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Abstract— State estimation is addressed for a class of
discrete-time systems that may switch among different modes
taken from a finite set. The system and measurement equations
of each mode are assumed to be linear and perfectly known,
but the current mode of the system is unknown. Moreover, we
assume that independently normally distributed noises affect
the dynamics and the measurements. First, relying on a well-
established notion of mode observability developed “ad hoc”
for switching systems, an approach to system mode estimation
based on a maximum likelihood criterion is proposed. Second,
such mode estimator is embedded in a Kalman filtering frame-
work to estimate the continuous state. Under the assumption of
mode observability, stability properties in terms of boundedness
of the mean square estimation error are proved for the resulting
filter. Simulation results that show the effectiveness of the
proposed filter are reported.

I. INTRODUCTION

The problem of state estimation for switching systems

has been tackled according to various approaches. The main

difference among such methodologies concerns the knowl-

edge about the system mode, as well as the computational

complexity.

If a Markov chain is used to model the evolution of the

discrete dynamics, it is difficult in general to derive the

optimal estimator analytically, even under the assumption

that the system is linear. Thus, suboptimal solution are

searched that can be computationally tractable (see, e.g., [1]

and the references therein). Among the various techniques

developed up to now, the most popular ones refer to the so-

called interacting multiple model (IMM) approach [2].

The issues arisen in designing estimators for switching

systems have motivated a number of research activities in

various directions. We shall focus on the methodologies that

stem from the idea of basing on the properties of observabil-

ity of the discrete state (i.e., the system mode) to devise the

estimation technique. The problem of finding conditions that

ensure to distinguish between two different discrete states

for unforced noise-free switching linear systems was first

addressed in [3], [4]. More recent advances on this topic have

been developed in [5], where arbitrary switching sequences

were considered. Such results have been extended to comply
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with the presence of bounded disturbances that corrupt the

dynamics and the measures (see [6]).

After defining a suitable notion of mode observability,

one can figure out a method to estimate the continuous and

discrete states. For linear dynamic systems where only the

measurement equations may switch, in [7] an observer is

proposed that results from the on-line solution of a nonlinear

least-squares problem. The problem of state estimation for

noise-free piecewise affine linear systems using a moving-

horizon estimation method is addressed in [8], where the

switching is modelled via the so-called mixed logical dy-

namical (MLD) representation. Such methodology has been

extended to account for the presence of disturbances in [9].

An approach to estimation for switching linear discrete-time

systems affected by bounded disturbances is presented in

[6], where the continuous state and the mode of the system

are estimated by minimizing a least-squares cost function

according to a moving-horizon strategy.

In this paper, the estimation of the mode is addressed

in the presence of disturbances affecting both the dynamics

and the measures. More specifically, such disturbances are

supposed to be zero-mean Gaussian random noises. Under

this assumption, in Section II, a method is proposed to

estimate the system modes based on the maximum likelihood

with respect to a batch of measurements collected over a

moving horizon. Such an approach can be interpreted as

a “statistical correction” of the minimum distance criterion

of [10], [11]. In Section III, a new filtering technique is

proposed that consists in a Kalman filter based on the

nominal model of the switching system, where the discrete

state is estimated using the above approach. Under the unique

assumption of mode observability, the uniform boundedness

of the mean square estimation error is proved. Simulation

results to evaluate the performance of the proposed approach

are presented in Section IV. The proofs are omitted due to

space constraints, the interested reader is referred to [12].

Before concluding this section, let us introduce some

notations and basic definitions. Given a generic vector v ,

‖v‖ denotes the Euclidean norm of v and, given a positive

definite matrix P , ‖v‖P denotes the weighted norm of v ,

‖v‖P
△
= (v⊤Pv)1/2 . Given a generic sequence {zt; t =

0, 1, . . .} and two time instants t1 ≤ t2 , we define zt1,t2
△
=

col (zt1 , zt1+1, . . . , zt2) . Finally, E(·) and P(·) denote the

expectation and, respectively, the probability operators.
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II. MAXIMUM LIKELIHOOD MODE ESTIMATION

Let us consider a class of switching discrete-time linear

systems described by

xt+1 = A(λt)xt + wt

yt = C(λt)xt + vt (1)

where t = 0, 1, . . . is the time instant, xt ∈ R
n is the

continuous state vector (the initial continuous state x0 is

unknown), λt ∈ L
△
= {1, 2, . . . , L} is the system mode or

discrete state, wt ∈ R
n is the system noise vector, yt ∈

R
m is the vector of the measurements, and vt ∈ R

m is

the measurement noise vector. A(λ) and C(λ), λ ∈ L, are

n × n and m × n matrices, respectively.

