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Abstract— This paper introduces a convex formulation ap-
proach for the initialization of parameter estimation problems
(PEP). The proposed method exploits the parameter-affine fea-
ture exhibited by some dynamic systems. The method attempts
to solve a related convex problem and uses its result as the
initial guess for the solution of the original nonconvex PEP.
The proposed approach is illustrated through two nonconvex
parameter estimation study cases; the harmonic oscillator and
the Lorenz attractor.

I. INTRODUCTION

Obtaining accurate models of dynamic systems has an

enormous impact on science and engineering. Models used

to predict and control process dynamics are basically char-

acterized by their structure and the parameter values in

this structure. Parameter estimation problems refer to the

calculation of a set of values in a predefined model structure,

linear or nonlinear, such that the outputs of the model for

this given set of parameters fit some measurement data. Ad-

ditionally, constraints on parameter values and model states

are usually required e.g. positive concentrations and reaction

rates, upper and lower limits in model outputs. Consequently,

PEP are recast as optimization problems leading to convex or

nonconvex formulations according to the nature of the cost,

model and constraints.

Nonconvex PEP are difficult to solve since they might

exhibit local solutions and the true parameter or global

solution might be hard to find. Fast and efficient techniques

based on Newton type methods have been proposed [1].

These methods are derivative-based, and they can easily

lock on to a local solution if the problem is not initialized

appropriately. The most reliable approches for PEP are based

on the constrained Gauss-Newton method, with simultaneous

optimization [2]. Nevertheless, all these approaches require

a starting point to initialize the algorithms.

Other optimization techniques have been also introduced

for these kind of problems, such as non-deterministic global

optimization methods based on random search, genetic algo-

rithms and simulated annealing and deterministic approaches
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based on branch and bound B&B [3]. These techniques usu-

ally are computationally more expensive than the derivative-

based optimization approach.

This work proposes an initialization method for nonconvex

PEP involving a particular class of dynamic models, namely

parameter affine systems. The approach leads to a convex

problem where initialization is not required and a global

solution can easily be obtained by convex optimization

methods [4]. Other well-known procedures leading to convex

problems have been proposed for parameter affine system,

such as Least Squares Prediction Error Methods LS-PEM

[5]. These methods are sensitive to noisy data and in order

to work well in practice, they need to filter the residual errors.

The approach presented in this paper attempts to find an

initial guess of the parameter by solving a related convex

formulation. Hereafter, the solution of this convex problem

can be used to initialize the original Nonlinear Least Squares

Parameter Estimation Problem (NLS-PEP) using simultane-

ous optimization techniques based on multiple shooting [2]

or collocation [7].

The paper is organized as follows: section II introduces

the least squares parameter estimation problem for nonlinear

systems. Section III shows a well known approach to the

PEP involving input affine models. Section IV presents the

proposed approach for parameter estimation using a least

squares norm and a parameter affine model. Numerical ex-

amples comparing the known approaches with the proposed

method are developed in section V. Conclusions follow in

section VI.

II. THE PARAMETER ESTIMATION PROBLEM

Consider a dynamic system of the form

ẋ(t) = Φ(x(t), p) ∀ t ∈ [0, T ] (1)

where the vector p ∈ R
np and x(t) ∈ R

nx denote model

parameters and states respectively. In order to estimate the

value of the vector p, a set of measurements y(t) ∈ R
ny

with ny ≥ np is collected along the time interval [0, T ]. The

set of measurements y(t) does not necessarily correspond

to the model states x(t), however, here it is assumed that

the measurement set corresponds to the measurements of the

system states, i.e. y(t) = x̄(t). The mismatch between the

output of the model (1) and the measurements are usually

quantified using a least squares (LS) norm

L(x(t), p, t) =
1

2
‖x(t) − x̄(t)‖2

Q, (2)
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where Q weights the mismatch1. Following the presented

notation, the PEP can be formulated in the form:

min
x(·),p

∫ T

0

L(x(t), p, t) dt, (3)

subject to

(x(0) = x0), (4)

ẋ(t) = Φ(x(t), p), t ∈ [0, T ], (5)

x(t) ∈ X, t ∈ [0, T ], (6)

p ∈ P. (7)

The constraint (4) can be suppressed if the initial condition

is also considered a degree of freedom for the optimization

problem.

