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L. Torres G. Besançon and D. Georges

Abstract— This paper presents a new model for so-called
water hammer equations based on a collocation method. This
model is shown to fairly represent possible leak effects in a
pipeline and thus to be useful in the purpose of leak detection.
This is illustrated in simulation by an example of observer-
based leak detector relying on this model.
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I. INTRODUCTION

The problem of leak detection in pipelines is very impor-
tant so as to avoid undesired losses of the transported liquids
and/or subsequent environmental problems. For this reason
it has motivated a lot of work even in the control community
(see [1]-[7]).

In most of those works, the leak detection is based on a
finite dimensional model derived from the so-called water
hammer equations known to describe the fluid dynamics
in a pipeline, on the basis of finite differences methods
(see [8]-[11]). In the present work instead, a so-called
orthogonal collocation method is investigated in order to
obtain a model which can be used for the leak detection
in pipelines. The collocation method is a special case of
the so-called weighted-residuals methods, commonly used
in computational physics for solving PDE (e.g.[12]). This
method is fairly simple, the computational effort is small,
and it provides interesting properties for the leak detection
as a point-wise dynamic representation of the flow along the
pipeline.

The standard ’water-hammer’ model for the flow dynamic
in a pipeline is first recalled in section II, and from it the
proposed collocation model is presented. Its possible use
for leak detection via appropriate observer design is then
discussed and illustrated in section III. Some conclusions
and perspectives finally end the paper in section IV.

II. DYNAMICS PRESENTATION AND
COLLOCATION MODEL

The water hammer behavior is the transmission of pressure
waves along the pipeline resulting from a change in liquid
flow velocity. This phenomenon is described by a set of
hyperbolic partial differential equations (PDE) formed by
one-dimensional continuity and momentum equations (basis
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of hydraulic transients), which are used to solve problems of
unsteady flow in pipelines [13], [14].

A. The dynamical model

Assuming convective changes in velocity to be negligible,
and that the liquid density and pipe cross-sectional area are
constant, the momentum and continuity equations governing
the dynamics of the fluid in the pipeline can be expressed as

∂Q(z, t)
∂t

+ gA
∂H(z, t)
∂z

+
fQ2(z, t)

2DA
= 0 (1)

∂H(z, t)
∂t

+
b2

gA

∂Q(z, t)
∂z

= 0 (2)

where H is the pressure head (m), Q the flow rate in the
pipeline (m3/s), b the wave speed in the fluid (m/s), g the
gravitational acceleration (m/s2), A the cross-sectional area
of the pipe (m2), D the diameter of the pipe, f the friction
coefficient, t and z the time (s) and space (m) coordinates
respectively. Here z ∈ [0, L] where L is the length of the
pipe. Initial conditions as usual correspond to the values of
Q(z, t), H(z, t) along the pipe at t = 0

The boundary conditions in the flow transient equations
can represent the end of the pipe in a tank, a valve, the
connection between two pipes or a kind of different element,
for example a pump, a leak, by-pass valves, etc. In this work
the boundary conditions to be handled are: imposed pressures
at each ends of the pipe and possible leaks at different points
of pipeline. The imposed pressure heads will be respectively
denoted by u1(t) and u2(t).

A leak at point zf of the pipeline with outflow is repre-
sented by

Qzf
(t) = λ

√
H(zf , t) (3)

where λ = AfCf ≥ 0, Af is the sectional area of the
leak and Cf the discharge coefficient. Equation (3) produces
a discontinuity in system (1) and (2), and consequently
requires a specific attention in the modeling.

A close-form solutions of these equations is not available.
However, several methods have been used to numerically
integrate them, such as method of characteristics, finite-
difference method, finite element method, and linear element
method [15]-[18]. In the present paper, we propose to use
orthogonal collocation.
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B. The Orthogonal Collocation Method (OCM)

In order to apply the OCM to the PDE system given by
(1) and (2) and obtain an ODE system, the pipe is spatially
sectioned into n nodes defined as zi where the subindex i =
1, .., n represents the node index. The external nodes z1 and
zn are fixed with the values 0 and L respectively, whereas
the interior nodes z2, z3, ..., zn−1 can take any distance value
along the pipe. A boundary condition representing a leak can
be added to any interior node.