It is supposed that the system noise vectors wt and the

measurement noise vectors vt , for t = 0, 1, . . ., are normally

distributed independent random variables, i.e.,

p(wt) ∼ N(0, Q(λt)) , p(vt) ∼ N(0, R(λt)) ,

for t = 0, 1, . . .. Where Q(λ), λ ∈ L are symmetric positive

semidefinite n×n matrices and R(λ), λ ∈ L are symmetric

positive definite m×m matrices. We assume that no a-priori

probabilistic information is available, neither on the initial

continuous state x0 nor on the switching sequence λt for

t = 0, 1, . . .. Note that the considered model is quite different

from the one usually referred as jump Markov system, since

here the evolution of the discrete state is not supposed to be

governed by a hidden-state Markov chain.

In this section, a moving-horizon maximum likelihood

criterion is proposed for the estimation of the discrete state

of system (1). More specifically, given the noisy observations

sequence yt−N,t over a time interval [t − N, t], our goal

consists in obtaining a “reliable” estimate of the switching

sequence λt−N,t (or at least a portion of it). Since system (1)

is time-invariant with respect to the extended state (xt, λt),
in the following, for the sake of simplicity and without loss

of generality, we shall always consider the interval [0, N ].
If the evolution of the discrete state is completely unpre-

dictable, the switching sequence λ0,N can assume any value

in the set LN+1 . However, in many practical cases, the a-

priori knowledge of the system may allow one to consider a

restricted set of “admissible” switching patterns. Think, for

example, of the case in which the discrete state is slowly

varying, i.e., there exists a minimum number τ of steps

between one switch and the following one. Of course, such

a-priori knowledge may make the task of estimating the

discrete state from the measurements y0,N considerably

simpler. As a consequence, instead of considering all the

possible switching sequences belonging to LN+1, we shall

consider a restricted set A ⊆ LN+1 of all the admissible

switching sequences, i.e., of all the switching sequences

consistent with the a-priori knowledge of the evolution of

the discrete state.

Some preliminary definitions are now needed. Let us con-

sider a generic switching sequence λ
△
= col

(

λ(0), . . . , λ(N)
)

and define the matrices F (λ) and H(λ) as at the top of

the next page. Then the observations sequence y0,N can be

written as

y0,N = F (λ0,N )x0 + H(λ0,N )w0,N−1 + v0,N . (2)

A. Mode Observability in the Absence of Noises

For the sake of clarity, let us first recall some results on the

observability of the discrete state in the absence of noises.

Towards this end, let us consider the noise-free system

xt+1 = A(λt)xt

yt = C(λt)xt .
(3)

In this case, since the observations sequence can be expressed

as y0,N = F (λ0,N )x0 , the set S(λ) of all the possible

vectors of observations in the interval [0, N ] associated with

a switching sequence λ ∈ A corresponds to the linear

subspace

S(λ)
△
=

{

y ∈ R
m(N+1) : y = F (λ)x , x ∈ R

n
}

.

The following notion of distinguishability between two

switching patterns in the noise-free case can be introduced.

Definition 1: For system (3), two switching sequences

λ,λ′ ∈ A with λ 6= λ
′ are said to be distinguishable if

F (λ)x 6= F (λ′)x′ for all x, x′ ∈ R
n with x 6= 0 or

x′ 6= 0.

As shown in [3], the joint observability matrix
[

F (λ) F (λ′)
]

plays a key role in determining the

distinguishability of two switching sequences λ and λ
′ .

More specifically, the following lemma holds.