Least squares approach lies in the group of methods which

attempt to minimize the errors between data and model

outputs with respect to a given norm. It corresponds to

maximize the probability of p∗ given the set x̄(t) assuming

a normal distribution in the measurements errors with a

covariance matrix Q−1. Constraints on the parameters and

the model states can be introduced into the optimization

framework by the sets P and X respectively. Consequently,

PEP are considered as optimization problems and might

lead to nonconvex formulations, particularly when nonlinear

models are considered.

III. LS-PREDICTION ERROR METHODS

If the model (1) is affine in the parameters or can be

reformulated in such a form, and if the state measurements

or estimations are available, the prediction error method

(PEM) can be used to estimate the parameter vector p. In

the least squares prediction error methods (LS-PEM), an

unconstrained optimization problem of the form

Lpem(x(t), p, t) =
1

2
‖ ˙̄x(t) − Φ(x̄(t), p, t)‖2

Q, (8)

min
p

∫ T

0

Lpem(x(t), p, t)dt (9)

is solved. The method uses a predictor based on the

model (1) and attempts to minimize the difference between

measured data and the prediction one-step ahead of this data

using past samples. By using this approach along with a

parameter-affine model, the problem of estimating p becomes

convex leading to the global solution for any initial value.

However, the solution can be biased if the process uncertainty

and noise are not modelled appropriately by the model used

for prediction. In order to do so, the use of an appropriate

noise model is advised. For linear systems the use of different

noise models is equivalent to filter the error sequence [5].

Thus, the design of a filter for (8) is a neccesary step to

avoid biased estimations when PEM are used.

1This formulation corresponds to the weighted least squares

IV. A NEW CONVEX FORMULATION

Consider the problem presented in (3)-(7). It is assumed

that the optimization task is described by a set of state

measurements x̄(t). The measurements need not necessarily

be feasible with respect to the model equations (5). However,

we assume that x̄(t) ∈ X(t), i.e. the data set is feasible with

respect to the inequality constraints. We also assume that

X(t) is bounded.

Consider the following extra assumptions:

• The sets P and X are convex.

• Φ(x(t), p, t) is affine in p

Remark 1 : The above assumptions are satisfied if the

parameters and the states are constrained by simple bounds

(thus, P × X is a hypercube), and if the dynamic model-

equations is defined by

Φ(x(t), p) = f(x) + g(x)p. (10)

The approach proposed here is inspired by homotopy

methods [6]. This kind of methods attempt to solve an

optimization problem by first solving a related problem

which is connected to the original one by a homotopy path.

The nonconvex PEP (3)-(7) is reformulated by introducing a

homotopy parameter λ ∈ (0, 1), a new variable w(t) and a

norm on this new variable in the cost:

P (λ) : min
w(·),x(·),p

1

2λ

∫ T

0

‖ x(t) − x̄(t) ‖2
Q dt

+
1

2(1 − λ)

∫ T

0

‖ w(t) ‖2
Q dt (11)

subject to

x(0) = x0 − w(0), (12)

ẋ(t) = f(x(t)) + g(x(t))p − ẇ(t), t ∈ [0, T ]. (13)

It is not difficult to observe from (13) that w(t) corre-

sponds to the integral of the modelling errors along the time

interval T . The norm on w(t) in (11) is a natural choice due

to the nature of the original cost formulation.

The condition λ → 1 leads to the original problem (3)-

(7) while λ → 0 force x(t) → x̄(t) leading to the convex

problem in w(t) and p:

P (0) : min
w(·),p

1

2

∫ T

0

‖ w(t) ‖2
Q dt (14)

subject to

x̄(0) = x0 − w(0), (15)

˙̄x(t) = f(x̄(t)) + g(x̄(t))p − ẇ(t), t ∈ [0, T ] (16)

which corresponds to the convex extreme of the homotopy

map generated by the parametric PEP (11)-(13). An example

of this homotopy map is illustrated in figure 1.

