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Abstract— A planar compass-like biped on a shallow slope is
the simplest model of a passive walker. It is a two-degrees-of-
freedom impulsive mechanical system known to possess periodic
solutions reminiscent to human walking. Finding such solutions
is a challenging task. We propose a new approach to obtain
stable as well as unstable hybrid limit cycles without integrating
the full set of differential equations. The procedure is based
on exploring the idea of parameterizing a possible periodic
solution via virtual holonomic constraints. We also show that
a 2 -dimensional manifold, defining the hybrid zero dynamics
associated with a stable hybrid cycle, in general, is not invariant
for the dynamics of the model of the compass-gait walker.

Index Terms— Walking Robots; Underactuated Mechanical

Systems; Limit Cycles; Virtual Holonomic Constraints

I. INTRODUCTION

The study of passive walking devices is a fascinating

field. It attracted attention of researchers in the robotics

and control communities after McGeer’s publication in 1990

[11] presenting “a class of two-legged machines for which

walking is a natural dynamic mode”. It followed a series of

publications, see e.g. [2]–[4], [7], [9], [10], [15], proposing

and reporting various ways to find and to analyze passive

gaits of walking devices. Successful results of passive walk-

ing are typically shown for quite simple models and it is not

always clear how to generalize such findings to more realistic

representations of walking robots with multiple degrees of

freedom.

The main contribution of this paper is a new approach of

searching for hybrid limit cycles of passive walking robots.

We suggest analytical and constructive steps that allow to

reduce, first, the number of parameters to be found in the

search for suitable initial conditions, and second, the number

of differential equations to be solved during the numerical

procedure. Our demonstration is carried out for a standard

benchmark example: the planar two-link walker commonly

known as a compass-gait biped.

The key idea of the paper is exploring a special but generic

change of coordinates that can always be used for parame-
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terizing any nontrivial hybrid periodic solution of the walker

dynamics. We avoid looking for explicit dependence on time

but instead search for relations between the generalized coor-

dinates that should be valid along a cycle. Such relations are

called virtual holonomic constraints [13], [19]. Intuitively,

the deviations from these geometric relations define a natural

set of generalized coordinates in which a hybrid periodic mo-

tion has almost trivial representation, related to the canonical

local coordinates introduced by Urabe [6], [18]. Results on

using virtual holonomic constraints for motion planning and

feedback controller design for mechanical systems can be

found in [12], [13], [19] and others.

The analysis presented in the paper reveals important prop-

erties of hybrid periodic solutions of the walker dynamics.

We show that the 2-dimensional manifold associated with a

natural stable cycle, which is called hybrid zero dynamics

in [20] and is broadly used for stabilization of walking gaits

[19], in general, is not invariant for the hybrid dynamics

of a compass-gait walker. This observation, made for a

natural cycle of a passive mechanical system, is important

for analysis, synthesis, and stabilization of ‘natural gaits’ for

controlled walking robots. Currently, the concept of hybrid

zero dynamics and methods for its stabilization are well

developed [19] following the pioneering works of [5], [20]

and are becoming of common use. The observed here lack

of such invariance for a natural gait of a passive walker

motivates development of other approaches.

II. HYBRID DYNAMICS OF THE COMPASS-GAIT BIPED

Let us consider a two-link passive compass-gait biped

robot, schematically shown on Fig. 1.
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Fig. 1. Schematic of the compass-gait biped on a shallow slope ψ .

Under certain conditions [4], the dynamics of the robot can

be described [4], [7], [16] by the following system of Euler–
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Lagrange equations with impulsive effects [1], [5], [19]

d

dt

[
∂L(q, q̇)

∂q̇

]

−
∂L(q, q̇)

∂q
= 0 for q 6∈ S

q+ = P q− and q̇+ = Pq(q
−) q̇− q− ∈ S

(1)

where q = [q1, q2]
T

is the vector of generalized coordinates.

The Lagrangian is given by

L(q, q̇) =
1

2
q̇T M(q) q̇ − V (q)

with the positive definite matrix of inertia

M(q) =

[
p1 −p2 cos(q1 − q2)

−p2 cos(q1 − q2) p3

]

and the potential energy

V (q) = p4 (cos(q1) − 1) + p5 (1 − cos(q2)) .

