
  

 
  

 
 
Abstract—A Rotary Left Ventricular Assist Device (RLVAD) 
is a mechanical pump implanted in patients with congestive 
heart failure to assist their left ventricle in pumping blood 
through the circulatory system.  This blood pump is controlled 
by varying the rotor speed to adjust the amount of blood flow 
pumped into the circulatory system.  If the patient is in a health 
care facility, the pump speed can be adjusted manually by a 
trained clinician to meet the patient’s blood needs depending 
on his or her activity level.  However, an important challenge 
facing the increased use of the RLVAD is the desire to allow the 
patient to return home. The development of an appropriate 
feedback controller that is capable of automatically adjusting 
the pump speed is therefore a crucial step in meeting this 
challenge.  In order to be able to develop such a controller an 
appropriate dynamic mathematical model of the combined 
cardiovascular system and RLVAD must first be developed.  In 
this paper, we review progress on a state space model for this 
system that can be used to develop the controller.  The model is 
6th order, nonlinear, and time-varying and is a combination of 
a 5th order model of the left ventricle and circulatory system 
and a 1st order model of the RLVAD along with its inlet and 
outlet cannulae. The entire combined system is controlled by 
the rotational speed of the pump.  Using this model we will 
discuss some of the challenges faced in the development of a 
useful feedback controller for this system.  We will also present 
some preliminary results on a simple partial state feedback 
controller whose purpose is to prevent the occurrence of a 
dangerous phenomenon called ventricular suction.    

I. INTRODUCTION 
The medical community has recently placed increased 
emphasis on the use of mechanical heart assist devices that 
can substitute for, or enhance, the function of the natural 
heart for patients with congestive heart failure who are 
waiting for heart transplantation [1]. A Rotary Left 
Ventricular Assist Device (or RLVAD) is such a device.  
This device is a rotary pump that continuously draws blood 
out of the left ventricle and into the circulatory system. It is 
typically, quieter, smaller, and more efficient than the older 
pulsatile type devices, and consequently have received 
considerable acceptance in recent years.  Generally 
speaking, the goal of the RLVAD is to assist the native heart 
in pumping blood so as to provide the patient with as close 
to a normal lifestyle as possible until a donor heart becomes  
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available or, in some cases, until the patient’s heart recovers.  
In many situations, this means allowing the patient to return 
home and/or to the workforce.  
 Currently, RLVAD patients are typically kept in a critical 
care setting and are continuously supervised by human 
operators. When the patient is in a stable condition, the 
operator adjusts the pump speed manually so as to achieve 
the desired levels of blood flow and hemodynamic variables 
to keep the patient comfortable and insure his or her well 
being. However, for an active patient whose level of activity 
is continuously changing, this manual open-loop control 
becomes impractical.  Its limitations will become even more 
apparent if the patient desires to go home so as to adopt a 
normal lifestyle.  The inability of the manual control to 
respond automatically to changes in demand can 
dramatically impact the quality of life of these patients [2,3]. 
 An important engineering challenge facing the increased 
use of the RLVAD is therefore the development of an 
appropriate automatic controller for the speed of the pump 
rotor so as to meet the body's requirements for cardiac 
output (CO) and mean arterial pressure (MAP) [2, 3].  Since 
the rotary pump does not use valves the achievement of an 
appropriate rotational speed is very crucial. If the speed is 
too low, blood may regurgitate back from the aorta to the 
left ventricle through the pump resulting in what is known as 
“backflow”.  If the speed is too high, the pump will attempt 
to draw more blood from the ventricle than available which 
may cause the ventricle to collapse. This dangerous 
phenomenon called “ventricular suction” must be detected 
quickly and the pump speed reduced before the heart muscle 
is damaged. While avoiding these two extremes, the pump 
speed must also be adjusted continuously, up and down, to 
meet the patient's varying levels of blood demand [4-7].   
The eventual goal of a pump controller is therefore to meet 
all these requirements so that a RLVAD recipient patient 
could potentially leave the hospital and return home to a 
normal lifestyle.   
 Given that the pump is continuously interacting with the 
left ventricle and the circulatory system, the development of 
a speed controller that meets the above objectives must 
therefore be done using tools developed in modern control 
theory.  This cannot be done without first having an 
appropriate mathematical model for this complex system.   
The model must be simple enough to be tractable and yet it 
must be comprehensive enough to capture the essential 
relationships between the hemodynamic variables and 
provide the important input and output boundary conditions 
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without the ambiguity of unnecessary state variables.   
 In this paper, we will review current progress in the 
development of such a model.  As a first step we present an 
autonomous 5th order model of a healthy cardiovascular 
system which emphasizes the pressure-volume relationship 
of the left ventricle.  By varying this relationship the model 
can be used to represent various degrees of congestive heart 
failure.  We then present a 1st order model of a typical 
RLVAD along with its inlet and outlet cannulae.  
Nonlinearities in this model are added to represent the 
phenomenon of ventricular suction.  We then combine these 
two models into a 6th order time varying nonlinear model of 
the left ventricle + RLVAD.  The only control variable in 
this model is the rotational speed of the pump. Using this 
model, we outline some of the challenges that need to be 
overcome if the development of a feedback controller that 
can achieve the objectives mentioned above is to become a 
reality.   We will then illustrate a simple but effective partial 
state feedback controller which has shown to be effective in 
reducing the possibility of occurrence of ventricular suction.   

