
Less Conservative Robust Control of Constrained Linear Systems with

Bounded Disturbances

Reza Ghaemi, Jing Sun, Ilya Kolmanovsky

Abstract— This paper develops a novel robust control method
for linear systems subject to additive and bounded disturbances.
The approach is based on constraint tightening method. The
proposed method is computationally efficient in the sense that
it does not require solving any online optimization problem, in
contrast to several other robust Model Predictive Control ap-
proaches proposed in the literature. The algorithm elaborated
in this paper guarantees convergence to a minimal disturbance
invariant set and the terminal predicted state constraint set is
allowed to be larger than the minimal disturbance invariant
set.

I. INTRODUCTION

In this paper, we consider a control problem for con-

strained discrete time linear systems that are subject to

bounded additive disturbances. Our goal is to provide a con-

trol method that enforces specified state and input constraints

in the presence of disturbances and steers state trajectories

to a given target set.

This problem has been studied employing invariant set

methods (see [1], [2] and references therein) and using op-

timization based control strategies such as Model Predictive

Control (MPC). MPC is known as an effective method to

deal with constraints and uncertainties [3]. One approach

to address the aforementioned problem, in the MPC context,

relies on the inherent robustness of MPC and on the assump-

tion that the open loop system is sufficiently contractive [4].

Open-loop input control sequence MPC strategies, proposed

in [5], in which the control action is taken as the first

element of an optimal control sequence, may cause spread

of uncertainties over the horizon and therefore may result

in a conservative domain of attraction in the presence of

disturbances. Therefore, a feedback MPC approach has been

proposed in which optimization is performed over feedback

policies [6]. However, optimization over arbitrary feedback

policies, in the presence of constraints, is especially difficult.

Therefore, affine feedback policies were employed where the

state feedback gain(s) are calculated off-line and optimiza-

tion was performed over constant terms [7], [8], [9].

The robust MPC is based on the idea of assuring the

robustness of the resulting controlled system by tightening

the constraints on states and controls over the prediction

horizon has been proposed initially in [10] as well as [11],
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[7], [12], [13]. The key idea is to retain a suitable margin over

the prediction horizon so that feasibility is guaranteed for the

future iterations, in the presence of allowable disturbances.

In this paper, we propose a novel robust control method

based on the constraint tightening approach. Unlike robust

MPC approaches, our proposed method does not involve

online optimization to determine the control action. We show

that if the set of input and state constraints over the prediction

horizon is feasible, then the proposed controller guarantees

feasibility for the future iterations. Moreover, it is shown

that the minimal invariant set corresponding to the off-line

calculated state feedback is an attractor, i.e., all trajectories

will converge to this set. Another advantage of the proposed

method is that it does not require the terminal constraint

set to be contained in the desired target set, which was the

usual assumption made in the prior literature, except for

[12]. In fact, the terminal constraint set, namely the set to

which the final predicted state must belong, can be much

larger than the target set. Convergence to the target set is

guaranteed as long as it contains the minimal invariant set.

Moreover, it is shown that the domain of attraction of the

proposed method contains the domain of attraction of the

method proposed in [12], and the convergence of the state

to the minimal disturbance invariant set is provided without

having the explicit knowledge about this set.

II. PROBLEM STATEMENT

Consider linear time-invariant, discrete-time systems de-

scribed by

x+ = Ax + Bu + w,

x(k) ∈ R
n, u(k) ∈ R

m, w(k) ∈ R
n

(1)

where x, u and w are, respectively, the state, control and

disturbance; x+ denotes the successor state of x and k ∈ N,

where N is the set of non-negative integers.

We assume that the disturbance w belongs to a polytope

W , and control and state are subject to hard constraints, i.e.,

u ∈ U, x ∈ X and w ∈ W, (2)

where U and W are (convex, compact) polytopes, containing

origin in their interior, and X is a (convex) closed polyhe-

dron. Finally, a target constraint set Xt is given by

Xt = {x ∈ R
n|Y x ≤ q}, Y ∈ R

r×n, q ∈ R
r. (3)

Assume Xt is bounded and 0 ∈ int(Xt). The control

objective is to find u that steers the state into the target set

Xt.