In order to clarify this formulation, the definition

ża(t) = f(x̄(t)) + g(x̄(t))p, (17)
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Fig. 1. Homotopy map for the parameter estimation problem of a
parameter-affine model. The original PEP is nonconvex (λ→ 1) but if the
measured state is used as the real state, it is possible to achieve convexity
in one of the extremes of the map (λ→ 0).

is introduced in (16), leading to

w(t) = za(t) − x̄(t). (18)

Consequently, the convex PEP (14)-(16) can be recast as

min
za(.),p

1

2

∫ T

0

‖za(t) − x̄(t)‖2
Qdt, (19)

subject to

(za(0) = x0), (20)

ża(t) = f(x̄(t)) + g(x̄(t))p, (21)

za(t) ∈ X(t) (22)

p ∈ P. (23)

The model (21) in terms of za(t), can be seen as a

linearization of the original function (5) around the mea-

surements x̄(t), where the term involving the variation of

Φ(x(t), p) with respect to x(t) has been neglected. This

approach is closely related to prediction error methods

(PEM) for parameter estimation. However, the proposed

approximation differs from the classic PEM in the filter used

to process the residuals. In the PEM the pre-filter is a degree

of freedom the user has to define in the pre-processing stage.

Here, the use of an arbitrary filter is avoided and it is obtained

in a more natural form by simply recasting the problem (3)-

(7) as in (19)-(23). Consequently, after setting up the NLS-

PEP all the work by the user is done.

Following the presented formulation the NLS-PEP be-

comes convex enabling the use of more reliable tools and

algorithms to solve the problem. This method is referred in

the following as Least Squares Convex Approach (LS-CA).

V. NUMERICAL EXAMPLES

In order to illustrate the proposed approach to solve a PEP,

the following study cases are considered:

A. The Harmonic Oscillator

Regard the dynamic system described by

Φ(x(t), p) =

(

ẋ1(t)
ẋ2(t)

)

=

(

x2(t)
0

)

+

(

0
−x1(t)

)

p.

(24)

Assume that a set of noisy measurements for the states

x1(t) and x2(t) is available along a time horizon T . For

emulation purposes the data sequence is generated by inte-

grating (24) during 12 seconds using the Runge-Kutta 4th

order method with a fixed integration step of h = 13.3 ms.

The data set used for the PEP is illustrated at the top of

Fig. 2. In order to emulate more realistic data, the sequence

has been contaminated with colored noise in high and low

frequency ranges as depicted at the bottom of Fig. 2.

Given the data set x̄(t) of length N and defining x(t) =
[x1(t) x2(t)]

T , the NLS-PEP is discretized with a sampling

period h along the horizon T leading to the nonlinear

programming problem (NLP)

min
x(·),p

1

2

N−1
∑

k=0

‖ x(k) − x̄(k) ‖2
Q, (25)

subject to

x(k + 1) = x(k) + Φh(x(k), p), k ∈ [0, N − 1], (26)

x(k) ∈ X(k), k ∈ [0, N − 1], (27)

p ∈ P. (28)

Notice that the constraint related to the initial condition

x(0) has been suppressed here since the problem is firstly

pre-optimized with respect to x(.). Figure 3 shows the cost
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Fig. 2. Noisy measurements (top) and the frequency spectrum for x1(t)
(bottom).
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function for this particular data set. The problem exhibits the

global solution at p∗ = π2 and several local minima at p =
1.53π2, 2π2, 2.507π2 among other. Thus, a derivative-based

optimization technique could lead to the wrong solution if

not initialized close to the global minimum.

