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Abstract— A Model Predictive Control (MPC) -based ap-
proach is presented for autonomous path following via Active
Front Steering (AFS). We start from the Nonlinear MPC
(NMPC) problem formulations in [2] and [4], where a simple
bicycle model is used, and reformulate the same problem by us-
ing a more complex vehicle model including roll dynamics. We
present and discuss simulation results of a vehicle autonomously
performing high speed double lane change maneuvers, where
load transfer effects due to roll dynamics become relevant. The
results demonstrate that the inclusion of the roll dynamics in the
prediction model of the MPC controller significantly improves
the vehicle behavior at high speed on high friction surfaces,
when significant lateral load transfers occur.

I. INTRODUCTION

Over the past years, the cost reduction in sensors and com-

puting systems, as well as the increasing demand of improved

overall vehicle safety, encouraged a fast development and

release of advanced active safety systems.

While the early vehicle dynamics control systems were

primarily focused on improving the longitudinal and yaw

motions by using differential braking and engine torque [4],

recent advances in transmission and vehicle design can

provide an increased number of possible interventions to

influence the vehicle behavior. In particular, equipments

such as Active Front Steering (AFS), Four Wheels Steering

(4WS), active differentials [10] and active or semi-active

suspensions can be integrated in existing or new active safety

systems in order to improve the safety, the comfort and the

agility of the vehicle. The problem of coordinating such

large number of actuators in order to simultaneously control

multiple vehicle dynamics is often referred to as Global

Chassis Control (GCC) problem. Such design problem might

be quite involving depending on the vehicle configuration

(i.e., number of actuators) and the considered scenario (i.e.,

dynamics to be controlled, operating constraints).

In our recent works [2], [4], [7], [8], [3], [6], [5] we

investigated Model Predictive Control (MPC) formulations

solving such class of control problems. We have considered

two autonomous path following scenarios where the vehi-

cle has to be stabilized along the target path, at a given

forward speed on slippery surfaces. In the two scenarios,

simultaneous yaw and lateral stabilizations are accomplished
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by controlling the front steering and coordinating the use of

front steering and independent braking at the four wheels,

respectively. In [2], [4], [7], [3] we presented MPC-based

path following approaches where the control input is the front

steering angle. In the MPC schemes presented in [8], [3], [6],

instead, both front steering and the independent braking at

the four wheels are used in order to best follow the desired

path. We point out that we focused on traveling speed and

road conditions such that the vehicle operates in regions of

the state and input spaces where the plant nonlinearities (i.e.,

tire forces characteristics) become relevant.

In the scenarios considered in our previous works, how-

ever, load transfer effects can be neglected due to the

considered low friction surfaces. In this paper, instead, we

consider path following via AFS scenarios with friction

surfaces ranging from snow to dry asphalt where lateral load

transfer effects, due to roll motion, are significant.

In particular, we compare the autonomous path following

controller in [2], [4] against an MPC controller based on a

more complex vehicle model including the roll dynamics and

accounting for the lateral load transfer. We compare the two

approaches for different values of the road friction coefficient

and the entry speed.

The paper is organized as follows. Section II presents the

vehicle dynamical model. Section III formulates the path

following via active front steering NMPC problem by using

the vehicle model presented in Section II. In Section IV the

simulation results are presented and discussed.

II. MODELING

In this section we present the vehicle model, sketched

in Figure 1, describing the motion of the vehicle in an

inertial frame, subject to the lateral, longitudinal, yaw and

roll dynamics. Figure 1(a) shows a top view of the vehicle in

the inertial frame and explain the nomenclature related to the

lateral, longitudinal and yaw dynamics. Figures 1(b) and 1(c)

show front and lateral views of the vehicle, respectively,

explaining the nomenclature related to the roll dynamics.

