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Abstract— In this paper, we develop an adaptive control
framework for a multi-compartmental model of a pressure-
limited respirator and lung mechanics system. Specifically, we
develop a model reference direct adaptive controller framework
where the plant and reference model involve switching and
time-varying dynamics. We then apply the proposed adaptive
feedback controller framework to stabilize a given limit cycle
corresponding to a clinically plausible respiratory pattern.

I. INTRODUCTION

Mechanical ventilation of a patient with respiratory failure
is one of the most common life-saving procedures performed
in the intensive care unit. However, mechanical ventilation
is physically uncomfortable due to the noxious interface
between the ventilator and patient, and mechanical venti-
lation evokes substantial anxiety on the part of the patient.
This will often be manifested by the patient “fighting the
ventilator.” In this situation, there is dyssynchrony between
the ventilatory effort of the patient and the ventilator. The
patient will attempt to exhale at the time the ventilator
is trying to expand the lungs or the patient will try to
inhale when the ventilator is decreasing airway pressure to
allow an exhalation. When patient-ventilator dyssynchrony
occurs, at the very least there is excessive work of breathing
with subsequent ventilatory muscle fatigue and in the worst
case, elevated airway pressures that can actually rupture
lung tissue. In this situation, it is a very common clinical
practice to sedate patients to minimize “fighting the venti-
lator.” Sedative-hypnotic agents act on the central nervous
system to ameliorate the anxiety and discomfort associated
with mechanical ventilation and facilitate patient-ventilator
synchrony. In this paper, we develop an adaptive feedback
controller for addressing this dyssynchrony for intensive care
unit sedation.

In a recent paper [1], we extended the existing models for
ventilation systems [2–9] to obtain a general mathematical
model for the dynamic behavior of a multi-compartment res-
piratory system in response to an arbitrary applied inspiratory
pressure. Specifically, we used compartmental dynamical
system theory to model and analyze the dynamics of a
pressure-limited respirator and lung mechanics system, and
showed that the periodic orbit generated by this system
is globally asymptotically stable. Furthermore, we showed
that the individual compartmental volumes, and hence the
total lung volume, converge to steady-state end-inspiratory
and end-expiratory values. In this paper, we develop a
model reference direct adaptive controller framework where
the plant and reference model involve switching and time-
varying dynamics. Then, we apply the proposed adaptive
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framework to the multi-compartmental model of a pressure-
limited respirator and lung mechanics system. Specifically,
we develop an adaptive feedback controller that stabilizes
a given limit cycle corresponding to a clinically plausible
breathing pattern. Finally, we apply the proposed adaptive
control framework to a mechanical ventilation model to
quantify patient-ventilator dyssynchrony for intensive care
unit sedation.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

In this section, we introduce notation, several definitions,
and some key results that are necessary for developing the
main results of this paper. Specifically, for x ∈ R

n we write
x ≥≥ 0 (resp., x >> 0) to indicate that every component of
x is nonnegative (resp., positive). In this case, we say that x
is nonnegative or positive, respectively. Likewise, A ∈ R

n×m

is nonnegative or positive if every entry of A is nonnegative
or positive, respectively, which is written as A ≥≥ 0 or
A >> 0, respectively. Furthermore, for A ∈ R

n×n we write
A ≥ 0 (resp., A > 0) to indicate that A is a nonnegative-
definite (resp., positive-definite) matrix. In addition, (·)T

denotes transpose and (·)−1 denotes inverse. Let R
n

+ and
R

n
+ denote the nonnegative and positive orthants of R

n, that

is, if x ∈ R
n, then x ∈ R

n

+ and x ∈ R
n
+ are equivalent,

respectively, to x ≥≥ 0 and x >> 0. Finally, en ∈ R
n

denotes the ones vector of order n, that is, en = [1, · · · , 1]T;
if the order of en is clear from context we simply write e

for en.

The following definitions introduce the notions of essen-
tially nonnegative, compartmental, and strictly ultrametric
matrices.

Definition 2.1 ([10]): Let A ∈ R
n×n. A is essentially

nonnegative if A(i,j) ≥ 0, i, j = 1, . . . , n, i 6= j. A is

compartmental if A is essentially nonnegative and e
TA ≤≤

0.