The LS-PEM approach can be easily applied to the prob-

lem (25)-(28) leading to the optimization problem

min
p

1

2

N−1
∑

k=1

‖x(k) − x̄(k)‖2
Q. (29)

subject to

x(k + 1) = x̄(k) + Φh(x̄(k), p), k ∈ [0, N − 2], (30)

x(k) ∈ X(k), k ∈ [0, N − 1], (31)

p ∈ P. (32)

The cost obtained for the LS-PEM approach is illustrated

in Fig. 3. Although the problem is now convex, the minimum

of this convex function is biased with respect to the original

NLS-PEP, due to the colored noise. Consequently, in order

to appropriately apply PEM, the noise model in (26) has

to be improved or the prediction errors should be filtered.

If the minimum given by this method is used to initialize

the original NLS in order to refine the optimum, a local

optimization routine would lead to a wrong local solution,

since the biased value is closer to a one of the other local

minima

On the other hand, the proposed approach (19)-(23) is

discretized, leading to

min
za(·),p

1

2

N−1
∑

k=0

‖ za(k) − x̄(k) ‖2
Q, (33)

subject to

za(k + 1) = za(k) + Φh(x̄(k), p), k ∈ [0, N − 2], (34)

za(k) ∈ X(k), k ∈ [0, N − 1], (35)

p ∈ P. (36)

The cost function derived from this problem, with the

noisy measurements, has been pre-optimized with respect to

za(.) and illustrated in Fig. 3. The LS-CA approach provides

a better characterization of the global minimum for this

test. Although the original measurement set contains high

and low frequency noise they do not significantly affect the

estimation of the global optimum. It is possible to obtain

similar results with PEM methods, however, the user must

then define a suitable filter in order to decrease the bias in

the estimation. This noise model can be obtained by fitting

the noise spectrum through filters of the form:

ẇ(t) = Anw(t) + Kne(t) (37)

v(t) = Cnw(t) + Dne(t)

where e(t) ∈ R
nx and v(t) ∈ R

nx correspond to white

and colored noise respectively.

For this particular example, colored noise in the bands

[20-35]Hz and [1-2.5]Hz can be identified by simple inspec-

tion of spectrum in figure 2. Thus, the noise spectrum is
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Fig. 3. Cost function for harmonic oscillator PEP using different ap-
proaches.

TABLE I

COST VALUES FOR THE ORIGINAL NLS-PEP AND ITS PROPOSED

VARIANTS FOR THE HARMONIC OSCILLATOR EXAMPLE

Cost Jmin Jmax

p
∗

n

π
2

e(p∗
n
)

NLS 7.605e-3 281.83e-3 0.9989 0.0

LS-PEM 20.395e-3 22.42e-3 2.354 135.605

LS-PEM+NF 9.893e-3 13.99e-3 1.145 14.573

LS-CA 8.17e-3 402.45e-3 0.9949 0.402

approximated by designing a second order bandpass filter for

each band using the state space representation (37). A more

accurate but involved approach is to use spectral factorization

to reconstruct the noise model from the noise spectrum [5].

The designed filter is added to the original model (24)

and the one-step ahead predictor is formulated using the state

space model. Figure 3 shows that the LS-PEM with the noise

filter (LS-PEM+NF) provides a less-biased optimum value

than without the filter. However, the optimum obtained does

not exactly match the real one since an exact description of

the noise is necessary to achieve perfect fit of the estimated

parameter. Consequently, the design of the noise filter in the

predictor is an additional step the user should do in order to

get a less biased estimation when using PEM. This step is

avoided with the proposed LS-CA approach.

Results are summarized in table I where the distance to

the global minimum is calculated using

e(p∗n) = 100 ×
|p∗ − p∗n|

p∗
, (38)

where p∗ corresponds to the global solution of the original

NLS-PEP.