Notations: Pontryagin difference of two sets S and T is

defined as S ∼ T = {x|x + t ∈ S, ∀ t ∈ T}.
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III. ROBUST CONTROL ALGORITHM

Let us suppose K ∈ R
m×n is such that AK = A+BK is

stable. Moreover, assume that the minimal robust invariant

set FK for the system x+ = AKx + w, defined in [14], is

such that

FK ⊆ Xt. (4)

For any initial state x ∈ X, the following control sequence

u∗(x) := {u∗

0(x), u∗

1(x), · · · , u∗

N−1(x)}

and associated state sequence

x∗(x) := {x∗

0(x), x∗

1(x), · · · , x∗

N (x)}

are feasible if they satisfy the set of constraints C(x), defined

as follows:

x∗

0(x) = x,

x∗

i+1(x) = Ax∗

i (x) + Bu∗

i (x), i = 0, · · · , N − 1,
(5)

U0 = U,

Ui+1 = Ui ∼ KAi
KW, i = 0, · · · , N − 1,

u∗

i (x) ∈ Ui, i = 0, · · · , N − 1,

(6)

X0 = X,

Xi+1 = Xi ∼ Ai
KW, i = 0, · · · , N − 1,

x∗

i (x) ∈ Xi, i = 0, · · · , N − 1,

x∗

N (x) ∈ Xf .

(7)

Let Xf be the maximal robust invariant set for the system

x+ = AKx + w (8)

where w ∈ AN
KW , i.e.,

AKXf + AN
KW ⊂ Xf (9)

and

Xf ⊂ XN ,

KXf ⊂ UN ,
(10)

and for any set S which satisfies conditions (9) and (10),

S ⊂ Xf .

Remark 3.1: The set Xf can be calculated using the algo-

rithm introduced in [14] to compute the maximal invariant

sets with finite number of iterations.

In the sequel, we propose a robust control algorithm that

uses Xf as the terminal constraint set and incorporates the

constraint tightening approach to assure iterative feasibility

of the control solution. While the use of robust invariant ter-

minal constraint sets has been exploited in many publications

[4], [12], [13] and the constraint tightening approach for ro-

bust feasibility has been introduced in [7], [15], a novelty of

this paper is that no optimization problem is involved in our

proposed scheme. Feasible control sequences are generated

sequentially and the first element of the sequence is applied

at each time instant (similar to MPC). The convergence of the

state trajectory to the desired set Xt is guaranteed, provided

that Xt includes the minimal invariant set corresponding to

the system (8) with disturbance set W . This condition can be

satisfied using Linear Programming as introduced in Section

V. One notable feature of the scheme proposed in this paper

is that, unlike other work that address the same problem,

such as [13], the desired target set Xt is not required to

include the terminal constraint set Xf . In fact, the set Xf

can be much larger than Xt. This feature makes the robust

algorithm considerably less conservative than conventional

approaches for which Xt must include the terminal constraint

set. It should be noted that the method proposed in [12] has

the same feature for terminal set Xf . However, in Section IV

it will be shown that the region of attraction of the method

proposed in [12] is contained in the region of attraction of

the method proposed in this paper.

Let us assume that for the initial state x(0) that u∗(x(0))
and x∗(x(0)) are control and state sequences satisfying the

constraints set of C(x(0)). Now we propose the following

iterative algorithm, where at each time instant k, the feasible

control sequence u∗(x(k)) is constructed using the feasible

control and state sequences u∗(x(k − 1)) and x∗(x(k − 1)),
where x(k) is the observed state at the time instant k:

u∗

i (x(k)) = u∗

i+1(x(k−1))+K(x∗

i (x(k))−x∗

i+1(x(k−1))),

for i = 0, · · · , N−2,

u∗

N−1(x(k)) = Kx∗

N−1(x(k));
(11)

x∗

0(x(k)) = x(k),

x∗

i+1(x(k)) = Ax∗

i (x(k)) + Bu∗

i (x(k)) i = 0, · · · , N−1.

(12)

Since at each time instant, the first element of the feasible

control sequence is applied as control signal, the robust

control law is

u(k) = κ∗

N (x(k)) := u∗

0(x(k)). (13)

Theorem 3.1: Suppose the set of constraints C(x(0))
is satisfied with the feasible control and state sequences

u∗(x(0)) and x∗(x(0)), respectively. Then the state and input

trajectories of the system (1) with the control law

u(·) = κ∗

N (x(·)) (14)

satisfy the input and state constraints (2). Furthermore, the

set of constraints C(x(k)) is satisfied by control and state

sequences u∗(x(k)) and x∗(x(k)), defined by (11) and (12),

∀k > 0.