Lemma 1: Let us consider two generic switching se-

quences λ 6= λ
′ ∈ A . Then λ is distinguishable from

λ
′ if and only if λ and λ

′ are jointly observable, i.e.,

rank
([

F (λ) F (λ′)
])

= 2n .

In the light of Lemma 1, if the joint-observability condition

were satisfied for every couple of switching sequences λ 6=
λ
′ ∈ A , then it would be possible to uniquely determine the

switching sequence λ0,N on the basis of the observations

sequence y0,N , provided that the initial continuous state x0

is not null. Unfortunately, as shown in [6], unless the number

of measurements available at each time step is at least equal

to the number of continuous state variables (i.e., m ≥ n ),

in general it is not possible to satisfy the joint observability

condition for all λ 6= λ
′ ∈ A (this happens because it is

not possible to detect switches that occur in the last or in the

first instants of an observations window). As a consequence,

even in the absence of noises, it is not possible to uniquely

determine the whole switching pattern λ0,N .

In order to overcome such a drawback, following the lines

of [6], we shall look for two integers, α and ω, with

α, ω ≥ 0 and α + ω ≤ N , such that it is possible to

uniquely determine the discrete state λt in the restricted

interval [α,N−ω] on the basis of the observations sequence

y0,N . Towards this end, given a switching sequence λ in

the interval [0, N ] , let us denote as rα,ω(λ) the restriction

of λ to the interval [α,N −ω] . Thus, the following notion
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of mode observability in the restricted interval [α,N − ω]
can be introduced.

Definition 2: System (3) is said to be (α, ω)-mode observ-

able in N + 1 steps if, for every couple λ,λ′ ∈ A such

that rα,ω(λ) 6= rα,ω(λ′) , λ is distinguishable from λ
′ (or,

equivalently, λ and λ
′ are jointly observable).

According to Definition 2, if system (3) is (α, ω)-mode

observable, then different switching sequences in the interval

[α,N − ω] generate different observations sequence in the

interval [0, N ] , provided that the initial continuous state is

not null. As a consequence, the switching sequence λα,N−ω

can be determined uniquely from the observations sequence

y0,N . Note that there could be more than one switching

sequence λ such that y0,N ∈ S(λ) ; however, they would

correspond to the same switching sequence in the restricted

interval [α,N − ω] .

B. Mode Estimation in the Presence of Gaussian Noises

With these observability results in mind, let us now focus

on the noisy system (1). As the noise vectors are assumed

to be random variables with known probability density

functions, a natural criterion to derive an estimate of the

switching sequence λ0,N consists in following a maximum

likelihood approach.

Towards this end, let us denote by p(y|x,λ) the probabil-

ity density function that specifies the probability of observing

a sequence y in the interval [0, N ] given that the initial

continuous state is x and the switching sequence is λ .

Then, the optimal estimate λ̂0,N according to the maximum

likelihood criterion can be obtained by maximizing the prob-

ability p(y0,N |x,λ) with respect to λ . Since also the initial

continuous state is unknown, the probability p(y0,N |x,λ)
has to be maximized also with respect to x. Thus, in practice,

we shall address the following nested maximization problem

λ̂0,N ∈ arg max
λ∈A

[

max
x∈R

n

p(y0,N |x,λ)

]

. (4)

In order to explicitly solve the maximizations in (4),

first note that, in the considered framework, given an ini-

tial continuous state x and a switching sequence λ =
col(λ(0), . . . , λN ), the observations sequence y turns out to

be a normally distributed random variable with mean F (λ)x
and covariance matrix

Σ(λ)
△
= H(λ) diag[Q(λ(0)), . . . , Q(λ(N−1))]H(λ)⊤

+ diag[R(λ(0)), . . . , R(λ(N))] .