The model is presented in [11] and reported next for

the sake of completeness. We use two subscript symbols to

denote variables related to the four wheels. In particular ⋆ ∈
{f, r} denotes the front and rear axles, while • ∈ {l, r}
denotes the left and right sides of the vehicle. As example,

the variable (·)f,l is referred to the front left wheel. Moreover

we use the following nomenclature.
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mt(ÿ + ψ̇ẋ) = Fyf,l
+ Fyf,r

+ Fyr,l
+ Fyr,r

+ (b − a)muψ̈ + hrcmsφ̈, (1)

mt(ẍ − ψ̇ẏ) = Fxf,l
+ Fxf,r

+ Fxr,l
+ Fxr,r

+ (a − b)muψ̇2 − 2hrcmsψ̇φ̇, (2)

Izψ̈ + Ixzφ̈ = a
(

Fyf,l
+ Fyf,r

)

− b
(

Fyr,l
+ Fyr,r

)

+ c
(

−Fxf,l
+ Fxf,r

− Fxr,l
+ Fxr,r

)

+ (b − a)mu(ÿ + ψ̇ẋ), (3)

(Ix + msh
2
rc)φ̈ + Ixzψ̈ = msghrcφ − 2kφφ − 2bφφ̇ + mshrc

(

ÿ + ψ̇ẋ
)

, (4)

NOMENCLATURE:

a distance of CoG from front axle [m]

b distance of CoG from rear axle [m]

c half track width [m]

hCoG CoG height [m]

hrcf
front roll center distance below sprung mass

CoG [m]

hrcr
rear roll center distance below sprung mass

CoG [m]

Ixx momentum of inertia around the roll axis

[kgm2]

Ixz product of inertia [kgm2]

Izz momentum of inertia around the z-axis

[kgm2]

Iw wheel and driveline inertia [kgm2]

ms vehicle sprung mass [kg]

mu vehicle un-sprung mass [kg]

mt total vehicle mass [kg]

ẋ, ẏ longitudinal, lateral velocities of CoG in the

body frame [m/s]

X , Y car position in the inertial frame [m]

φ roll angle [rad]

ψ yaw angle [rad]

φ̇, ψ̇ roll rate, yaw rate [rad/s]

bφ equivalent suspension damping coefficient

[N · m· s]

kφ equivalent suspension roll stiffness [N· m]

Fl, Fc, Fz longitudinal, lateral, normal tire forces [N]

Fy, Fx tire forces components along lateral and

longitudinal axes in the body frame [N]

rw tire nominal radius [m]

vc, vl lateral and longitudinal tire velocities [m/s]

vx, vy tire velocities components along lateral and

longitudinal axes in the body frame [m/s]

ω wheel angular speed [rad/s]

bw wheel and driveline damping coefficient [Nm s]

α tire slip angle [rad]

s tire slip ratio [%]

δf front steering angle [rad]

Tb braking torques at the braking pads [Nm]

The lateral, longitudinal, yaw and roll vehicle motions are

described through the nonlinear differential equations (1)-

(4), where the components Fy⋆,•
and Fx⋆,•

of the tire forces,

along the lateral and longitudinal vehicle axes, respectively,

are computed as follows

Fy⋆,•
= Fl⋆,•

sin δ⋆ + Fc⋆,•
cos δ⋆, (5a)

Fx⋆,•
= Fl⋆,•

cos δ⋆ − Fc⋆,•
sin δ⋆. (5b)

The lateral and longitudinal tire forces Fc⋆,•
and Fl⋆,•

are

computed as

Fc⋆,•
= fc(α⋆,•, s⋆,•, µ⋆,•, Fz⋆,•

), (6a)

Fl⋆,•
= fl(α⋆,•, s⋆,•, µ⋆,•, Fz⋆,•

). (6b)

The lateral and longitudinal tire characteristics fc and fl are

based on the Pacejka tire model [1], [4], [2]. This is a static

nonlinear tire model computing the tire forces in combined

braking/driving and cornering manoeuvres.