Classically, the following approximation series are used
for Q(z, t) and H(z, t):

Q(z, t) =
n∑

j=1

Qj(t)Nj(z) (4)

H(z, t) =
n∑

j=1

Hj(t)Nj(z) (5)

for some basis functions Nj(z). For this model we have
chosen Lagrange interpolation functions as basis functions
(as in [19] for shallow water dynamics for instance), which
are given by

Nj(z) =
n∏

i = 1
j 6= i

z − zi

zj − zi
(6)

These basis functions have the following property:

Nj(zi) =
{

1 if j = i
0 if j 6= i

(7)

In the present paper in order to explicitly take possible
leaks Qfk at nodes zk+1 into account, let us rather consider
a modified approximation for Q(z, t) as follows:

Q(z, t) =
n∑

j=1

Nj(z)

(
Qj(t) +

j−1∑
k=1

Qfk(t)

)
(8)

This indeed means that for any node zj , Qj corresponds
to the flow at z+

j , namely the flow Q(zj , t) reduced by the
cumulated leaks occurring at nodes z2 up zj .

The derivatives w.r.t. time and space of (5) and (8) are

∂H(z, t)
∂t

=
n∑

j=1

Nj(z)
dHj(t)
dt

(9)

∂Q(z, t)
∂t

=
n∑

j=1

Nj(z)

(
dQj(t)
dt

+
j−1∑
k=1

dQfk(t)
dt

)
(10)

∂H(z, t)
∂z

=
n∑

j=1

dNj(z)
dz

Hj(t) (11)

∂Q(z, t)
∂z

=
n∑

j=1

dNj(z)
dz

(
Qj(t) +

j−1∑
k=1

Qfk(t)

)
(12)

Notice that in (10) Q̇fk should be computed according to
(3) but in order to simplify the model this derivative will be
here neglected (it has actually been checked that this does
not significantly affect the response of the model for the leak
detection purpose).

Using notations a1 = −ga, a2 = − b2

gA , µ = f
2DA the

system (1) and (2) with n points of collocation and n − 2
possible leaks (at the interior nodes) is finally given by:

Q̇i(t) = a1

n∑
j=1

N ′ij(z)Hj − µ

(
Qi(t) +

i−1∑
k=1

Qfk(t)

)2

(13)

Ḣi(t) = a2

n∑
j=1

N ′ij(z)

(
Qj(t) +

j−1∑
k=1

Qfk(t)

)
(14)

with N ′ij =
∂Nj(zi)
∂z

, H1 = u1, H5 = u2 and Qfn−1 = 0.

C. Simulation Results

Let us present here some simulation results in order to
analyze the behavior system (13)-(14) with five nodes, which
becomes

Q̇1 = a1(N ′11H1 +N ′12H2 +N ′13H3 +N ′14H4

+N ′15H5)− µ(Q1)2

Q̇2 = a1(N ′21H1 +N ′22H2 +N ′23H3 +N ′24H4

+N ′25H5)− µ(Q2 +Qf1)2

Q̇3 = a1(N ′31H1 +N ′32H2 +N ′33H3 +N ′34H4

+N ′35H5)− µ(Q3 +Qf1 +Qf2)2

Q̇4 = a1(N ′41H1 +N ′42H2 +N ′43H3 +N ′44H4

+N ′45H5)− µ(Q4 +Qf1 +Qf2 +Qf3)2

Q̇5 = a1(N ′51H1 +N ′52H2 +N ′53H3 +N ′54H4

+N ′55H5)− µ(Q5 +Qf1 +Qf2 +Qf3)2

Ḣ2 = a2(N ′21Q1 +N ′22(Q2 +Qf1)
+N ′23(Q3 +Qf1 +Qf2)
+N ′24(Q4 +Qf1 +Qf2 +Qf3)
+N ′25(Q5 +Qf1 +Qf2 +Qf3))

Ḣ3 = a2(N ′31Q1 +N ′32(Q2 +Qf1)
+N ′33(Q3 +Qf1 +Qf2)
+N ′34(Q4 +Qf1 +Qf2 +Qf3)
+N ′35(Q5 +Qf1 +Qf2 +Qf3))

Ḣ4 = a2(N ′41Q1 +N ′42(Q2 +Qf1)
+N ′43(Q3 +Qf1 +Qf2)
+N ′44(Q4 +Qf1 +Qf2 +Qf3)
+N ′45(Q5 +Qf1 +Qf2 +Qf3))