Here the coefficients of the Largangian are defined by the

physical parameters of the robot (listed in Fig. 1) as follows

p1 = (mH +m)l2 +ma2, p2 = mlb, p3 = mb2,
p4 = (mH l +ma+ml)g, p5 = mbg

Given the slope ψ of the walking surface, the impact surface

is defined by

S =
{
q ∈ R

2 : H(q) = cos(q1 + ψ) − cos(q2 + ψ) = 0
}

(2)

The impulse-effects are described by the renaming matrix

P =

[
0 1
1 0

]

(3)

and the reset map

Pq(q
−) =

[
p+
11 p+

12

p+
21 p+

22

]−1 [
p−11 p−12
p−21 p−22

]

(4)

with p6 = m · a · b , p7 = (mH · l2 + 2m · a · l) ,

p+
11 = p1 − p2 cos(q−1 − q−2 )
p+
12 = p3 − p2 cos(q−1 − q−2 )
p+
21 = −p2 cos(q−1 − q−2 ), p+

22 = p3

p−11 = −p6 + p7 cos(q−1 − q−2 )
p−12 = −p6, p−21 = −p6, p−22 = 0

that attributes the jump in velocities due to impact [5], [8],

[16]; here the notations

q− = lim
τ→t−

q(τ) and q+ = lim
τ→t+

q(τ)

are used for the states right before and right after the impact.

As known, the equations (1) can be rewritten as (see [17])

M(q) q̈ + C(q, q̇) q̇ +G(q) = 0 (5)

with corresponding matrix functions C(·) and G(·) .

Our goal is to find symmetric walking gaits1 of the hybrid

mechanical system (1).

1Arguments used for finding a symmetric gait are generic and can be
therefore similarly applied to asymmetric gaits.

III. PROCEDURE OF FINDING HYBRID LIMIT CYCLES

USING VIRTUAL HOLONOMIC CONSTRAINTS

A. Notation for the parameters of a cycle

Given a shallow slope ψ , a symmetric periodic solution

of (1) is uniquely defined by the vector of parameters2

p⋆ =
[
a, b, c, d, e, f, g, h, T

]T

∈ R
9

consisting of the half-period T = Tp/2 > 0 and the

following 8 constants, denoting the initial and final states,

q⋆(0+) =
[
q1⋆(0+), q2⋆(0+)

]T

=
[
a, e

]T

q̇⋆(0+) =
[
q̇1⋆(0+), q̇2⋆(0+)

]T

=
[
b, f

]T

q⋆(T−) =
[
q1⋆(T−), q2⋆(T−)

]T

=
[
c, g
]T

q̇⋆(T−) =
[
q̇1⋆(T−), q̇2⋆(T−)

]T

=
[
d, h

]T

(6)

B. Relations among the parameters of a cycle

After each step the robot experiences an impact if it hits

the ground, i.e. the condition (2) is satisfied. It follows from

q⋆(T−) ∈ S that

cos(c+ ψ) − cos(g + ψ) = 0 (7)

Note that the swing leg of a rigid two-link walker tres-

passes the impact surface (2) during one complete step.

Following the other researchers, for our considerations, we

assume that the compass-gait robot experiences an impact

only when a heel strike occurs.

The impulse effect (instantaneous change of the states),

described by the second equation in (1) together with (3)

and (4), gives the following expressions for the reset states

after impact

[
a
e

]

= P

[
c
g

]

=

[
g
c

]

and

[
b
f

]

= Pq

([
c
g

]) [
d
h

] (8)

Solving the system of five algebraic equations (7) and (8) in

terms of a, b, d , one obtains

g = a , c = e = −a− 2ψ

f =
b cos (2 a+ 2ψ) p2 − p6d

p3
(9)

h =
d(p3p7−p6p2)−b(p3p1−p

2
2 cos 2(a+ψ))

p3p6
cos 2(a+ψ)

Solving3 the continuous-time dynamics (5), i.e. 4 first-order

differential equations, on the time interval 0 ≤ t ≤ T one

can obtain 4 missing relations for defining the parameters a ,

b , d , and T of the cycle. So that the search of a hybrid cycle

2The parameters a and b here are not related to the notation for the
physical lengths given in Fig. 1.