Therefore, each probability p(y0,N |x,λ) can be written as

p(y0,N |x,λ) =
[

(2π)(N+1)m |Σ(λ)|
]−1/2

× exp

(

−
1

2
‖y0,N − F (λ)x‖2

Σ(λ)−1

)

(5)

where, given a generic matrix M , |M | denotes its deter-

minant. By exploiting (5), with a little algebra one may

conclude that the solution of the maximization problem in (4)

is equivalent to the solution of the following minimization

problem

λ̂0,N ∈ arg min
λ∈A

[

log |Σ(λ)|

+ min
x∈R

n

‖y0,N − F (λ)x‖2
Σ(λ)−1

]

. (6)

As to the innermost minimization in (6), it is immediate to

verify that the vector x̂(λ) that minimizes the quadratic form

‖y0,N − F (λ)x‖2
Σ(λ)−1 with respect to x is given by

x̂(λ) =
[

F (λ)⊤Σ(λ)−1F (λ)
]−1

F (λ)⊤Σ(λ)−1
y0,N .

Thus, the maximum likelihood estimate λ̂0,N can be ob-

tained as

λ̂0,N ∈ arg min
λ∈A

[

log |Σ(λ)|

+‖[I − P̃ (λ)]y0,N‖2
Σ(λ)−1

]

(7)

where P̃ (λ) is the matrix of the projection on S(λ)
according to the weighted norm ‖ · ‖Σ(λ)−1 , i.e.,

P̃ (λ)
△
= F (λ)

[

F (λ)⊤Σ(λ)−1F (λ)
]−1

F (λ)⊤Σ(λ)−1 .

In the following of the paper, for the sake of compactness,

we shall use the definition

d̃(y0,N ,λ)
△
= ‖[I − P̃ (λ)]y0,N‖Σ(λ)−1 .

Remark 1: It is worth noting that the quantity d̃(y0,N ,λ)
represents the distance of the observations sequence y0,N

from the linear subspace S(λ) according to the weighted

norm ‖·‖Σ(λ)−1 . With this respect, the maximum likelihood

criterion (7) can be seen as a “statistical correction” of the

minimum distance criterion of [10], [11] that takes into

account the probabilistic knowledge on the noise vectors.

Note that the two criteria turn out to be coincident whenever

Σ(λ) = σI , ∀λ ∈ LN+1.

Since in this case the system and measurement noise

vectors are not bounded in norm, it is not possible to
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guarantee a-priori that the maximum likelihood criterion

leads to the exact determination of the switching sequence

in the restricted interval [α,N − ω] as instead it happened

in the framework of [10] (see Theorem 1). Nevertheless one

may expect that, under mode observability assumptions, a

probabilistic equivalent of such a result can be developed.

Towards this end, let us denote by P(λ ≻ λ
′|x0, λ0,N )

the probability that λ is more likely than λ
′ (i.e., preferable

over λ
′ according to the maximum likelihood criterion)

given that the true initial continuous state is x0 and the

true switching sequence is λ0,N . Of course such probability

corresponds to the probability that

log |Σ(λ)| + d̃(y0,N ,λ) < log |Σ(λ′)| + d̃(y0,N ,λ) .

Then the following theorem can be stated.

Theorem 1: Let us consider a switching sequence λ
′ ∈

A (with λ
′ 6= λ0,N ) such that λ0,N and λ

′ are jointly

observable. Then suitable scalars k > 0 and h > 0 exist

such that the following inequality holds

P(λ0,N ≻ λ
′|x0, λ0,N )

≥ γ(N+1)m

(

k

h
‖x0‖

2 +
1

h
log

|Σ(λ′)|

|Σ(λ0,N )|

)

(8)

where γ(N+1)m(·) is the cumulative distribution function of

a χ2-distribution with (N + 1)m degrees of freedom.

As a consequence,

lim
‖x0‖→+∞

P(λ0,N ≻ λ
′|x0, λ0,N ) = 1 .

Theorem 1 ensures that the more the initial continuous

state x0 is “far from the origin” the more probable is

to prefer the true switching sequence λ0,N over another

sequence sequence λ
′ that is distinguishable from λ0,N

according to Definition 1. In other words, Theorem 1 ensures

that, if the noise-free system (3) is (α, ω)-mode observable

in N+1 steps, then the greater is the initial continuous state,

the more reliable is the maximum likelihood estimate of the

switching sequence in the restricted interval [α,N − ω].