(15)

where H1 and H5 are considered as inputs, Qi (where
i = 1, 2, ..., 5), H2, H3 and H4 as state variables. Moreover
here, the Qfk’s will be expressed as in (3). The data for the
simulation are taken from [9] and presented in Table I.
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TABLE I
EXPERIMENTAL DATA

Constants Value Input Value
g 9.8 m/s2 H1 7 m
L 132.56 m H5 1 m
b 1250 m/s
D 0.105 m
f 0.005 m

1) A single leak: The leak is located at the node z2 = 20
m and it happens at t = 100 s. The flow rate at each one
of the nodes can be observed in Fig.1. It can be noticed that
before the leak appears, the flow at each node maintains its
initial value, but when the leak appears the flow rates Q2, Q3,
Q4 and Q5 decrease and converge to another steady state.
This is fairly consistent with the physical interpretation of
the effect of a leak at this point.

Fig. 1. Response of the system in presence of a single leak

2) Three leaks at different times: The leaks are located
at the nodes z1 = 20 m, z2 = 70 m, z3 = 125 m and
appears at times t1 = 150s, t2 = 250s, t3 = 350s. The
response of the flow rate and pressure head at each node is
shown in Fig.2. It can be noticed in this figure that whenever
a leak appears a bifurcation of the flow occurs when and
where the leak is present. Thus, two flows exist at the node
where the leak happens, one flow that represents the previous
response of the system and another one that represents the
response of the system after the leak. This means that each
node contains the information of the state previous to the
leak and the information of the lost flow after the leak. On
the other hand, the first node contains the information of the
system before the first leak appears and the last node has the
total information of the overall lost flow caused by all the
leaks. This property is of particular interest for a purpose of
leak detection.

3) Three leaks at the same time: The leaks are located
at the nodes z1 = 20 m, z2 = 70 m, z3 = 125 m and
they happen at t = 100s. It can be noticed in Fig. 3 that
when several leaks appear at the same time in different nodes,

Fig. 2. Response of the system in presence of successive three
leaks

the flow is divided in several ramifications at the time they
appear. In this case the first node keeps the initial value,
the second node contains the information of the lost flow at
this node and the initial value, the next nodes contain the
response of the lost flow at such node plus the previous lost
flows.

Fig. 3. Response of the system in presence of three simultaneous
leaks

4) Comparison with the model by finite differences: The
method of finite differences computes the flow by sections,
namely if a leak occurs the computation of the overall
lost flow is divided in one flow before the leak, which is
proportional to the size of the section before the leak and
in another one after the leak proportional to the remaining
section after the leak. For a leak occurring at node zi in a
pipeline of length L, the proportion of the flow at this node
affecting the section before the leak by κb = zi

L and after
the leak will be given by κa = 1− zi

L .
In other words, to compare the OCM model with the

model by finite differences, one has to reconstruct from the
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OCM model flows some equivalent ones for the sections be-
fore and after the leak node as follows (written in variations):

˙̃Qa = Q̇1 − (κa) Q̇n (16)

˙̃Qb = Q̇1 + (κb) Q̇n (17)

Where ˙̃Qa and ˙̃Qb are the modified flows before and after
the leak respectively. For the implementation of the finite
differences method in this work the pipe is divided into three
sections, thus there are three flows corresponding to each
section of the pipe (for more implementation details of this
method see [9]).

Fig. 4 shows the flow rate response of the system when a
single leak occurs at t = 100s in the positions: a) z1 = 29.44
and b) z1 = 117.76 by both methods. It can be observed
that the response of both models agrees (after modifications
(16) and (17)). However, it is necessary to emphasize that
the response of the OCM model (without modification) has
better properties in a framework of leak detection, because
the OCM model computes the flow in a punctual way as if
there was a flowmeter in each node where the leak happens,
that has registered the flow rate before the event and give
the flow after at each leak point.

Fig. 4. Comparison between OMC and finite difference model
simulation results

III. APPLICATION TO LEAK DETECTION

Let us here illustrate how the model previously presented
can be used in a purpose of leak detection. To that end, the
idea is to rely on an observer for a extended system including
leak position and magnitude in the state variables in a similar
way as in [20]. The observer will be designed on the basis
of an extended Kalman filter (as in [21]).