3numerically or symbolically
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is converted into the search of the minimizer (the vector of

parameter p∗ ) for the optimization problem:

min
{a,b,d,T}

{∥
∥
∥q̄(T ) −

[
c
g

]∥
∥
∥

2

+
∥
∥
∥ ˙̄q(T ) −

[
d
h

]∥
∥
∥

2

:

with (9) satisfied and q̄(t) being

the solution of (5) initiated at

q̄(0) =

[
a
e

]

, ˙̄q(0) =

[
b
f

] }

(10)

The optimization problem (10) is standard, and typically

solved through numerical integration of the system dynamics

(5). Such approach largely depends on a chosen integration

method, and might be of limited use for detecting a stable cy-

cle with small region of attraction and for detecting unstable

periodic motions. Let us develop an alternative procedure.

C. Hunting for cycles using virtual holonomic constraints

The continuous sub-arc of a nontrivial periodic trajectory

q⋆(t) for (1), if exists, is a solution of the differential

equations (5) defined on a finite interval of time. Hence,

the evolution of the generalized coordinates along the cycle

can be specified not only as periodic functions of time

q⋆(t) = q⋆(t+ Tp) = [q1⋆(t), q2⋆(t)]
T
, ∀ t

but also as functions of a scalar variable that uniquely defines

a particular point on the continuous sub-arc of the cycle

q1⋆(t) = φ1 (θ⋆(t)) , q2⋆(t) = φ2 (θ⋆(t))
for 0 < t < T = Tp/2

The shape of functions φ1(·) , φ2(·) depends on the way we

parameterize points on the trajectory of the cycle in the state

space of the walker, but these functions are clearly unique

for each parametrization.

If we assume that the new variable θ⋆ is one of the

generalized coordinates, let say the coordinate of stance leg,

then the re-parameterization results in a new representation

q1⋆(t) = θ⋆(t), q2⋆(t) = φ (θ⋆(t)) , for 0 < t < T (11)

of continuous sub-arc of the cycle between two consecutive

impacts. The scalar functions θ⋆(·) and φ(·) are unknown.

To derive equations with respect to these variables, we can

use the dynamics of the robot, i.e. substitute the relations4

q1 = θ, q2 = ϕ (θ) (12)

into the Euler–Lagrange equations (5) and collect some

terms. The straightforward computations result into two

differential equations of the 2nd order for the θ -variable

α1(θ)
d2

dt2
θ + β1(θ)

[
d
dt
θ
]2

+ γ1(θ) = 0 (13)

α2(θ)
d2

dt2
θ + β2(θ)

[
d
dt
θ
]2

+ γ2(θ) = 0 (14)

where γ1(θ) = −p4 sin(θ) , γ2(θ) = p5 sin(ϕ(θ)) and

α1(θ) = −p2 cos(θ − ϕ(θ))ϕ′(θ) + p1

β1(θ)=−p2 sin(θ−ϕ(θ))(ϕ′(θ))2 − p2 cos(θ−ϕ(θ))ϕ′′(θ)
α2(θ) = −p2 cos(θ − ϕ(θ)) + p3 ϕ

′(θ)
β2(θ) = p2 sin(θ − ϕ(θ)) + p3 ϕ

′′(θ)

4Such relations between generalized coordinates of the system are known
as virtual holonomic constraint, see e.g. [12], [19].

At first glance, the equations (13), (14) are similar to

the Euler–Lagrange equations (5). Indeed, the relations (12)

can be seen as a change of generalized coordinates for

the system. Meanwhile, each of the second-order nonlinear

differential equations (13), (14) with respect to time, can be

rewritten as a first-order linear differential equation with θ
as an independent variable:

1
2α1(θ)

d
dθ

([
d
dt
θ
]2
)

+ β1(θ)
[

d
dt
θ
]2

+ γ1(θ) = 0 (15)

1
2α2(θ)

d
dθ

([
d
dt
θ
]2
)

+ β2(θ)
[

d
dt
θ
]2

+ γ2(θ) = 0 (16)

and can be integrated [14] independent on the from of the

functions αi(·) , βi(·) , and γi(·) , i = 1 , 2 .