Definition 2.2 ([11]): Let A ∈ R
n×n be such that

A ≥≥ 0. A is strictly ultrametric if A is symmetric,
A(i,i) > max{A(i,k) : k = 1, . . . , n, k 6= i}, i = 1, . . . , n,
and A(i,j) ≥ min{A(i,k), A(k,j)}, k = 1, . . . , n, i, j =
1, . . . , n, i 6= j.

In this paper, we consider nonlinear periodic dynamical
systems of the form

ẋ(t) = f(t, x(t)), x(0) = x0, t ∈ Ix0
, (1)

where x(t) ∈ D ⊆ R
n, t ∈ Ix0

, is the system state vector,
D is an open set, f : [0,∞) × D → R

n satisfies f(t, x) =
f(t + T, x), x ∈ D, t ≥ 0, for some T > 0, and Ix0

=
[0, τx0

), 0 < τx0
≤ ∞, is the maximal interval of existence

for the solution x(·) of (1). A function x : Ix0
→ D is

said to be a solution to (1) on the interval Ix0
⊆ [0,∞)

with initial condition x(0) = x0 if x(t) satisfies (1) for all
t ∈ Ix0

. It is assumed that f(·, ·) is such that the solution
to (1) is unique for every initial condition in D and jointly
continuous in t and x0. A sufficient condition ensuring this
is Lipschitz continuity of f(t, ·) : D → R

n for all t ∈ [0, t1]
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and continuity of f(·, x) : [0, t1] → R
n for all x ∈ D. Here,

we assume that all solutions to (1) are bounded over Ix0
,

and hence, by the Peano-Cauchy theorem can be extended
to infinity.

Next, we introduce the notions of periodic solutions and
periodic orbits for (1). For the next definition, we denote the
solution x(·) to (1) with initial conditon x0 ∈ D by s(t, x0).

1

Definition 2.3: A solution s(t, x0) of (1) is periodic if
there exists a finite time T > 0 such that s(t + T, x0) =
s(t, x0) for all t ≥ 0. A set O ⊂ D is a periodic orbit of
(1) if O = {x ∈ D : x = s(t, x0), 0 ≤ t ≤ T } for some
periodic solution s(t, x0) of (1).

Finally, we introduce the notions of Lyapunov and asymp-
totic stability of a periodic orbit of the nonlinear dynamical
system (1). For this definition, dist(p,M) denotes the dis-
tance from a point p to any point in the set M, that is,
dist(p,M) , infx∈M ‖p − x‖.

Definition 2.4: A periodic orbit O of (1) is Lyapunov
stable if, for all ε > 0, there exists δ = δ(ε) > 0 such
that if dist(x0,O) < δ, then dist(s(t, x0),O) < ε, t ≥ 0. A
periodic orbit O is asymptotically stable if O is Lyapunov
stable and there exists ε > 0 such that if dist(x0,O) < ε,
then dist(s(t, x0),O) → 0 as t → ∞.

III. COMPARTMENTAL MODELING OF LUNG DYNAMICS

In this section, we present a general mathematical model
for the dynamic behavior of a multi-compartment respira-
tory system in response to an arbitrary applied inspiratory
pressure [1]. Here, we assume that the bronchial tree has a
dichotomy architecture [1], [12], that is, in every generation
each airway unit branches into two airway units of the sub-
sequent generation. First, however, we start by considering
a single-compartmental lung model as shown in Figure 1.
At time t = 0, an arbitrary pressure pin(t) is applied to
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Fig. 1. Single-compartment lung model

the opening of the parent airways. At time t = Tin, the
applied airway pressure is released and expiration takes place
passively, that is, the external pressure pex(t) is applied
during the time interval Tin ≤ t ≤ Tin + Tex, where Tex
is the duration of expiration.

The state equation for inspiration (inflation of lung) is
given by

Rinẋ(t) +
1

c
x(t) = pin(t), x(0) = xin

0 , 0 ≤ t ≤ Tin, (2)

1Note that since (1) is a time-varying dynamical system it is typical to
denote its solution as ŝ(t, t0, x0) to indicate the dependence on both the
initial time t0 and the initial state x0. In this paper, we assume that t0 = 0

and define s(t, x0)
△

= ŝ(t, 0, x0).

where x(t) ∈ R, t ≥ 0, is the lung volume, Rin ∈ R is
the resistance to air flow during the inspiration period, and
xin

0 ∈ R is the lung volume at the start of the inspiration
and serves as the system initial condition. We assume that
expiration is passive (due to elastic stretch of lung unit).
During the expiration process, the state equation is given by

Rexẋ(t) +
1

c
x(t) = pex(t), x(Tin) = xex

0 ,

Tin ≤ t ≤ Tin + Tex, (3)

where x(t) ∈ R, t ≥ 0, is the lung volume, Rex ∈ R is
the resistance to air flow during the expiration period, and
xex

0 ∈ R is the lung volume at the start of expiration.