The slip angle α⋆,• in (6) represents the angle between

the wheel velocity vector v⋆,• and the direction of the wheel

itself, and can be compactly expressed as:

α⋆,• = arctan
vc⋆,•

vl⋆,•

. (7)

The wheel’s equations of motion describe the lateral (or

cornering) and longitudinal wheel velocities:

vc⋆,•
= vy⋆,•

cos δ⋆ − vx⋆,•
sin δ⋆, (8a)

vl⋆,•
= vy⋆,•

sin δ⋆ + vx⋆,•
cos δ⋆, (8b)

where the velocities vx⋆,•
and vy⋆,•

for the four wheels are

computed as follows:

vyf,l
= ẏ + aψ̇ vxf,l

= ẋ − cψ̇, (9a)

vyf,r
= ẏ + aψ̇ vxf,r

= ẋ + cψ̇, (9b)

vyr,l
= ẏ − bψ̇ vxr,l

= ẋ − cψ̇, (9c)

vyr,r
= ẏ − bψ̇ vxr,r

= ẋ + cψ̇. (9d)

The slip ratios s⋆,• in (6) are the defined as

s⋆,• =















rwω⋆,•

vl⋆,•

− 1 if vl⋆,•
> rwω⋆,•, vl⋆,•

6= 0 for braking

1 −
vl⋆,•

rwω⋆,•

if vl⋆,•
< rwω⋆,•, ω⋆,• 6= 0 for driving.

(10)

The wheel angular speeds ω⋆,• in (10) are obtained by

integrating the following set of differential equations:

Iw⋆,•
ω̇⋆,• = −Fl⋆,•

rw − Tb⋆,•
− bw · ω⋆,•. (11)

The tire normal forces Fz⋆,•
in (6) are computed as in

equations (12)-(15), where
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Fzf,l
=

1

2

(

bmg

(a + b)
− Fyf

φ

)

−
kφf

φ

2c
−

bφf
φ̇

2c
−

hrcf

2c

(

Fyf
+

bmg

(a + b)
φ

)

, (12)

Fzf,r
=

1

2

(

bmg

(a + b)
− Fyf

φ

)

+
kφf

φ

2c
+

bφf
φ̇

2c
+

hrcf

2c

(

Fyf
+

bmg

(a + b)
φ

)

, (13)

Fzr,l
=

1

2

(

amg

(a + b)
− Fyr

φ

)

−
kφr

φ

2c
−

bφr
φ̇

2c
−

hrcr

2c

(

Fyr
+

amg

(a + b)
φ

)

, (14)

Fzr,r
=

1

2

(

amg

(a + b)
− Fyr

φ

)

+
kφr

φ

2c
+

bφr
φ̇

2c
+

hrcr

2c

(

Fyr
+

amg

(a + b)
φ

)

, (15)

Fyf
= Fyf,l

+ Fyf,r
, (16a)

Fyr
= Fyr,l

+ Fyr,r
. (16b)

We point out that in the normal tire forces (12)-(15) (i) only

the effects of the lateral load transfers are included, i.e., load

transfers due to longitudinal accelerations are not modeled

and (ii) small angle approximations are used for cos φ

and sinφ.

Finally the motion of the vehicle in the inertial frame X-Y

is described by the following two differential equations

Ẏ = ẋ sin ψ + ẏ cos ψ, (17a)

Ẋ = ẋ cos ψ − ẏ sin ψ. (17b)

Using the equations (1)-(17) the nonlinear vehicle dynam-

ics can be described by the following compact differential

equation:

ξ̇(t) = fµ(t)(ξ(t), u(t)), (18)

where the state and input vectors are ξ =
[ẏ, ẋ, ψ, ψ̇, φ, φ̇, Y, X, ωf,l, ωf,r, ωr,l, ωr,r]
and u = [δf , Tbf,l

, Tbf,r
, Tbr,l

, Tbr,r
], respectively,

and µ(t) = [µf,l(t), µf,r(t), µr,l(t), µr,r(t)].

III. MPC PROBLEM FORMULATION

In this section we formulate the considered path following

problem as a Model Predictive Control problem as in [4], [2],

[3].

Assumption 1: Next we assume Tb⋆,•
= 0 and µ⋆,• = µ̂,

with µ̂ known, in (18), i.e., no braking and the same friction

coefficient for the four wheels.

Under the Assumption 1, we discretize the system dynam-

ics (18) with a fixed sampling time Ts:

ξ(t + 1) = fdt
µ̂(t)(ξ(t), u(t)), (19a)

u(t) = u(t − 1) + ∆u(t), (19b)

where the ∆u formulation is used and u(t) = δf (t),
∆u(t) = ∆δf (t).