II. THE CARDIOVASCULAR AND RLVAD MODELS 
 The heart is a very complex dynamic system that is very 
difficult to model mathematically.  Although various 
complete heart models including both left and right 
ventricles and pulmonary circulation already exist and can 
be supplemented with a model of the RLVAD, in this paper 
we are interested in a much simpler approach.  We assume 
that the right ventricle and pulmonary circulation are healthy 
and normal and as a result their effect on the RLVAD, 
which is connected from the left ventricle to the ascending 
aorta, can be neglected.  A 5th order lumped parameter 
model which can reproduce the left ventricle hemodynamics 
of the heart [8, 9] can be described by the differential 
equation: 
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where 1( )x t is the Left Ventricular Pressure (LVP(t)), 

2 ( )x t is the Left Atrial Pressure (LAP(t)),  3( )x t is the 

Arterial Pressure (AP(t)), 4 ( )x t is the Aortic Pressure 

(AoP(t)) all in mmHg, and 5 ( )x t is the Total Flow ( )TQ t  in 
ml/s.  In this model, the behavior of the left ventricle is 
modeled by means of a time varying capacitance (or 
compliance) ( ) 1 ( )C t E t=  where ( )E t  is the elastance of 
the left ventricle. The elastance ( )E t  describes the 
relationship between the ventricle's pressure and volume 
[10] according to an expression of the form: 

( )0( ) ( ) ( )E t LVP t LVV t V= −                                      (2) 

where ( )LVP t  is the left ventricular pressure, ( )LVV t  is the 

left ventricular volume, and 0V  is a reference volume, which 
corresponds to the theoretical volume in the ventricle at zero 
pressure.  Several mathematical expressions have been 
derived to approximate the elastance function ( )E t .   In our 
work, we use the expression [11]:  

max min min( ) ( ) ( )  n nE t E E E t E= − +                (3) 
where  
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   (4) 

and where max/nt t T= , max 0.2 0.15 cT t= +   and ct  is the 

cardiac cycle, i.e., 60 /ct HR= , where HR is the heart-rate. 

The constants maxE  and minE  are related to the end-systolic 
pressure volume relationship (ESPVR) and the end-diastolic 
pressure volume relationship (EDPVR) respectively.  
Typical values in (3) for a normal heart with a heart-rate of 
60 beats per minute (bpm) are max 2.0E =  and min 0.06E =  
mmHg/ml.  In the model from which (1) was derived, 
preload and pulmonary circulations are represented by the 
capacitance RC ; the aortic compliance is represented by the 

capacitance AC , and afterload is represented by the four-
element Windkessel circuit model [12] comprising  

,  ,  ,  and C S S SR L C R .  The left ventricle’s mitral and aortic 
valves are represented by two non-ideal switches (or diodes) 
consisting of a resistance MR  and ideal diode MD  for the 

mitral valve, and resistance AR and ideal diode AD  for the 

aortic valve. The expression ( )r ξ  in (1) is defined by: 