Next, we present the state equations for a multi-
compartment model. In this model, the lungs are represented
as 2n lung units which are connected to the pressure source
by n generations of airway units, where each airway is di-
vided into two airways of the subsequent generation leading
to 2n compartments (see Figure 2 for a four-compartment
model).
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Fig. 2. Four-compartment lung model

Let ci, i = 1, 2, . . . , 2n, denote the compliance of each
compartment and let Rin

j,i (resp., Rex
j,i), i = 1, 2, . . . , 2j, j =

0, . . . , n, denote the resistance (to air flow) of the i-th
airway in the j-th generation during the inspiration (resp.,
expiration) period with Rin

01 (resp., Rex
01) denoting the inspi-

ration (resp., expiration) of the parent (i.e., 0 generation)
airway. As in the single-compartment model we assume that
a pressure of papp(t) is applied during inspiration. Next, let
xi, i = 1, 2, . . . , 2n, denote the lung volume in the i-th
compartment. Now, the state equations for inspiration and
expiration are given by

Rinẋ(t) + Cx(t) = pine, x(0) = xin
0 , 0 ≤ t ≤ Tin, (4)

Rexẋ(t) + Cx(t) = pexe, x(Tin) = xex
0 ,

Tin ≤ t ≤ Tex + Tin, (5)

where x , [x1, x2, · · · , x2n ]T, C , diag[ 1
c1

, · · · , 1
c2n

], and

Rin ,

n
∑

j=0

2j

∑

k=1

Rin
j,k Zj,k ZT

j,k, (6)

Rex ,

n
∑

j=0

2j

∑

k=1

Rex
j,k Zj,k ZT

j,k, (7)
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where Zj,k ∈ R
2n

is such that the l-th element of Zj,k is 1
for all l = (k−1)2n−j +1, (k−1)2n−j +2, . . . , k2n−j , k =
1, . . . , 2j, j = 0, 1, . . . , n, and zero elsewhere.

Note that if Rin and Rex are invertible, then (4) and (5)
can be equivalently written as

ẋ(t) = Ainx(t) + Binpin(t), x(0) = xin
0 ,

0 ≤ t ≤ Tin, (8)

ẋ(t) = Aexx(t) + Bexpex(t), x(Tin) = xex
0 ,

Tin ≤ t ≤ Tex + Tin, (9)

where Ain
△

= −R−1
in C, Bin

△

= R−1
in e, Aex

△

= −R−1
ex C, and

Bex , R−1
ex e.

The following proposition states several important proper-
ties of Rin, Rex, Ain, and Aex that are essential for the main
results of this paper.

Proposition 3.1 ([1]): Consider the dynamical system (4)
and (5) or, equivalently, (8) and (9). Then the following
statements hold:

i) Rin > 0 and Rex > 0.
ii) AT

inC + CAin < 0.

iii) AT
exC + CAex < 0.

iv) Rin and Rex are strictly ultrametric.
v) Ain and Aex are compartmental and Hurwitz, and

Bin ≥≥ 0 and Bex ≥≥ 0, where Bin , R−1
in e and

Bex , R−1
ex e.

Remark 3.1: It follows from Proposition 3.1 that the dy-
namical system (4) and (5) is nonnegative, that is, the state
of (4) and (5) remains in the nonnegative orthant for t ≥ 0.
See [1] for details.

Remark 3.2: It follows from Proposition 3.1 that Rin and
Rex are invertible. Hence, Ain and Aex are well defined,
which implies that the state equations for inspiration and
expiration given by (8) and (9), respectively, are well defined.