III. COMBINING MAXIMUM LIKELIHOOD MODE

ESTIMATION WITH KALMAN FILTERING

In this section, the previous results are applied to the

development of a recursive scheme for the estimation of both

the discrete and the continuous state.

A. State Estimation Scheme

If the discrete state λt were available, system (1) could be

seen as a time-varying linear system corrupted by Gaussian

noises. Then, at each time t, the optimal estimate x̂t of

the continuous state xt could be computed by means of the

Kalman filter recursion

Kt = P̄tC(λt)
⊤

[

R(λt) + C(λt)P̄tC(λt)
⊤

]−1

x̂t = x̄t + Kt [yt − C(λt)x̄t]

Pt = [I − KtC(λt)] P̄t

x̄t+1 = A(λt)x̂t

P̄t+1 = A(λt)PtA(λt)
⊤ + Q(λt)

(9)

where Pt and Kt are the estimation error covariance at time

t and the Kalman gain at time t, respectively.

In the considered framework, since the switching mode λt

is not known exactly, the estimation of the continuous state

turns out to be much more difficult. In this connection, a first

very simple idea would consist in: computing at any time t

an estimate λ̂t of λt on the basis of the observations up

to time t (e.g, according to a maximum likelihood criterion

as in Section II); applying a Kalman filter recursion wherein

the estimate λ̂t is used instead of the true value λt.

Unfortunately, as pointed out in the previous section, a

certain delay ω is unavoidable in order to obtain a reliable

estimate of the discrete state λt. However, it is possible

to devise a modified estimation scheme that exploits the

observability results of Section II. Specifically, let N =
α + ω. Further, let us denote by λ̂i,t and x̂i,t the estimates

(made at time t) of λi and xi, respectively. Then one can

proceed as follows:

(i) at any time instant t = N,N + 1, . . . , compute the

estimates λ̂t−ω|t, . . . , λ̂t|t of the system mode in the

restricted interval [t−ω, t] on the basis of the measure-

ments collected in the observation window [t − N, t];
(ii) compute the estimates x̂t−ω|t, . . . , x̂t|t of the con-

tinuous state in the restricted interval [t − ω, t] by

propagating the Kalman filter recursion corresponding

to the estimated discrete states.

Let us first consider step (i). In accordance with the

maximum-likelihood criterion proposed in Section II, at

every time instant t = N,N + 1, . . . , the estimate λ̂t−N,t|t

is obtained by addressing the minimization

λ̂t−N,t|t ∈ arg min
λ∈A

{

log |Σ(λ)| + d̃(yt−N,t,λ)
}

. (10)

Then, only the estimates in the restricted interval [t−ω, t] are

retained and exploited in step (ii). Note that, in order to take

into account the possibility of an a-priori knowledge on the

discrete state, the estimate λ̂t−N,t|t is constrained to belong

to the set A of all the admissible switching sequences, i.e.,

the set of all the switching sequences in the observation

window [t − N, t] consistent with the a-priori knowledge

of the evolution of the discrete state.

For what concerns step (ii), at any time t = N,N +1, . . .,

the objective is to find estimates of the continuous state

vectors xt−ω, . . . , xt on the basis of the measurements col-

lected in the observations window [t−ω, t] , of a “prediction”

x̄t−ω|t , and of the estimates λ̂t−ω|t, . . . , λ̂t|t obtained in step

(i). As we have assumed the disturbances to be Gaussian

random variables, a natural criterion to derive the estimates
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consists in resorting to the Kalman filter recursion. For

reasons that will be clarified in Section III-B, the poles of

the original system are scaled by a factor γ > 1 to take into

account possible errors in the estimation of the switching

sequence. This amounts to designing the Kalman gains with

the state matrices γA(λ̂i|t) for i = t−ω, . . . , t. Note that the

scale factor γ is customarily adopted for Kalman filter design

so as to enforce a certain convergence rate [13]. In Section

III-B, sufficient conditions will be given on the scalar γ to

ensure the stability of the overall estimation scheme.