 { 0( ) 0 0
ifr if

ξ ξξ ξ
≥=
<

                 (5) 

 In the representation given in (1), we have kept the number 
of model parameters at a minimum while maintaining 
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enough complexity in the model so that it can reproduce the 
hemodynamics of the left ventricle.  The various model 
parameters appearing in (1) and their typical associated 
values can be found in [13, 14].   
  We note that the model (1) is autonomous.  Its solution 
is oscillatory due to the cyclic nature of the terms ( )C t  and 

1 ( )C t  in the matrices in (1).  Within each cycle (called the 
cardiac cycle) there are three different phases of operation 
which occur over four different time intervals. The three 
phases are summarized in Table I.  Clearly, every phase 
within the cardiac cycle is modeled by a different set of 
linear time-varying differential equations resulting from (1).  

 
Table I:  Phases within each cardiac cycle 

Valves Phases 
Mitral Aortic  

Closed Closed Isovolumic Relaxation (I)
Open Closed Filling (F) 
Closed Closed Isovolumic Contraction
Closed Open Ejection (E) 
Open Open Not feasible 

III.   THE RLVAD MODEL 
The RLVAD considered in this paper is a rotary mechanical 
pump connected using two cannulae as a bridge between the 
left ventricle and the aorta.   The pump and its two cannulae 
are characterized by the following set of relationships [13]: 

  2

p p p

dQ
H R Q L

dt
βω= + +              (6a) 

  where  , j j j

dQ
H R Q L j i o

dt
= + =           (6b) 

where i and o represent inlet and outlet. ,  ,  and p i oH H H  are 
the pressure differences across the pump and across the inlet 
and outlet cannulae respectively, Q is the blood flow rate 
through the pump, and ω  is the pump rotational speed. The 
parameters pR , iR and oR  represent the flow resistances 

and pL , iL , and oL  represent the flow inertances of the pump 

and cannulae respectively.  β  is a pump dependent 

constant. We note that iR represents the flow resistance of 
the inlet cannula when no suction is present.  When suction 
occurs, an additional resistance suR  in the form:  

  { 1

1 1

0 ( )
( ( ) ) ( )su

if LVP t xR LVP t x if LVP t xα
>=

− ≤
  (7) 

is added to iH to represent this phenomenon. Clearly, suR  is 
a nonlinear time-varying element whose value is zero when 
the pump is operating normally and is activated when LVP(t) 
(or 1( )x t ) becomes less than a predetermined small 

threshold 1x , a condition that represents suction. The value 

of suR when suction occurs increases linearly as a function 

of the difference between LVP(t) and 1x . The parameterα is 
a cannula dependent scaling factor.  Values of all parameters 
mentioned above for the RLVAD used in our model are 
given in [13, 14].  The state equation governing the behavior 
of the RLVAD can now be derived as:  
   ( ) 2* *( ) ( )LVP t AoP t R Q L dQ dt βω− = + +         (8)  

where *

su i p oR R R R R= + + +  and *

i p oL L L L= + +   

IV. THE COMBINED MODEL  
The addition of the RLVAD to the left ventricle model (1) 
adds one state variable 6 ( )x t Q=  which represents the 
blood flow through the pump and eight passive parameters 

suR , iR , pR , oR , iL , pL , oL and β . The combined model is 

now a forced system, where the primary control variable is 
the pump speedω .  The state equations for this combined 6th 
order model can now be written in the form:  
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The control variable in the above equation is 2( ) ( )u t tω= . 
Using control terminology, this model can be expressed in 
the standard state-space form: 

( )( ) ( ) ( )k tx t A x t bu t= +  ,     ,  , k I F E=             (10)  
where the subscripts I, F, and K denote (see Table I) the 
Isovolumic Relaxation and Contraction phases (k=I), the 
Filling phase (k=F), and the Ejection phase (k=E). In the 
above model the matrix kA has an interesting property in 