In this paper, we assume that the inspiration process starts
from a given initial state xin

0 followed by the expiration
process where its initial state will be the final state of
the inspiration. An inspiration followed by the expiration
is called a breathing cycle. We assume that each breathing
cycle is followed by another breathing cycle where the initial
condition for the latter breathing cycle is the final state of
the former breathing cycle. Furthermore, we assume that the
duration of inspiration is Tin and that of expiration is Tex
so that the total duration of a breathing cycle is Tin + Tex.
It is clear that this process generates a periodic dynamical
system with a period T , Tin+Tex. Furthermore, the system
dynamics switch from inspiration to expiration and back to
inspiration. Hence, the dynamics for a breathing cycle can
be characterized by the periodic switched dynamical system
G given by

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = xin
0 , t ≥ 0, (10)

where

A(t) = A(t + T ), u(t) = u(t + T ), t ≥ 0, (11)

A(t) =

{

Ain, 0 ≤ t < Tin,

Aex, Tin ≤ t < T,
(12)

B(t) =

{

Bin, 0 ≤ t < Tin,

Bex, Tin ≤ t < T,
(13)

u(t) =

{

pin(t), 0 ≤ t < Tin,

pex(t), Tin ≤ t < T.
(14)

Next, we characterize and analyze the stability of periodic
orbits of the switched dynamical system G given by (10).

First, note that (see [1] for details)

xex
0 = x(Tin) = Γinx

in
0 + θ, (15)

where

Γin , eAinTin , (16)

θ , eAinTin

∫ Tin

0

e−AintBinpin(t)dt. (17)

Furthermore, note that

x(T ) = Γexx
ex
0 + δ, (18)

where

Γex , eAexTex , (19)

δ , eAexT

∫ T

Tin

e−AextBexpex(t)dt. (20)

Next, let xin
m denote the initial condition for the m-th

inspiration (and hence the m-th breathing cycle) and let xex
m

denote the initial condition for the m-th expiration, that is,
xin

m = x(mT ) and xex
m = x(mT +Tin), m = 0, 1, . . .. Hence,

it follows from (15) and (18) that

xin
1 = Γeix

in
0 + Γexθ + δ, (21)

where Γei
△

= ΓexΓin. Similarly, it can be shown that

xex
1 = Γiex

ex
0 + Γinδ + θ, (22)

where Γie
△

= ΓinΓex. More generally,

xin
m+1 = Γeix

in
m + Γexθ + δ, m = 0, 1, . . . , (23)

xex
m+1 = Γiex

ex
m + Γinδ + θ, m = 0, 1, . . . . (24)

The following proposition states two key properties for Γei
and Γie which are useful in characterizing a periodic orbit
for the switched dynamical system G.

Proposition 3.2 ([1]): The following statements hold:

i) ΓT
exCΓex < C and ΓT

inCΓin < C.

ii) ΓT
eiCΓei < C and ΓT

ieCΓie < C.

For the next result, define x̂in
△

= (I − Γei)
−1(Γexθ + δ)

and x̂ex
△

= (I − Γie)
−1(Γinδ + θ).

Proposition 3.3 ([1]): Consider the switched dynamical

system G given by (10). Then for every xin
0 ∈ R

n

+, the
following statements hold:

i) limm→∞ xin
m = x̂in and limm→∞ xex

m = x̂ex.
ii) For every t ∈ [0, Tin],

lim
m→∞

x(t + mT ) = eAintx̂in

+

∫ t

0

eAin(t−τ)Binpin(τ)dτ,

and for every t ∈ [Tin, T ],

lim
m→∞

x(t + mT + Tin)

= eAextx̂ex +

∫ t

0

eAex(t−τ)Bexpex(τ + Tin)dτ.

Remark 3.3: It follows from Proposition 3.3 that the in-
dividual compartmental volumes, and hence the total vol-
ume, converge to the steady-state end-inspiratory and end-
expiratory values of (I − Γei)

−1(Γexθ + δ) and (I −
Γie)

−1(Γinδ + θ), respectively.
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Next, let x̂
△

= (I − Γei)
−1(Γexθ + δ) and define the orbit

Ox̂
△

= {x ∈ R
n

+ : x = s(t, x̂),

where s(t, x̂) is the solution to (10)}. (25)

With xin
0 = x̂ note that xin

m = x̂, m = 1, 2, . . ., or,
equivalently, x(mT ) = x̂, m = 1, 2, . . ., which implies that
Ox̂ is a periodic orbit of (10).

Theorem 3.1 ([1]): Consider the switched dynamical sys-
tem G given by (10). Then the periodic orbit Ox̂ of G
generated by x(0) = x̂ = (I − Γei)

−1(Γexθ + δ) is globally
asymptotically stable.