B. Lorenz Attractor

As a second study case, consider the attractor introduced

by Edward Lorenz in 1963. The dynamics of the Lorenz

attractor is governed by a set of differential equations of the
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Fig. 4. Chaotic behavior of Lorenz attractor, σ = 10, β = 8/3 and
ρ = 28.

form

ẋ(t) = σ(y − x),

ẏ(t) = x(ρ − z) − y, (39)

ż(t) = xy − βz,

where σ, β and ρ are positive parameters. Typical values

to illustrate the chaotic behavior of this set of nonlinear

equations are σ = 10, β = 8/3 and ρ = 28. Note that

the system presents the structure (10) with

p =





σ
ρ
β



 (40)

The multiple time scale evolution and the chaotic behavior

of (39), showed in Fig. (4), is often used to illustrate the

internal dynamics of the earth atmosphere [9] and it has been

used as study case for parameter estimation methods as well

in [10], [11].

In this numerical example, the 4th order Runge-Kutta

integration method is used with a fixed step of h = 0.01 s.

Due to the high sensitivity to initial conditions and parameter

changes, the identification of the vector p is a challenging

task. In order to illustrate the difficulty of parameter estima-

tion in this example, a simulation is run with initial condition

[x0, y0, z0] = [16, 18, 35]. Figure 5 illustrates the effect of

a small perturbation on z0 , ∆z. Additionally, the effects

of a 0.35% change in ρ are simulated. In both cases, the

trajectories noticeably diverge from the unperturbed one after

some seconds of simulation.

It is assumed that a sequence containing measurements

for all states x̄(t) is provided as illustrated in Fig. 6. This

sequence is contaminated with colored noise. Thus, it is

expected that the LS-PEM without any noise information

provides a biased solution.

In order to better visualize the cost functions for the

presented approaches, σ and β are considered constant and ρ
is estimated. The parameter estimation problem is formulated

as in (25)-(28) with the discrete representation of the model

presented in (39). The NLS-PEP cost as a function of

ρ ∈ [10, 40] is presented in Fig. 7. For this case, no pre-

optimization on x(.) has been performed since the initial

condition is assumed fixed. Clearly this cost is non-smooth

and contains several local minima due to the stochastic

behavior of the model for values of ρ > 24. Consequently,

derivative-based techniques hardly find the right solution

when initialized far from the global optimum.

The parameter-affine structure allows for the use of LS-

PEM. Following the procedure presented in the harmonic

oscillator example, the measurements are used to construct

the predictor (26) and the least squares estimation problem is

formulated as in (29). The cost to optimize for this problem

is illustrated in figure 7. Due to the noise added, and the

fact that a noise model is not considered, the global solution

provided by LS-PEM methods is biased with respect to the

global optimum. Consequently, it is required to define a filter

for residuals based on the analysis of the noise spectrum of

the collected measurements in figure 6. For this particular

example, it is not difficult to recognize noise in the range

100-150Hz. Hence, a simple approach is to propose a filter

with a bandwith matching this band. Notice that this is a

heuristic approach and not always is easy to isolate the noise

spectrum from the measured data. A second order bandpass

filter of the form (37) is designed and added to each output of

the original model i.e. v(t), e(t) ∈ R
3 and w(t) ∈ R

6. The

results of the LS-PEM including this filter (LS-PEM+NF)

are illustrated in figure 7.

The LS-CA approach is introduced for this parameter

estimation problem, by using the Lorenz model (39) and the

noisy data set in the optimization problem (33)-(36) with a

fixed initial condition. The cost to optimize obtained with

this formulation is presented in Fig. 7. Similarly to LS-PEM

and LS-PEM+NF, the cost is convex. However, the minimum

of the convex cost obtained with LS-CA is quite close to the

global solution of the NLS-PEP. Notice that the plots for all

the costs in Fig. 7 have been normalized for visualization

purposes, nevertheless the minimum and maximum values
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TABLE II

LORENZ ATTRACTOR EXAMPLE PEP. NOISE IN THE RANGE 100-150 HZ

Cost Jmin Jmax ρ∗
n

e(ρ∗
n
)

NLS 35.063 409.94 28.0 0.0

LS-PEM 20.71 20.75 12.9 53.93

LS-PEM+NF 21.10 21.31 25.8 7.86

LS-CA 58.01 14.69e3 28.6 2.14

for all the costs differ considerably. The same test is run with

colored noise in other frequencies, in all cases, the proposed

methods showed less bias than its LS-PEM counterpart with

and without filter.