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB05.3

2658



  

thait can be decomposed as follows:   
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where the matrices 12A , 21A , and 22A  are 4x1, 2x5, and 2x1 
respectively and are the same for k= I, F, and K.  These 
matrices are given by the expressions: 
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b) For the Filling Phase ( k F= ) we have 
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c) For the Ejection Phase ( k E= ) we have 2 1 0x x− < and 
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V. CHALLENGES IN THE DEVELOPMENT OF A FEEDBACK 
CONTROLLER 

As mentioned earlier, the only available mechanism to 
control the RLVAD is the pump rotational speedω .  The 
speed must be adjusted to meet the patient needs for cardiac 
output while at the same time insuring that suction does not 
occur by excessive pumping. Achieving these two objectives 
has been a major challenge for RLVAD developers for over 
15 years and is recognized as one of the most serious 
limitations of this technology at the present time.   
 The design of a feedback controller based on the model 
developed in this paper is very much related to our ability to 
continuously measure, or estimate, in real time the patient’s 
hemodynamic variables ( 1x  through 5x  in the model).  The 
patient’s continuously varying levels of activities are 
exhibited by possibly wide variations in the Systemic 
Vascular Resistance ( sR  in (1) and (9)) which in turn affects 
all six state variables.   Unfortunately, at present, current 
technology for implantable sensors that allow for 
continuously measuring the patient’s hemodynamic 
variables does not exist and will probably need many years 
before it can be developed.  The pump flow 
variable 6x appears to be the only variable that can be 
externally measured in real time.  This may be done, for 
example, by using standard ultrasonic flow transducers that 
can be clamped on one of the pump cannulae.  With this 
single variable, the control problem essentially reduces to 
designing a feedback controller based on incomplete state 
measurements.  Given that the system is nonlinear and time 
varying, this remains a challenge from both the theoretical 
and practical considerations.  An attempt to develop a very 
simple feedback controller based on the slope of the lower 
envelope of the pump flow signal has recently been made 
[14] but its practical usefulness in an in vivo experiment has 
not yet been tested. The approach of estimating the 
hemodynamic variables so as to implement a full state 
feedback controller has also been considered [15-17] but 
with limited success.  This is largely due to the fact that this 
approach involves first estimating the patient’s systemic 
vascular parameters. Most methods developed for estimating 
these parameters suffer from the problem that the estimates 
obtained are discrete and valid only over parts of the cardiac 
cycle.  A method for simultaneously estimating the 
parameters and the hemodynamic variables has been 
developed in [13] based on an Extended Kalman Filter 
approach, however, the robustness of the method with 
respect to parameter initialization remains questionable and 
its usefulness is limited due to uncertainties related to 
convergence of the algorithm to  the correct estimates.  In 
summary, the design of a feedback controller for the 
RLVAD remains a very challenging open problem. 
 Since the pump flow signal appears to be the only signal 
that is directly measurable, it is important to examine how 
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this signal is affected by the pump speed as it changes over 
its allowable safe range.  Figure 1 shows a plot of this signal 
when our model is exited with a pump speed starting at 
12,000 rpm and increasing linearly according 
to 12, 000 100tω = + and reaching a speed of 18,000 rpm 
after 60s.  It is clear from this figure that the lower envelope 
of this signal seems to track the increasing pump speed up to 
a point when a breakdown occurs and then exhibiting a 
sudden drop when the speed is increased beyond the 
breakpoint.  In Figure 1, this breakdown occurs at t = 35s 
which corresponds to a speed of 15,500 rpm and is 
indicative of the onset of suction in the model.   
 The same phenomenon has been observed in an in-vivo 
animal study1 in which the WorldHeart2 RLVAD was used.  
In this study the pump speed was increased linearly from 
8,000 rpm according to 8, 000 (100 3) tω = +  reaching a 
speed of 14,000 rpm after 180s.  The corresponding 
measured pump flow signal is shown in Figure 2.  Again, in 
this case, a similar breakdown in the lower envelope of the 
signal is observed at t = 136s which corresponds to a speed 
12,500 rpm and indicating the onset of suction in the 
animal’s left ventricle.  It is interesting to note that in both 
the model and the in-vivo experiment, the onset of suction 
appears to be characterized by a sudden large drop in the 

lower envelope of the pump flow signal. Furthermore, when 
the pump is in suction for some time, a noticeable change in 
the characteristics of the signature of the pump flow signal is 
observed.  This is clearly seen in Figure 3 in which the 
details of the in-vivo data of Figure 2 are shown over two 5s 
intervals of time from 60s to 64s before the occurrence of 
suction and from 135s to 139s during suction.  The change 
in the frequency characteristics of the signal from a narrow-
band signal to a relatively broad-band signal is very 
noticeable.  The breakpoint in the lower envelope of the 
pump flow signal and the changes in its frequency 