Remark 3.4: Note that Theorem 3.1 is valid for arbitrary
nonnegative functions (possibly discontinuous) pin(t) and
pex(t) as long as

∫ Tin

0

e−AintBinpin(t)dt

and
∫ T

Tin

e−AextBexpex(t)dt

are finite. In the case where pin(t) = αt +β and pex(t) = γ
for some positive constants α, β, and γ, θ and δ are given
by

θ = A−2
in [(αI + βAin)(eAinTin − I) − αAinTin]Bin,

δ = γA−1
ex (eAexTex − I)Bex.

Remark 3.5: Although Theorem 3.1 is presented for the
simpler case of regular dichotomy architecture, it also holds
for more general case of irregular dichotomy archietecture
[1]. Hence, all the results presented in Section IV and V
trivially apply to the case of irregular dichotomy architecture.
Here, we consider the case of regular dichotomy architecture
for simplicity of exposition.

IV. DIRECT ADAPTIVE CONTROL FOR SWITCHED

LINEAR TIME-VARYING SYSTEMS

In this section, we consider the problem of adaptive
tracking of uncertain linear time-varying switching systems.
Specifically, consider the following controlled uncertain
switched linear time-varying system G given by

ẋp(t) = Ap(t)xp(t) + Bp(t)u(t), xp(0) = xp0, t ≥ 0,
(26)

where xp(t) ∈ R
n, t ≥ 0, is the state vector, u(t) ∈ R

p, t ≥
0, is the control input, and Ap(t) ∈ R

n×n, t ≥ 0, and
Bp(t) ∈ R

n×p, t ≥ 0, are unknown matrices. The control in-
put u(·) in (26) is restricted to the class of admissible controls
consisting of measurable functions such that u(t) ∈ R

p, t ≥
0. Furthermore, for the uncertain linear time-varying system
G, we assume that Ap(·) and Bp(·) are piecewise continuous
functions and we assume that the required properties for the
existence and uniqueness of solutions are satisfied; that is,
Ap(·), Bp(·), and u(·) satisfy sufficient regularity conditions
such that (26) has a unique solution forward in time.

Next, consider a reference model given by

ẋm(t) = Am(t)xm(t)+Bm(t)r(t), xm(0) = xm0, t ≥ 0,
(27)

where xm(t) ∈ R
n, t ≥ 0, is the state vector, r(t) ∈ R

p, t ≥
0, is the reference input, and Am(t) ∈ R

n×n, t ≥ 0, and
Bm(t) ∈ R

n×p, t ≥ 0, are known matrices. Moreover, let
Am(t) satisfy

AT
m(t)Cm + CmAm(t) ≤ −εmI, (28)

where εm > 0 and Cm ∈ R
n×n is positive definite.

Furthermore, we assume that Am(·) and Bm(·) are piecewise
continuous and are such that (28) has a unique solution for
all t ≥ 0 and xm(t) is uniformly bounded for all t ≥ 0 and
xm0 ∈ R

n.

For the next result, we assume that there exist positive
definite matrices Q∗ ∈ R

p×p and Θ∗ ∈ R
p×n such that the

compatibility conditions

Bp(t)Q∗ = Bm(t), t ≥ 0, (29)

Ap(t) + Bp(t)Θ
∗ = Am(t), t ≥ 0, (30)

hold.

Theorem 4.1: Consider the uncertain linear time-varying
system G given by (26) and the reference model given by
(27). Then the adaptive feedback control law

u(t) = Θ(t)xp(t) + Q(t)r(t), (31)

where Θ(t) ∈ R
p×n, t ≥ 0, and Q(t) ∈ R

p×p, t ≥ 0, with
updated laws

Θ̇(t) = −BT
m(t)Cme(t)xT

p (t), Θ(0) = Θ0, t ≥ 0, (32)

Q̇(t) = −BT
m(t)Cme(t)rT(t), Q(0) = Q0, (33)

where e(t) , xp(t) − xm(t), guarantees that the solution
(xp(t), Θ(t), Q(t)) of the closed-loop system given by (26),
(27), (31), (32), and (33) is uniformly bounded for all t ≥ 0
and xp(t) → xm(t) as t → ∞.