Lemma 1 (Integral and energy): Along any solution

θ(t) of the nonlinear system

α(θ) θ̈ + β(θ) θ̇2 + γ(θ) = 0 (17)

(a) the integral function

I
(

θ, θ̇, θ(0), θ̇(0)
)

= θ̇2−e

{

−
θ∫

θ(0)

2 β(τ)
α(τ)

dτ

}

θ̇2(0)+ (18)

+

∫ θ

θ(0)

e

{
s∫

θ

2 β(τ)
α(τ)

dτ

}

2γ(s)

α(s)
ds

preserves its zero value

I
(

θ(t), θ̇(t), θ(0), θ̇(0)
)

≡ 0

for all t ≥ 0 for which the solution θ(t) is defined;

(b) the energy function, if defined for some constant x ,

Ex(θ, θ̇) =
1

2
e

{
θ∫

x

2β(τ)
α(τ)

dτ

}

︸ ︷︷ ︸

Ψx(θ)

θ̇2 +

θ∫

x

γ(τ)

α(τ)
Ψx(τ)dτ (19)

preserves its value Ex

(

θ(t), θ̇(t)
)

≡ Ex

(

θ(0), θ̇(0)
)

.

In particular

Ex

(

θ(0+), θ̇(0+)
)

≡ Ex

(

θ(T−), θ̇(T−)
)

for the the time moments right after an impact and right

before the next impact.

The identities in (a) and (b) can be checked via direct

computations. Proof for (a) can be found in [14]. The identity

in (b) means simply that there is no change in the energy-like

function (19) for any solutions of (17) between impacts.

Both equations (13), (14) are in the form (17); therefore,

they have two conserved quantities (18) or two energies (19)

irrespective of the particular form of the unknown function

φ(·) . Having in mind that dynamics of the walker is not

completely integrable, presence of two conserved quantities

for (13), (14) is indeed surprising. The explanation for this

apparent contradiction is that the conserved quantities are not

true first integrals of the system and are solution dependent.

It is worth to observe that not only the equations (13),

(14) are of the form (17), but any linear combination of the
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equations (13), (14) with θ -dependent weights µ1(θ) , µ2(θ)
has again the form of (17) with the coefficients





α(θ)
β(θ)
γ(θ)



 =





α1(θ) α2(θ)
β1(θ) β2(θ)
γ1(θ) γ2(θ)





[
µ1(θ)
µ2(θ)

]

For instance, with the weights

µ1(θ) = 1, µ2(θ) = ϕ′(θ)

one restores the true energy of the Euler–Lagrange system

E(q, q̇) =
1

2
q̇T M(q) q̇ + V (q)

when the generalized coordinates are not any but satisfy the

relations (12), i.e.

E(q, q̇)|{q1=θ, q2=ϕ(θ), q̇1=θ̇, q̇2=ϕ′(θ)θ̇} = E0(θ, θ̇)

=
(

p1

2 − p2 cos(θ − ϕ(θ))ϕ′(θ) + p3

2 (ϕ′(θ))2
)
θ̇2

+p4

[
cos(θ) − 1

]
+ p5

[
1 − cos(ϕ(θ))

]
(20)

Here the function E0(·) is Ex(·) from (19) with x = 0 .

If the velocities before and after each impact are non-

zero5, so that b 6= 0 and d 6= 0 , then the boundary conditions

(6) can be rewritten in terms of the virtual holonomic

constraint (11) as follows

θ⋆(0) = a, θ̇⋆(0) = b, θ⋆(T ) = c, θ̇⋆(T ) = d

ϕ(a) = e, ϕ′(a) = f
b
, ϕ(c) = g, ϕ′(c) = h

d

(21)

As Ex(·) keeps its value, see Lemma 1, one can substitute

the relations (21) into the function (20) obtain another

identity between the parameters of the cycle defined in (6)

E0(c, d) = E0(a, b)
(9)
= p1 b2

2 − p2 cos(a− e) f b

+p3 f2

2 + p4(cos(a) − 1) + p5(1 − cos(e))
(22)

As seen, it is a quadratic equation with respect to d , so at

best it has two real solutions for given values of a and b .
Reducing the number of parameters to search for in (10)

is not the only benefit of using virtual constraints. Let us
now reduce the number of differential equations needed to
be solved during the search: One can look at the system of
differential equations (13) and (14) as a system of algebraic
equations for the two unknown functions of time θ̇2⋆(t) and