Proof: Assume u∗(x) and x∗(x) are feasible control

and state sequences for C(x) and x+ is the successor state

defined in (1). Considering the state evolution (12) and

control update (11) we have:

x∗

i+1(x
+) = Ax∗

i (x
+) + Bu∗

i (x
+)

= Ax∗

i (x
+) + Bu∗

i+1(x)+BK(x∗

i (x
+)−x∗

i+1(x))

= AK(x∗

i (x
+)−x∗

i+1(x)) + x∗

i+2(x), i = 0, · · · , N−2
(15)

where the last equality is achieved by adding and subtracting

Ax∗

i+1(x) and using equation (12). From (12), we have

x∗

0(x
+)−x∗

1(x)=x+−Ax−Bu∗

0(x) = w ∈ W, (16)
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and using (15) it can be easily shown that

x∗

i (x
+) − x∗

i+1(x) ∈ Ai
KW, i = 0, · · · , N − 1. (17)

From (7), (10) and (17) we have

x∗

i (x
+) ∈ Xi+1 + Ai

KW = (Xi ∼ Ai
KW ) + Ai

KW ⊆ Xi,

(18)

for i = 0, · · · , N − 2, and since x∗

N (x) ∈ Xf ,

x∗

N−1(x
+) ∈ Xf + AN−1

K W ⊆ XN + AN−1

K W ⊆ XN−1.

(19)

On the other hand, from equations (11) and (12), we have

x∗

N (x+) = Ax∗

N−1(x
+) + Bu∗

N−1(x
+)

= (A + BK)x∗

N−1(x
+) = AKx∗

N−1(x
+).

(20)

From (17), where i = N − 1, we have

x∗

N−1(x
+) − x∗

N (x) ∈ AN−1

K W. (21)

Multiplying (21) by AK and using (20) we have

x∗

N (x+) ∈ {AKx∗

N (x)} + AN
KW. (22)

Since x∗

N (x) ∈ Xf and the set Xf is a robust invariant set

for the system (8) and disturbance set AN
KW ,

{AKx∗

N (x)} + AN
KW ⊂ AKXf + AN

KW ⊂ Xf ,

and, as the result, x∗

N (x+) ∈ Xf . Therefore, x∗(x+) satisfies

state constraints (7).

Now it remains to show that u∗(x+) satisfies control

constraints (6). Since u∗(x) is feasible, from (6) we have

u∗

i (x) ∈ Ui, i = 0, · · · , N − 1. (23)

Therefore, control update (11) and (17) imply

u∗

i (x
+) ∈ Ui+1 + KAi

KW. (24)

From control set tightening law in (6) and (24), we have

u∗

i (x
+) ∈ (Ui ∼ KAi

KW ) + KAi
KW ⊆ Ui

where i = 0, · · · , N − 2. From (11) and (19), we have

u∗

N−1(x
+) = Kx∗

N−1(x
+) ∈ KXf + KAN−1

K W

⊆ UN + KAN−1

K W ⊂ UN−1,

and, as the result, u∗(x+) satisfies control constraints (6).

To investigate convergence properties of the controller (13),

we first introduce the minimal disturbance invariant set for

the system (8) with the disturbance set W as it is defined in

[14]

Definition 3.1: The disturbance invariant set FK for the

system (8) is minimal if for all closed disturbance invariant

sets X such that AKX + W ⊂ X , it follows that FK ⊂ X .

The minimal disturbance invariant set FK is calculated as

follows [14]

FK =
∞
∑

i=0

Ai
KW. (25)

We need the following auxiliary results to prove the conver-

gence properties of the proposed controller.

Lemma 3.1: Let u∗(x) and x∗(x) be feasible control and

state sequences corresponding to state x, and let u∗(x+) and

x∗(x+) be control and state sequences generated by (11)

and (12), where x+ is the successor state defined in (1).

Moreover, assume FK is the minimal disturbance invariant

set as defined before. Then

d(x∗

i (x
+), Ai

KFK) ≤ d(x∗

i+1(x), Ai+1

K FK), i = 0, · · · , N−1.

(26)

Proof: Equations (16) and (17) imply that for

i = 0, · · · , N − 1,

∃w ∈ Ai
KW s.t. x∗

i (x
+) = x∗

i+1(x) + w. (27)

Moreover, if w ∈ Ai
KW , from (25) we have

Ai+1

K FK + {w} ⊂ Ai+1

K FK + Ai
KW = Ai

KFK . (28)

Therefore, from (27) and (28) we have

d(x∗

i (x
+), Ai

KFK)) ≤ d(x∗

i+1(x) + w,Ai+1

K FK + {w})
= d(x∗

i+1(x), Ai+1

K FK)

for i = 0 · · · , N−1.

(29)

Lemma 3.2: Let x+ = AKx + w, w ∈ AN
KW , P be the

Lyapunov matrix corresponding to stable matrix AK , i.e.,

P ≻ 0 and ∃Q ≻ 0 s.t. AT
KPAK −P = −Q, and the norm

‖·‖p is defined as ‖x‖p :=
√

xT Px, x ∈ R
n. If the distance

is defined in the normed space (Rn, ‖ · ‖p) and ‖D‖p is the

induced norm of any square matrix D ∈ R
n×n, then

∃ 0 < α < 1s.t.‖AK‖p ≤ α

and d(x+, AN
KFK) ≤ αd(x,AN

KFK)
(30)

Proof: Assume AT
KPAK − P = −Q.