As to the propagation of the estimation procedure from

time t to time t + 1, since the estimates λ̂t−ω+1|t, . . . , λ̂t|t

are not reliable, only x̂t−ω|t and λ̂t−ω|t have to be re-

tained. These estimates enable one to find the prediction

x̄t−ω+1|t+1 through the use of the noise-free state equation,

i.e.,

x̄t−ω+1|t+1 = A(λ̂t−ω|t)x̂t−ω|t .

When the observation yt+1 becomes available, one can

refer to the new observations vector yt−N+1,t+1 and

generate the new estimates λ̂t−ω+1|t+1, . . . , λ̂t+1|t+1 and

x̂t−ω+1|t+1, . . . , x̂t+1|t+1. The same mechanism is applied

at each time step t = N,N + 1, . . . .

Summing up, the following iterative estimation procedure

has to be applied at any time instant t = N,N + 1, . . . .

Procedure 1:

1) Given the observations vector yt−N,t , compute the

maximum likelihood estimate λ̂t−N,t|t as in (10).

2) Given the maximum likelihood estimate λ̂t−ω,t|t , the

observations vector yt−ω,t , the prediction x̄t−ω|t and

the covariance matrix P̄t−ω|t, compute the estimates

x̂t−ω|t, . . . , x̂t|t by applying the Kalman filter recursion

Ki|t = P̄i|tC(λ̂i|t)
⊤

×
[

R(λ̂i|t) + C(λ̂i|t)P̄i|tC(λ̂i|t)
⊤

]−1

x̂i|t = x̄i|t + Ki|t

[

yi − C(λ̂i|t)x̄i|t

]

Pi|t =
[

I − Ki|tC(λ̂i|t)
]

P̄i|t

x̄i+1|t = A(λ̂i|t) x̂i|t

P̄i+1|t = γ2 A(λ̂i|t)Pi|tA(λ̂i|t)
⊤ + Q(λ̂i|t)

(11)

for i = t − ω, . . . , t.

3) Set x̄t−ω+1|t+1 = x̄t−ω+1|t and P̄t−ω+1|t+1 =
P̄t−ω+1|t .

The procedure is initialized at time t = N with some

a-priori estimate x̄N−ω|N and some a-priori covariance

P̄N−ω|N .

It is important to note that the form of the set A plays

a central role in the possibility of computing the minimum

in step 1) in a reasonable time. In fact, if the cardinality

of the set A grows very rapidly with the size N of the

observations window or with the number L of possible

discrete states, such a computation may become too time-

demanding (this happens, for example, when the system

can switch arbitrarily at every time step). Such issues can

be avoided if the a-priori knowledge on the evolution of

the discrete state leads to a considerable reduction of the

number of admissible switching patterns. This is the case,

for example, when the size N + 1 of the observation

window is smaller than the minimum admissible number of

steps between one switch and the following one. In fact,

under such an assumption, the cardinality of the set A is

L[(L − 1)N + 1] (see [6]).

B. Stability Analysis

In order to prove the stability of the proposed estimation

scheme, it is convenient to rewrite the system equations (1)

as

xt−ω+1 = A(λ̂t−ω|t)xt−ω + ξt−ω

yt−ω = C(λ̂t−ω|t)xt−ω + ηt−ω (12)

for t = N,N + 1, . . . where

ξt−ω
△
=

[

A(λt−ω) − A(λ̂t−ω|t)
]

xt−ω + wt−ω

ηt−ω
△
=

[

C(λt−ω) − C(λ̂t−ω|t)
]

xt−ω + vt−ω .

The vectors ξt−ω and ηt−ω can be seen as fictitious (or

virtual) noises that account for the true noises wt−ω and

vt−ω , respectively, as well as for the possible mismatch

between the true discrete state λt−ω and its estimate λ̂t−ω|t .

Since the estimate λ̂t−ω|t is obtained according to the

maximum likelihood criterion (10), one can exploit Theorem

1 and state the following result.

Lemma 2: Suppose that system (1) is (α, ω)-mode ob-

servable in N + 1 steps (see Definition 2). Then there exist

two positive constants ρξ and ρη such that

E
(

‖ξt−ω‖
2
)

≤ ρξ , E
(

‖ηt−ω‖
2
)

≤ ρη

for t = N,N + 1, . . . .

