ax+f0(y)+B
N∑

i=1

θiϕi(y) +B1u, y=Cx, (26)

where θi, i = 1, . . . , N are unknown parameters, including

the case of imposed information constraints. For the case

B1 = B such problems were studied in [15], [16], [18].
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The results of this paper significantly extend the class

of admissible feedbacks and, therefore, a field of possible

applications for passification approach.

It would be interesting to extend the obtained results to

infinite-dimensional linear systems in spirit of [7] as well

as to affine nonlinear systems. A MIMO version of the

above discussed results is to be presented in [14].
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