Proof: Note that with u(t), t ≥ 0, given by (31) it
follows from (26) that

ẋp(t) = Ap(t)xp(t) + Bp(t)Θ(t)xp(t) + Bp(t)Q(t)r(t),

xp(0) = xp0, t ≥ 0, (34)

or, equivalently, using (29) and (30),

ẋp(t) = Ap(t)xp(t) + Bp(t)(Θ
∗ + Θ(t) − Θ∗)xp(t)

+Bp(t)(Q
∗ + Q(t) − Q∗)r(t)

= (Ap(t) + Bp(t)Θ
∗)xp(t)

+Bp(t)(Θ(t) − Θ∗)xp(t) + Bp(t)Q∗r(t)

+Bp(t)(Q(t) − Q∗)r(t)

= Am(t)xp(t) + Bm(t)r(t)

+Bp(t)(Θ(t) − Θ∗)xp(t)

+Bp(t)(Q(t) − Q∗)r(t)

= Am(t)xp(t) + Bm(t)r(t)

+Bp(t)Φ(t)xp(t) + Bp(t)Ψ(t)r(t)

xp(0) = x0, t ≥ 0, (35)

where Φ(t) , Θ(t) − Θ∗ and Ψ(t) , Q(t) − Q∗. Then it
follows from (27) and (35) that

ė(t) = ẋp(t) − ẋm(t)

= Am(t)e(t) + Bp(t)Φ(t)xp(t) + Bp(t)Ψ(t)r(t)

e(0) = xp0 − xm0, t ≥ 0. (36)

To show uniform boundedness of the closed-loop system
(32), (33), and (36) consider the continuously differentiable
function

V (e, Φ, Ψ) = eTCme+ tr ΨTQ∗−1Ψ+ tr ΦTQ∗−1Φ, (37)

and note that V (0, 0, 0) = 0. Since Cm and Q∗ are positive
definite, V (e, Ψ, Φ) > 0 for all (e, Φ, Ψ) 6= (0, 0, 0). In
addition, V (e, Φ, Ψ) is radially unbounded. Now, using (32)
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and (33), it follows that the derivative of V (·, ·, ·) along the
closed-loop system trajectories is given by

V̇ (e(t), Φ(t), Ψ(t)) = eT(t)[AT
m(t)Cm + CmAm(t)]e(t)

+2eT(t)CmBp(t)Φ(t)xp(t)

+2eT(t)CmBp(t)Ψ(t)r(t)

+2tr Φ̇T(t)Q∗−1Φ(t)

+2tr Ψ̇T(t)Q∗−1Ψ(t)

= eT(t)[AT
m(t)Cm + CmAm(t)]e(t)

≤ −εmeT(t)e(t), t ≥ 0. (38)

Hence, it follows from Corollary 2.4 of [13, pp. 68]
that (e(t), Φ(t), Ψ(t)) is uniformly bounded, and hence,
(xp(t), Θ(t), Q(t)) is uniformly bounded for all t ≥ 0.

Next, with W1(e, Φ, Ψ) = W2(e, Φ, Ψ) = V (e, Φ, Ψ)
and W (e, Φ, Ψ) = εmeTe, it follows from Theorem 2.5
of [13] that (e(t), Φ(t), Ψ(t)) → R as t → ∞, where

R , {(e, Φ, Ψ) : W (e, Φ, Ψ) = 0} = {(e, Φ, Ψ) : e = 0}.
In particular, note that

Ẇ (e(t), Φ(t), Ψ(t)) = 2εmeTė

= 2εmeT(t)[Am(t)e(t)

+Bp(t)Φ(t)xp(t)

+Bp(t)Ψ(t)r(t)] (39)

is bounded for all t ≥ 0, and hence, all conditions of
Theorem 2.5 of [13, pp. 54] are satisfied proving that e(t) →
0 or, equivalently, xp(t) → xm(t) as t → ∞.

Remark 4.1: Although the form of the adaptive control
law given in Theorem 4.1 is identical to that of standard
model reference adaptive controllers provided in the lit-
erature (see, for example, [14]), the dynamics of system
considered in Theorem 4.1 are not Lipschitz continuous, and
hence, standard proofs involving Barbalat’s lemma do not
hold. Consequently, Theorem 4.1 requires the more general
result given by Theorem 2.5 of [13].

It is important to note that the adaptive laws (32) and (33)
do not require explicit knowledge of Q∗ or Θ∗. Furthermore,
no specific structure on the uncertain dynamics Ap(·) and
Bp(·) is required as long as (29) and (30) are satisfied.