Considering a nonlinear system represented by a state
representation:

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

(18)

where x(t) ∈ Rq is the state, u(t) ∈ Rp the input and
y(t) ∈ Rm the output, an observer (18), can then be designed
as follows:

˙̂x(t) = f(x̂(t), u(t)) +K(t)[y(t)− h(x̂(t))] (19)

where the state estimate is denoted by x̂(t) and the
observer gain K(t) is a time-varying q × m. To calculate
this gain the following differential Ricatti equation matrix is
considered (as in EKF):

Ṗ(t) = (A(t) + αI)P(t) + P(t)(AT(t) + αI)

−P(t)CT(t)R−1C(t)P(t) + Q
(20)

with

A(t) =
∂f

∂x
(x̂(t), u(t)),C(t) =

∂h

∂x
(x̂(t))

P(0) = P(0)T > 0,Q = QT ≥ 0,R = RT > 0

and a positive real number α > 0. The observer gain is
defined by

K(t) = P(t)CT(t)R−1 (21)

Using a model with three points of collocation obtained
from (13) and (14) for a single leak (where the state and
input vectors are given by x =

[
Q1 Q2 Q3 H2

]T
and u =

[
H1 H3

]T
), and assuming that the unknown

magnitude (represented by λ) is constant, as well as the
unknown location (represented here by the second node z2),
the state model with two additional state variables, x5 = z2
and x6 = λ has the structure given by (22) below. From this
model an observer (19) can be designed in order to detect
the leak position and magnitude by direct estimation.

For the simulation, model (15) with five nodes is used as
the system to be observed, the leak appears at t = 100 s, the
position leak is chosen z2 = 44.18 m, and the magnitude
λ = 1 × 10−3. The initial conditions for the observer are
given by equilibrium values corresponding to u1 = 7 m and
u2 = 1 m, while the initial condition for leak location is
chosen x̂5(0) = 70 m and the leak magnitude x̂6(0) = 0.

The outputs considered to be measured are the flow rates
of the pipe’s ends, in this case because the model (15) is the
observed system, the flows rates are Q1 and Q5.

For the observer Q = I, R = 0.0001I and P(0) = I
while α is chosen so as to tune the observer performances,
and A and C are de jacobian of (22).

ẋ1 = a1(N ′11u1 +N ′12x6 +N ′13u2 − µ(x1)2)

ẋ2 = a1(N ′21u1 +N ′22x6 +N ′23u2 − µ(x2 + x6
√
x4)2)

ẋ3 = a1(N ′31u1 +N ′32x6 +N ′33u2 − µ(x3 + x6
√
x4)2)

ẋ4 = a2(N ′21x1 +N ′22(x2 + x6
√
x4)

+N ′23(x3 + x6
√
x4))

ẋ5 = 0
ẋ6 = 0

(22)
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The simulation results are given on Fig.5 and Fig.6. It
can be appreciated how both position and magnitude have
been detected by the observer. The convergence time of
the observer is tc ≈ 200 s. Can be mentioned that in this
observer configuration, the estimation results are sensitive to
initial values and observer tuning. In the same way the time
of convergence depends of the tuning parameters.

Fig. 5. Estimation of the leak position by the designed observer

Fig. 6. Estimation of the leak magnitude by the designed observer

IV. CONCLUSIONS AND FUTURE WORKS

An orthogonal collocation approach has been proposed
to get an approximation of water hammer equations. It has
been shown how this approach allows to include the effect of
possible leaks in specific collocation points which makes it
of particular interest for leak detection. The proposed model
has been compared with a more standard finite difference
scheme, showing fairly similar responses. The interest of the
proposed model for leak detection has been illustrated via
an example of observer based leak detection.

The proposed detection scheme in that respect is mostly
for an illustration purpose, and the design of some more
sophisticated and accurate observers will be part of future
studies, in particular with the purpose of multi-leak detection.

Finally some experimental validation of the model and its
use for leak detection will also be further considered.
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[20] G.Besançon et al, ”Direct observer design for leak detection and
estimation in pipelines”, in Proceedings of the European control
conference, Kos, Greece, 2007, pp. 5666-5670.

[21] K. Reif, F. Sonnemann and R. Unbehauen, An EKF-Based Nonlinear
Observer with a prescribed Degree of Stability, Automatica, vol. 34,
1998, pp 1119-1123.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThA04.2

3894