θ̈⋆(t) . To derive a differential equation for the function
ϕ(·) used for re-parameterization of evolution of generalized
coordinates q⋆(t) along the cycle, consider two cases:

• Case 1: The function D(θ) :=
(
β1(θ)α2(θ) − β2(θ)α1(θ)

)

is separated from zero on a sub-arc of the cycle, i.e.
D(θ⋆(t)) 6= 0 for 0 ≤ t0 ≤ t ≤ t1 ≤ T .6 For this time
interval [t0, t1] the differential equations (13) and (14) can

be solved as algebraic ones w.r.t. θ̇2⋆(t) and θ̈⋆(t) as follows

θ̇2⋆ =
α2(θ⋆)γ1(θ⋆) − α1(θ⋆)γ2(θ⋆)

α1(θ⋆)β2(θ⋆) − α2(θ⋆)β1(θ⋆)
(23)

θ̈⋆ =
β1(θ⋆)γ2(θ⋆) − β2(θ⋆)γ1(θ⋆)

α1(θ⋆)β2(θ⋆) − α2(θ⋆)β1(θ⋆)
(24)

5This is a natural assumption.
6Note that the condition D(θ⋆(t)) 6= 0 was always satisfied in our

numerical studies.

The equation (23) in conjunction with the relation on the
energy (22) rewritten as

θ̇2 =
E0(a, b) − p4(cos(θ) − 1) − p5(1 − cos(ϕ(θ)))

p1
2
− p2 cos(θ − ϕ(θ))ϕ′(θ) + p3

2
(ϕ′(θ))2

(25)
results in the 2nd order equation for the function ϕ(·)

ϕ′′(θ⋆) = f1
(
a, b, θ⋆, ϕ(θ⋆), ϕ

′(θ⋆)
)

(26)

where the right-hand side is found by symbolic computation.
• Case 2: The function D(θ) :=

(
β1(θ)α2(θ) − β2(θ)α1(θ)

)

is zero on a sub-arc of the cycle, i.e. D(θ⋆(t)) ≡ 0
for 0 ≤ t0 ≤ t ≤ t1 ≤ T . For this time interval
the identity D(θ⋆(t)) ≡ 0 can be used and rewritten as
differential equation for ϕ . Manipulating on (13) and (14)
gives another identity which combined with the previous
yields the following first order equation

ϕ′(θ⋆) = f2
(
θ⋆, ϕ(θ⋆)

)
(27)

where the right-hand side is found by symbolic computation.

The arguments above are summarized as a new procedure to find
limit cycles for symmetric gaits of the passive compass-gait biped:

Proposition 1 (Procedure to find limit cycles): A symmetric
walking gait of the passive compass-like robot (1) on a shallow
slope ψ is defined in terms of 8 parameters (6) representing initial
and final states right after and right before impact.

(a) The renaming matrix (3) and the reset map (4) that apply to
the states when impact occurs yield 5 algebraic equations (9)
for the parameters g , c , e , f , and h expressed in terms of
the values of a , b , and d .

(b) Introducing the virtual holonomic constraint (11) allows to
reparameterize a particular trajectory of (1) that corresponds
to continuous-time dynamics between impacts by a solution
of (17). The initial and final states (6) are then given by (21).

(c) Lemma 1 gives an expression for the conserved energy (22)
between impacts, which yields two solutions for the parameter
d that can be written as functions of a and b .

(d) Finally, only two parameters a and b are left as variables;
they are to be found numerically as minimizers, for which the
following performance index attains zero value:

min
{a,b}

{

|ϕ̄(c) − g|2 + |ϕ̄′(c) − h/d|2 :

with (9) and (22) satisfied
and ϕ̄(θ) satisfies either (26) or (27)

initiated at ϕ̄(a) = e and ϕ̄′(a) = f/b
}

(28)

(e) As soon as the limit cycle is found, its period can be computed
using the following formula

T =

a∫

c

√
p1
2
− p2 cos(θ − ϕ⋆(θ))ϕ′

⋆(θ) + p3
2

(ϕ′
⋆(θ))2

E0(a, b) − p4(cos(θ)−1) − p5(1−cos(ϕ⋆(θ)))
dθ

Here ϕ⋆(θ) is the constraint function for the periodic motion.