Further, if system (1) is noise-free, i.e., wt = 0 and vt =
0 for t = 0, 1, . . ., then

ξt−ω = 0 , ηt−ω = 0

for t = N,N + 1, . . . .

In words, Lemma 2 ensures that under mode-observability

the virtual noises are uniformly bounded in the mean-square

sense regardless of the continuous state trajectory. This

state of affairs can be understood by noting that, as shown

in Theorem 1, the greater the continuous state xt−ω , the

more reliable the estimate λ̂t−ω|t . In particular, in the limit

for ‖xt−ω‖ → +∞ one has that λ̂t−ω|t = λt−ω with

probability one.

Let us now consider the sequence of estimates x̂t−ω|t for

t = N,N + 1, . . . . It is immediate to see that, according to

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC02.1

3196



Procedure 1, such estimates obey the Kalman filter recursion

Kt−ω|t = P̄t−ω|tC(λ̂t−ω|t)
⊤

×
[

R(λ̂t−ω|t) + C(λ̂t−ω|t)P̄t−ω|tC(λ̂t−ω|t)
⊤

]−1

x̂t−ω|t = x̄t−ω|t + Kt−ω|t

×
[

yt−ω − C(λ̂t−ω|t)x̄t−ω|t

]

Pt−ω|t =
[

I − Kt−ω|tC(λ̂t−ω|t)
]

P̄t−ω|t

x̄t−ω+1|t+1 = A(λ̂t−ω|t) x̂t−ω|t

P̄t−ω+1|t+1 = γ2 A(λ̂t−ω|t)Pt−ω|tA(λ̂t−ω|t)
⊤

+ Q(λ̂t−ω|t)

(13)

for t = N,N + 1, . . . . Then, taking into account (12) and

(13), the dynamics of the estimation error et−ω|t
△
= xt−ω −

x̂t−ω|t can be written as

et−ω+1|t+1 = Φt−ω et−ω|t + εt−ω (14)

for t = N,N + 1, . . . where

Φt−ω
△
=

[

I − Kt−ω+1|t+1C(λ̂t−ω+1|t+1)
]

A(λ̂t−ω|t)

and

εt−ω
△
=

[

I − Kt−ω+1|t+1C(λ̂t−ω+1|t+1)
]

A(λ̂t−ω|t) ξt−ω

−Kt−ω+1|t+1 ηt−ω+1 .

Note that Lemma 2 ensures that also εt−ω is uniformly

bounded in mean square by some positive constant ρε, i.e.,

E
(

‖εt−ω‖
2
)

≤ ρε

for t = N,N + 1, . . . .

In what follows, some basic properties of the covariance

matrices Pt−ω|t and of the estimation error state matrices

Φt−ω are summarized that descend directly from well-known

results about Kalman filtering for time-varying and switching

systems (see, for instance, [14] and [15]).

Lemma 3: Suppose that system (1) is uniformly observ-

able with respect to the continuous state xt, i.e., there

exists an integer No such that for any switching sequence

λ0,No−1 the observability matrix F (λ0,No−1) has full rank.

Then the following results hold:

(a) there exist two positive constants a1 and a2 such that for

t = N,N + 1, . . .

a1I ≤ Pt−ω|t ≤ a2I

(b) for t = N,N + 1, . . .

γ2 Φ⊤
t−ωPt−ω+1|t+1Φt−ω − Pt−ω|t ≤ 0 .

It is important to remark that Lemma 3 indicates that

the time-varying quadratic function Vt−ω(e)
△
= e⊤Pt−ω|t e

is a Lyapunov function for the noise-free estimation error

dynamics or equivalently that the free response of system

(14) converges exponentially to zero (the convergence rate

being γ2).

It is also worth noting that mode-observability, as defined

in Section II, implies that also uniform observability with

respect to the continuous state holds: the rank condition on

the joint observability matrices
[

F (λ) F (λ′)
]

can be

satisfied only if each matrix F (λ) has full rank. Hence, in

the light of Lemmas 2 and 3, one can state the following

stability result.