 
1 Authorized according to WorldHeart, Inc. IRB DO 01-06002 
2 WorldHeart, Inc., formely MedQuest, Inc., Salt Lake City, UT 

characteristics before and after suction represent 
opportunities that can be exploited in the development of 
suction detection algorithms. We should note that suction 
detection has been a long standing problem that has been 
studied ever since the RLVAD was introduced.  Many 
algorithms have been proposed based on numerous other 
criteria and indices [18-21].  A successful attempt to develop 
a suction detection algorithm based on the frequency 
characteristics of the pump flow signal has recently been 
reported in [22, 23].  

 
VI. FEEDBACK CONTROLLER TO PREVENT SUCTION BASED 

OM PUMP FLOW STATE VARIABLE 
 

A block diagram of a feedback controller based only on 
pump flow signal is illustrated in Fig 4. The controller 
consists of two basic functions.  The first, labeled “Extract 
Minimum” will track the minimum value 6x of the pump 
flow signal within each cardiac cycle.  Clearly the locations 
of these minima are synchronized within all cardiac cycles. 
The second, labeled “Calculate Slope”, will estimate the 
slope of the envelope of minimum values.  This slope is 
estimated by fitting, in a least-squares sense, a straight line 
to a moving window consisting of past minimum values of 
the pump flow signal.  A window consisting of a large 
number of past values is effective in noisy pump flow data 
because of the noise filtering effect of the least-squares 
fitting method.  The slope of the straight line is computed 
and denoted by 6dx dt , where 6x  denotes the envelope of 

the minimum pump flow signal 6x . The third function, 
labeled “Speed Update” provides a mechanism for adjusting 
the pump speed based on the calculated slope until the 
maximum of the minimum pump flow signal is reached.   
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Figure 2: Pump flow signal from in-vivo data as a function  
                 of linearly increasing pump speed. 
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Figure 3: In vivo pump flow signal (a) when pump is 
operating normally, and (b) when pump is in suction.  
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Figure 1: Pump flow signal from human cardiovascular/LVAD 
model as a function of linearly increasing pump speed. 
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The update rule that we use is as follows:  
 ( )6 *

( 1) ( )
t k t

k k c dx dtω ω
= Δ

+ = +         (15) 

where k is the update sample, 0.005 stΔ =  and c is a 
constant gain parameter which controls the rate of speed 
adjustment (note that c should be less than the slew rate of 
the pump speed).   Depending on the patient, a small value 
of c will result in a slow adjustment process, while a large 
value of c will increase the rate of adjustment at the risk of 
overshoot and driving the pump into suction.  We should 
note that the size of the window in estimating the slope and 
the value of c in the speed update mechanism are typically 
chosen by a clinician and may vary depending on quality of 
the pump flow data and the condition of the patient. Initially, 
the pump speed is started below suction when 6dx dt >0 

and then increased according to (15) until 6dx dt becomes 
close to zero, at which point it will be maintained below the 
suction speed.  Preliminary results on the performance of 
this controller can be found in [14]. 

VII. CONCLUSION 
 In this paper, a 6th order state-space model of a Rotary 
Left Ventricular Assist Device connected to a cardiovascular 
system is presented.  The only control variable in the model 
is the rotational speed of the pump.  The challenges in using 
this model to design a feedback controller for the RLVAD 
rotational speed are discussed.  The characteristics of the 
pump flow signal - which is the only state variable that can 
be directly measured - when the pump is operating normally 
with no suction and when it is operating in suction are also 
described based on data obtained from the model as well as 
from an in-vivo animal experiment.  Possible approaches for 
exploiting these characteristics in the development of 
suction detection algorithms are also discussed. 
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