We define the following output map for yaw angle, yaw

rate and lateral position states:

η(t) = h(ξ(t)), (20)

where η = [ψ, ψ̇, Y ], and consider the following cost

function:

J(ξ(t),∆Ut) =

Hp
∑

i=1

∥

∥

∥
ηt+i,t − ηref t+i,t

∥

∥

∥

2

Q
+

Hc−1
∑

i=0

‖∆ut+i,t‖
2
R

+

Hc−1
∑

i=0

‖ut+i,t‖
2
S

,

(21)

where ∆U(t) = [∆u(t), . . . ,∆u(t + Hc − 1)] is the op-

timization vector at time t, η(t + i) denotes the output

vector predicted at time t + i obtained by starting from

the state ξ(t) and applying to system (19)-(20) the input

sequence ∆u(t), . . . ,∆u(t + i). ηref is the output reference

signal and Hp and Hc denote the output prediction hori-

zon and the control horizon, respectively. In (21) the first

summand reflects the penalty on trajectory tracking error

while the second and third summands penalize the steering

effort. Q, R and S are weighting matrices of appropriate

dimensions.

An optimization problem, based on the discrete time vehi-

cle model (19)-(20) and the cost function (21), is formulated

and solved in receding horizon as in [2], [4] to obtain the

following state feedback control law

u(t, ξ(t)) = u(t − 1) + ∆u∗

t,t(t, ξ(t)), (22)

where u∗

t,t(t, ξ(t)) is obtained as solution of the optimization

problem.

IV. SIMULATION RESULTS

Next we present and discuss the simulation results of the

path following algorithm presented in Section III, imple-

mented to perform a double lane change manoeuvre. This

test represents an obstacle avoidance emergency maneuver

in which the vehicle is entering a double lane change with

a given initial forward speed. The control input is the front

steering angle and the goal is to follow the trajectory as

close as possible by minimizing the vehicle deviation from

the target path. The controller presented in Section III, next

referred to as Controller A, is compared against a simpler

MPC controller, next referred to as Controller B, derived

from Controller A by neglecting the roll dynamics. We point

out that (i) the only difference between Controller A and
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(a) Vehicle model. Top view.

(b) Vehicle model. Front view.

(c) Vehicle model. Lateral view.

Fig. 1: Twelfth order states vehicle model.

Controller B is the vehicle model used in the problem formu-

lation, i.e., instead of the twelfth order nonlinear model (18)

a simpler tenth order nonlinear model is used in Controller

B and (ii) in both controllers the control input is the front

steering angle. Controller A and Controller B have been

compared in a simulation scenario where the vehicle enters

the double lane change at forward speeds, ranging from 50

to 130 Kph, on different road conditions, ranging from snow

(µ = 0.3) to dry asphalt (µ = 0.9). For both controllers,
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Fig. 2: Maximum entry speed for different road surfaces for the two controllers.

simulations have been performed in order to (i) estimate, for

each considered road surface, the maximum entry speed the

vehicle can perform the manoeuvre without losing the control

and (ii) evaluate the tracking performances at different entry

speeds on the considered road surfaces.

Controller A and Controller B have been implemented

with the following parameters:

• sampling time: T = 0.05s.

• horizons: Hp = 15, Hu = 1.

• bounds:

– δf,min = −10 deg, δf,max = 10 deg, ∆δf,min =
−0.85 deg, ∆δf,max = 0.85 deg.

• weighting matrices:

– Q ∈ R
3×3 with Q11 = 1, Q22 = 1, Q33 = 20

and Qij = 0 for i 6= j.

– R = 1.

– S = 5.

The commercial NPSOL software package [9] is used for

implementing the MPC controllers in a Matlab environment.

Remark 1: In order to easily compare Controller A and

Controller B, the same tuning parameters have been chosen

for both controllers. In particular the above parameters have

been selected by tuning Controller B in order to stabilize the

vehicle along the path at the considered entry speeds.