Theorem 2: Suppose that system (1) is (α, ω)-mode ob-

servable in N + 1 steps. Then the following results hold:

(a) the estimation error is bounded in mean square as

E
(

‖et−ω|t‖
2
)

≤ ζ2
t−ω

for t = N,N + 1, . . . The sequence {ζt−ω} is defined

recursively as

ζN−ω =

[

a2

a1
E

(

‖eN−ω|N‖2
)

]1/2

ζt−ω+1 =
1

γ
ζt−ω +

(

a2

a1
ρε

)1/2

,

t = N,N + 1, . . .

(b) if γ > 1 , then the sequence {ζt} converges exponen-

tially to the asymptotic value

ζ∞
△
=

(

a2

a1
ρε

)1/2
γ

γ − 1
;

(c) if, in addition, system (1) is noise-free, i.e., wt = 0 and

vt = 0 for t = 0, 1, . . ., then

lim
t→+∞

et−ω|t = 0 .

Theorem 2, points (a) and (b), shows that, under mild

assumptions, the estimation error et−ω|t is asymptotically

bounded in mean square by the quantity ζ∞. Further, accord-

ing to point (c), when the system and measurement noises are

identically zero, it turns out that the proposed estimator is an

asymptotic observer for the continuous state as its estimation

error converges to zero.

IV. NUMERICAL RESULTS

In this section, a simulation example is given to illustrate

the effectiveness of the proposed approach to state estimation

for switching linear systems in the presence of Gaussian

noises. Let us consider the discretized equations of an

undamped oscillator that may switch between two different

oscillation frequencies

A(1) =

[

cos (ω1∆) −ω1 sin (ω1∆)
1

ω1

sin (ω1∆) cos (ω1∆)

]

,

A(2) =

[

cos (ω2∆) −ω2 sin (ω1∆)
1

ω2

sin (ω2∆) cos (ω2∆)

]

,

C(1) = C(2) =
[

0 1
]

(15)
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Fig. 1. True values and estimates obtained with the MLSKF of the first
component of the state for a randomly chosen simulation with p = 10,
q = 0.1, r = 0.1.
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Fig. 2. RMSEs of the considered filters for p = 10, q = 0.1, r = 0.1.

where ω1 = 1, ω2 = 2, and the sampling time ∆ is equal

to 0.1. Note that both the system matrices have the two

eigenvalues on the unit circle. However, due to the switching

nature of the system, the trajectory of the continuous state

may show a divergent behavior even in the absence of noises.

It is supposed that the considered system has a minimum

dwell time (i.e., the minimum number of steps between a

switch and the next one) equal to 7 . Moreover, x0 , wt and

vt , t = 0, 1, . . ., are supposed to be normally distributed

independent random variables with zero mean and covariance

P̄0 = p2I , Q = q2I , and R = r2I , respectively.

It is immediate to verify that the considered system is

(α, ω)-mode observable in α + ω + 1 steps with ω = 2 and

α ∈ {1, . . . , 4}. Then the estimation scheme described in

Procedure 1 leads to an estimation error bounded in mean

square (see Theorem 2).

In the following, for the sake of brevity, we shall refer to

the estimator obtained by repeatedly applying Procedure 1 as

the Maximum-Likelihood Switching Kalman Filter (MLSKF).

In order to evaluate the ability of the proposed estimation

scheme to deal with unknown switches in the discrete state,

the proposed filter is compared with the Kalman filter (9)

obtained exploiting the exact knowledge of the discrete state

instead of estimating it. Such an estimator will be called the

Switching Kalman Filter with Perfect Information (SKFPI).

In order to compare the performance of the considered

filters, 1000 Monte Carlo simulations have been carried

out by randomly varying the noise realizations, the initial

continuous state, and the switching sequence. In Fig. 1, the

behavior of the true values and the estimates of the first

component of the state is shown for a randomly chosen sim-

ulation (the second component exhibits a similar behavior).In

Fig. 2, the plots of the Root Mean Square Errors (RMSEs)

for the considered filters are shown. Note that the MLSKF

shows just a little decay of performance with respect to the

ideal case (perfect knowledge of the switching sequence).
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