Clearly, (28) is simpler than (10). The fact that the conserved
quantity (20) depends on the function ϕ(θ) and its two derivatives
point-wise, and not in a functional way through integration, allows
to reduce by one both the number of parameters and the order of the
system of the differential equations to solve. The other reduction
is due to searching for a solution in the form without explicit
dependence on time.

IV. RESULTS: SYMMETRIC GAIT CYCLES OBTAINED

FROM ANALYSIS

Here we elaborate the arguments of the previous section and
organize the search for symmetric gaits of the passive walker with
parameters listed in Fig. 1. The shallow slope for the compass-gait
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biped is chosen in a range of ψ ∈ (0, 6] deg which is about the
same interval as discussed in [4]. The initial conditions q⋆(0+)
and q̇⋆(0+) , as well as the half-period T and the total energy
E0 of the found symmetric gaits for this range of the slope angle
are shown in Fig. 2 and Fig. 3 as functions of ψ . As seen, two
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(b) Initial velocity q̇⋆,1(0+) for
the stance leg.

0 1 2 3 4 5 6
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

ψ [deg]

q 2
(0

)
[r

a
d
]

(c) Initial position q⋆,2(0+) for
the swing leg.
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(d) Initial velocity q̇⋆,2(0+) for
the swing leg.

Fig. 2. Initial conditions for the two symmetric gait cycles obtained from
analysis (solid line corresponds to stable cycles).
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(a) Resulting half-period T .
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(b) Required total energy E0 .

Fig. 3. Half-period and total energy of the two symmetric gait cycles
obtained from analysis (solid line corresponds to stable cycles).

hybrid limit cycles are found following the proposed arguments. It
turns out that these cycles can be distinguished by two different
solutions for d , which we expected according to Proposition 1(c).
One limit cycle (represented by the dashed line in Fig. 2) is always
unstable. The other limit cycle (represented by the solid line in
Fig. 2) is exponentially orbitally stable within the interval ψ ∈
(0, ∼ 4.4) deg and unstable otherwise. For slopes ψ ≥∼ 4.4 deg
one can then notice a change in the stability properties caused by
bifurcation which makes the symmetric gait cycle unstable, but
results in asymmetric gait cycles for the robot.

V. IS ZERO DYNAMICS INVARIANT FOR A HYBRID

WALKING GAIT?

For a stable walking cycle of the passive compass-gait walker, it
is of interest to explore properties of the system dynamics and espe-
cially to make some insights into mechanism of its orbital stability.
Re-parametrization of this cycle by one of generalized coordinates,
i.e. through a virtual holonomic constraint, as done above, might

be a good staring point. Indeed, the recently proposed concept of
hybrid zero dynamics and associated control architectures [19], [20]
are explicitly based on this re-parametrization. They are among
a few control design methods that achieve orbital stabilization of
walking gaits. So, it is of interest to understand to what extend
the concept of hybrid zero dynamics is appropriate and relevant for
naturally stable walking cycles.

To this end, consider the stable gait cycle (Fig 4a) with ψ =
2.87 [deg] and

q⋆(0+) ≈
[
0.21689, −0.31708

]T
[rad]

q̇⋆(0+) ≈
[
− 1.08428, −0.39728

]T
[rad/s]

(29)

The virtual holonomic constraints corresponding to this cycle are

q⋆,1(t) = θ⋆(t), q⋆,2(t) = ϕ⋆(θ⋆(t)), (30)

where the function ϕ⋆(θ⋆(t)) depicted on Fig 4b, is the solution
of the system (26) with (units omitted)

a = 0.21689, b = −1.08428, θ⋆(0) = 0.21689
ϕ(θ⋆(0)) = −0.31708, ϕ′(θ⋆(0)) = 0.36640
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Fig. 4. Symmetric gait cycle (29).