In Figure 2 the maximum entry speed against the road

friction coefficient is plotted for Controller A and Controller

B. Not surprisingly, for both controllers, the maximum entry

speed monotonically increases as the road friction coeffi-

cient µ increases. We also observe that (i) as the road friction

coefficient increases, the rise of the maximum entry speed is

larger for Controller A than Controller B and (ii) on slippery

surfaces (µ = 0.3) the maximum entry speeds for the two

controllers are similar. In order to explain the behavior

observed for the two controllers, we recall that Controller

A includes vehicle roll dynamics while Controller B does

not. The inclusion of roll dynamics in the prediction model

significantly improves the performance of Controller A at
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Fig. 3: Normalized lateral position RMS tracking error against road
friction coefficient µ and entry speed.

high speed on high-µ surfaces when roll dynamics become

relevant. At low speed on low-µ surfaces, the maximum entry

speed improvement in Controller A compared to Controller B

is small since roll dynamics are negligible in the considered

operating conditions.

Remark 2: We remark that in both Controller A and

Controller B, instability can occur at high entry speed since

a finite time horizon optimal control problem is solved each

time step.

In Figure 3, lateral position Root Mean Squared (RMS)

tracking errors for Controller A (Figure 3(a)) and Controller

B (Figure 3(b)) are reported. For each controller, isolines of

the RMS errors are plotted against the vehicle entry speed

and the road friction coefficient. In order to compute the

RMS tracking errors, the following formula is used

Yrms(¯̇x, µ) =

√

√

√

√

1

Xend

i=N
∑

i=1

[Y (Xi, ¯̇x, µ) − Yref (Xi)]
2
,

(23)

where ¯̇x is the forward entry speed, Y (·, ·, ·) is the vehicle
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(a) Controller A. Tracking variables. Yaw angle (upper plot), yaw rate
(middle plot) and lateral position (lower plot). Solid and dashed lines are
the actual and reference signals, respectively.
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(b) Controller A. Steering angle.

Fig. 4: Controller A. Double lane change manoeuvre at 90 Kph on
dry asphalt (µ = 0.9).

lateral position in the inertial frame, Yref (·) is the target path

and Xend is the longitudinal coordinate of the manoeuvre

ending point. We remark that the target path does not depend

on the friction coefficient and the forward entry speed.

Not surprisingly the performances of Controller B are

worse than Controller A, hence, in order to easily compare

the two controllers, the RMS data have been normalized to

the maximum tracking error of Controller B. Moreover, such

value is used to mark the operating conditions (i.e., entry

speed and road surface) at which the vehicle is unstable.

The regions delimited by the isolines labeled with ‘1’ denote

such operating conditions. For instance, when the vehicle

with Controller A enters the double lane change at 120 Kph

on a sandy surface (µ = 0.5) is unstable.

By comparing the RMS errors of Controller A and Con-

troller B we observe that the operating region where Con-

troller B is unstable is wider than Controller A. Moreover,
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Fig. 5: Controller B. Double lane change manoeuvre at 90 Kph on
dry asphalt (µ = 0.9).

the RMS error isolines of Controller B show significant

performance degradation, compared to Controller A, on high-

µ surfaces. On the other hand, the performances of the two

controllers at low entry speed on low-µ surfaces are closer

and confirm the trend observed in Figure 2 for the maximum

entry speeds.

Finally, simulation results of a double lane change ma-

noeuvre at 90 Kph on dry asphalt (µ = 0.9) for Controller

A and Controller B are reported in Figures 4 and 5, respec-

tively. We observe that yaw rate in Controller B saturates

at −10 deg between 2 and almost 3.5 s, while in the

same time interval, Controller A performs a more aggressive

manoeuvres (yaw rate is up to −20 deg) and significantly

improves the path following. We also observe that steering

angle in Controller A in much smother than Controller B.

V. CONCLUSIONS

We presented a performance analysis of a path following

Nonlinear Model Predictive Control approach via active

front steering. In particular we evaluated the impact of the

lateral load transfer due to the roll dynamics on stability

limits and performance of the controller in [2] when double

lane changes are performed at different entry speeds on

different surfaces. The results confirm that the inclusion of

roll dynamics in the vehicle prediction model significantly

improves the performance of the approach on high speed and

high-µ surfaces. The obtained results represent a further step

toward the design of predictive GCC approaches including,

for instance, roll-over prevention/avoidance functionalities.
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