Table II and III show the minimum and maximum values

for the presented costs over the considered domain of ρ,

additionally, the distance of the optimum obtained with the

presented methods is calculated using (38) with p∗ = ρ∗ =
28.
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Fig. 7. Costs for different approaches σ = 10, β = 8/3. The data has
been contaminated with noise in the range 100 to 150 Hz (top) and 400 to
450 Hz (bottom)

TABLE III

LORENZ ATTRACTOR EXAMPLE PEP. NOISE IN THE RANGE 400-450 HZ

Cost Jmin Jmax ρ∗
n

e(ρ∗
n
)

NLS 60.68 435.56 28 0.0

LS-PEM 227.86 227.86 24.60 12.14

LS-PEM+NF 227.96 227.97 24.40 12.85

LS-CA 70.39 13.56e3 27.90 0.36

VI. CONCLUSIONS

An approach to initialize nonconvex parameter estima-

tion problems involving parameter-affine models has been

presented. The approach uses the measurements into the

dynamic model states similar to LS-PEM, however no pre-

filtering of the error residuals is required before the formula-

tion of the optimization problem. The convexity achieved by

the method enables the use of efficient convex optimization

routines and leads to solutions which demonstrated to be less

biased than the one obtained with classical approaches for a

set of numerical examples. Consequently, the method is suit-

able for obtaining a good initial guess of the parameters to be

estimated and can be used in combination with simultaneous

Gauss-Newton approach were initialization is required.

VII. ACKNOWLEDGMENTS

Research supported by Research Council KUL: CoE

EF/05/006 Optimization in Engineering(OPTEC), GOA AM-

BioRICS, IOF-SCORES4CHEM, PhD/postdoc and fellow

grants; Flemish Government: FWO: PhD/postdoc grants,

projects G.0452.04, G.0499.04, G.0211.05, G.0226.06,

G.0321.06, G.0302.07, G.0320.08, G.0558.08, G.0557.08,

research communities (ICCoS, ANMMM, MLDM); IWT:

PhD Grants, McKnow-E, Eureka-Flite; Helmholtz: viCERP;

EU: ERNSI,HD-MPC; Contracts: AMINAL; Belgian Federal

Science Policy Office: IUAP P6/04 (DYSCO, Dynamical

systems, control and optimization, 2007-2011)

REFERENCES

[1] J. Nocedal and S. Wright, Numerical Optimization, Springer, NY; 2006
[2] H. Bock and K. Plitt, A Multiple Shooting Algorithm for Direct

Solution of Optimal Control Problems. In Proc. of the 9th IFAC world
congress 1984.

[3] C. Floudas, Deterministic Global Optimization: theory, methods and

applications, Kluwer Academic Publishers, Dordrecht; 1999.
[4] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge

University Press, Cambridge; 2006.
[5] L. Ljung, System Identification, Theory for the Users, Prentice Hall,

NJ; 1999.
[6] L. T. Watson, Theory of globally convergent probability-one homo-

topies for nonlinear programming. SIAM J. Optim., 11(3):761780,
2000.

[7] L. Biegler, Solution of Dynamic Optimization Problems by Successive
Quadratic Programming and Orthogonal Collocation, Comput. Chem.

Engng. 1984; Vol. 8, pp. 243-248.
[8] L. Ljung, Prediction Error Estimation Methods, Circuits Systems

Signal Processing, vol. 21, No. I, 2002, pp. 11-21.
[9] T. N. Palmer, Extended Range Atmospheric Prediction and the Lorentz

Model, American Meteorological Society, vol. 74, No 1, 1993, pp 49-
55.

[10] D. J. Lea and M. R. Allen and T. W. N. Haine, Sensitivity analysis of
the climate of a chaotic system, Tellus, vol. 52A, 2000, pp 523-532.

[11] J.D. Annan and J.C. Hargreaves, Efficient parameter estimation for a
highly chaotic system, Tellus, vol. 56A, 2004, pp 520-526.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC13.5

5524