The hybrid zero dynamics Z associated with the functions (30)
is defined as a subset of the state space of the walker dynamics

Z =
{

[q1, q2, q̇1, q̇2] : q2 = ϕ⋆(q1), q̇2 =
[

d

dq1
ϕ⋆(q1)

]

q̇1
}

(31)

and in the vicinity of the cycle it is a 2 -dimensional smooth sub-
manifold of the state space. Intersections of Z with impact surface
S , see (2), will define two curves γ+ and γ− . Then, invariance of
hybrid zero dynamics consists of two conditions:

1) Invariance of Z with respect to the vector field of
continuous-in-time part of the walker dynamics: if initial
conditions belong to a non-trivial subset of γ+ ⊂ Z

⋂
S ,

then the solution of the Euler–Lagrange equations (1) obey
to stay on Z until the next impact occurs; ending up on
γ− ⊂ Z

⋂
S .

2) Invariance of Z with respect to the impact: an appropriate
non-trivial subset of the curve γ− is mapped by the impact
update law of (1) into an appropriate non-trivial subset of the
curve γ+ .

Below we consider both conditions for invariance separately, start-
ing with the second one.

A. Invariance of hybrid zero dynamics on the switching

surfaces

Lemma 2: For any non-trivial symmetric gait of the compass
gait walker (1) the associated hybrid zero dynamics is invariant with
respect to the update law due to an impact.

The proof is omitted due to limitations of space. However, the
arguments are generic and can be applied for non-symmetric gaits,
as well as can be readily extended for gaits of higher-dimensional
planar bipeds. It follows that the corresponding requirements on the
choice of the constraint functions in [19], [20] are natural.
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B. Lack of invariance of hybrid zero dynamics for the

continuous-in-time vector field

Invariance of the zero manifold Z for the vector field of the
two-link walker can be tested through some theoretical arguments,
or through computer simulation elaborated for some cycles. At the
moment, we cannot bring affirmative reasoning proving that such
invariance is hardly possible. Meanwhile, all numerical simulations
strongly support the conclusion: hybrid zero dynamics is not invari-
ant for the continuous-in-time vector field of the walker dynamics.

On Figs. 5 the motions of the two-link walker initialized at points
on the curve γ+ other than [q⋆(t), q̇⋆(t)] , are shown together with
the target cycle (29), (30). As seen, the solutions do not end up on
the curve γ− upon the intersecting switching surface Γ− .
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Fig. 5. Desired trajectory (solid) in the subspace {q1, q̇1, q̇2} with
continuous-time sub-arc evolving between the hypersurfaces Γ+ and Γ− .
The discrete mapping is invariant, i.e. F (γ−) ⊂ γ+ . However, trajectories
starting on γ+ other than [q⋆(t), q̇⋆(t)] do not end up in γ− (see
dashed and dashed-dotted trajectories), i.e. the zero dynamics, defined by
the trajectory of the cycle, are not invariant.

VI. CONCLUSION

The problem of finding hybrid periodic trajectories for a model
of compass-gait biped robot, consisting of a 2 DOF Euler–Lagrange
dynamics and an instantaneous impact map is studied. Straightfor-
ward computations lead to a minimization problem, which requires
finding four parameters and is based on solving a 4th -order
differential equation for computation of the target functional.

Noticing that there must be a geometric relation between the
two generalized coordinates along the continuous-time sub-arc
of any periodic trajectory, we have obtained dynamics projected
onto a manifold defined by the corresponding virtual holonomic
constraint. We have discovered that such dynamics can be described
by two independent integrable differential equations. As a result,
one can obtain a third-order differential equation for the function
describing the constraint and furthermore reduce it to a second-
order differential equation exploiting the analytical expression for
one of the conserved quantities. Our computations lead to a min-
imization problem, which requires finding two parameters and is
based on solving the found second-order differential equation for
computation of the target functional. So, the burden of numerical
computations is reduced in half.

We have verified that the proposed computational procedure does
work and allows finding stable as well as unstable limit cycles for
a reasonable range of the slopes of the walking surface.

We have also studied applicability of the concept of hybrid zero
dynamics. It has been shown that, in general, the corresponding
two-dimensional manifold induced by the periodic trajectory is not

invariant. It is of interest to notice that the discovered absence of
invariance is in the continuous part of the dynamics while in the
discrete part invariance is always naturally present.

We believe that our approach is generalizable to a description of
a passive walking biped in the form of a system of Euler–Lagrange
equations of arbitrary order with an instantaneous updating law
modeling impact with the walking surface. However, it is left for
future investigations.
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