V. DIRECT ADAPTIVE CONTROL FOR THE

COMPARTMENT LUNG MODEL

In this section, we demonstrate the utility of the proposed
direct adaptive control framework for a multi-compartmental
lung model. First, we choose the reference model (27) to
correspond to a respiratory system producing a plausible
breathing pattern. Specifically, let Am(t) = −R−1

m (t)Cm and
Bm(t) = R−1

m (t)e, where

Rm(t) =

{

Rin m, 0 ≤ t < Tin,

Rex m, Tin ≤ t < T,
(40)

and where Rm(t) = Rm(t + T ), t > T . Here,
Rin m, Rex m, Cm, and r(t) are chosen appropriately to ob-
tain the desirable breathing pattern. It follows from Theorem
3.1 that xm(t) converges to a stable limit cycle, and hence,
xm(t), t ≥ 0, is uniformly bounded.

Next, we assume that the switched linear time-varying
system (26) is such that Ap(t) = −R−1

p (t)Cp and Bp(t) =
R−1

p (t)e, where

Rp(t) =

{

Rin p, 0 ≤ t < Tin,

Rex p, Tin ≤ t < T,
(41)

and where Rp(t) = Rp(t + T ), t > T, so that (26) has
the form of a lung mechanics model. Here, we assume that
Rin p, Rex p, and Cp are unknown and we use Theorem 4.1
to design u(t) so that xp(t) → xm(t) as t → ∞.

Now, in order to apply Theorem 4.1, we need to show
that the compatibility conditions (29) and (30) hold. The
following proposition provides sufficient conditions under
which (29) and (30) hold.

Proposition 5.1: Let Γ
△

= Rin pR−1
in m. Assume that the

following conditions hold:

i) Γ
△

= Rex pR−1
ex m.

ii) There exists a positive scalar Q∗ such that Γe = Q∗
e.

iii) There exists Θ∗ ∈ R
1×n such that Cp = ΓCm + eΘ∗.

Then (29) and (30) hold.

Proof: The proof follows by noting that i) and ii) imply
(29) holds, while i) and iii) imply (30) holds.

Remark 5.1: In the absence of switching, conditions ii)
and iii) are standard for model reference adaptive control
[14]. Condition i) is an additional condition that ensures
Theorem 4.1 holds for the switching periodic lung mechanics
model.

Remark 5.2: Note that all three conditions in Proposition
5.1 are trivially satisfied if Γ = kIn − ee

T, where k > n.

To illustrative the adaptive controller framework on a
numerical example, we consider a four-compartment lung
mechanics model, that is, n = 4. The reference model is
assumed to correspond to a bronchial tree which has a regular
dichotomy architecture (see Section III). Anatomically the
human lung has around 24 generations of airway units. A
typical value for lung compliance is 0.1 ℓ/cm H2O, that is,
ĉ0 = 0.1 ℓ/cm H2O (see [1]). (Note that respiratory pressure
is measured in terms of centimeters of water pressure.)
The airway resistance varies with the branch generation
and typical values can be found in [15]. Furthermore, the
expiratory resistances will be higher than the inspiratory
resistance by a factor of 2 to 3. For the reference model
we assume that the factor is 2.5.

Next, for simulation purposes, we assume Γ = 10I4−ee
T

so that all the conditions of Proposition 5.1, and hence,
the compatibility conditions of Theorem 4.1 are satisfied.
Furthermore, we let Θ0 = [75, 75, 75, 75] and Q0 = 5.
However, note that no explicit knowledge of the plant model
is needed to generate the control input u(t) and the update
laws. Figure 3 shows the error xp(t) − xm(t) versus time
t, verifying that xp(t) → xm(t) as t → ∞. Here, we
assumed that the applied pressure for the reference model
is pin(t) = sin(20t) + 5 cm H2O, pex(t) = 0 cm H2O, the
inspiration time is Tin = 1 sec, and the expiration time is
Tex = 2 sec.

VI. CONCLUSION

In this paper, we developed an adaptive control frame-
work for a multi-compartmental model of a pressure-limited
respirator and lung mechanics system. Specifically, we devel-
oped a model reference direct adaptive controller framework
where the plant and reference models involve switching
and time-varying dynamics. Next, we applied the proposed
adaptive feedback controller framework to stabilize a given
limit cycle corresponding to a clinically plausible respiratory
pattern.
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