∀x ∈ Su = {x ∈ R
n| xT Px = 1},

xT AT
KPAKx = 1 − xT Qx.

Since Su is compact

∃ x̄ ∈ Su s.t.

‖AK‖p = sup
x∈Su

√

xT AT
KPAKx =

√

1 − x̄T Qx̄ < 1.

The last inequality is due to the fact that Q ≻ 0.

Moreover,

d(x+, AN
KFK) = d(AKx + w,AN+1

K FK + AN
KW ).

Since w ∈ AN
KW ,

d(AKx + w,AN+1

K FK + AN
KW )

< d(AKx + w,AN+1

K FK + {w})
= d(AKx,AN+1

K FK).

(31)

According to definition of distance in the normed space

d(AKx, AN+1

K FK) = inf
w∈AN

K
FK

‖AKx − AKw‖p

≤ ‖AK‖p inf
w∈AN

K
FK

‖x − w‖p

= ‖AK‖pd(x,AN
KFK).

(32)
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From (31) and (32) we have

d(x+, AN
KFK) ≤ ‖AK‖pd(x,AN

KFK), (33)

and the proof is complete.

Theorem 3.2: If for an initial state x(0), there exist control

and state sequences satisfying the set of constraints C(x(0)),
then the set FK is robustly attractive (all trajectories converge

to FK despite disturbances) for the controlled uncertain

system

x+ = Ax + Bκ∗

N (x) + w, (34)

where w ∈ W . Furthermore, the region of attraction is

R = {x ∈ R
n| C(x) is feasible}.

Proof: Let us define the cost J(x, u∗(x)) as follows

J(x, u∗(x)) :=
N

∑

i=0

d(x∗

i (x), Ai
KFK), (35)

where x∗

i (x), i = 0, · · · , N is defined in (12). If x+ is the

successor state defined in (1), according to Lemma 3.1

N−1
∑

i=0

d(x∗

i (x
+), Ai

KFK) ≤
N

∑

i=1

d(x∗

i (x), Ai
KFK). (36)

From definition (35) and inequality (36) and the fact that

x = x∗

0(x) we have

J(x+, u∗(x+)) − J(x, u∗(x)) ≤ d(x∗

N (x+), AN
KFK)

− d(x, FK).
(37)

Substituting x and x+ with x(k) and x(k + 1), respectively,

and making summation over the inequality (37) from time

instant 0 to M < ∞, we obtain

M
∑

k=0

d(x(k), FK) ≤
M+1
∑

k=1

d(x∗

N (x(k)), AN
KFK)

+ J(x(0), u∗(x(0))) − J(x(M+1), u∗(x(M+1)))

≤ J(x(0), u∗(x(0))) +
M+1
∑

k=1

d(x∗

N (x(k)), AN
KFK).

(38)

On the other hand, from inequality (30) we obtain

d(x∗

N (x(k)), AN
KFK) ≤ αkd(x∗

N (x(0)), AN
KFK). (39)

Therefore, for all integer M, we have

M+1
∑

k=1

d(x∗

N (x(k)), AN
KFK) ≤ α

1 − α
d(x∗

N (x(0)), AN
KFK).

(40)

From (38) and (40), we have

M
∑

k=0

d(x(k), FK)

≤ J(x(0), u∗(x(0))) +
α

1 − α
d(x∗

N (x(0)), AN
KFK).

(41)

Since ‖x(0)‖p < ∞ and the set U is compact, the right

hand side of the above inequality is bounded. Therefore, the

sequence {VM :=
∑M

k=0
d(x(k), FK)} is bounded and non-

decreasing in R
n. Hence, {VM} is convergent and, as the

result, we have

d(x(M), FK) = VM+1 − VM → 0, as M → ∞. (42)

Remark 3.2: The important feature of the proposed

method is that the attraction to FK is achieved without

involving any optimization or minimal robust invariant set

approximation, while in the MPC based method [7], [12] at-

traction to FK is achieved by solving online an optimization

problem.

Remark 3.3: The proposed robust control method is based

on tightening constraints, at each time instance over the

prediction horizon, by Ai
KW , similar to [4], [13]. However,

the advantage of the proposed method is that it does not

require the final constraint set Xf to be a subset of the desired

target set Xt. In fact, the target set Xt is only required to

contain the minimal robust invariant set FK , i.e., FK ⊂ Xt,

in order to be attractive.

IV. COMPARISON OF REGIONS OF ATTRACTION

In this section we compare the region of attraction R

achieved by the algorithm proposed in Section III with

the MPC based methods in which the tightened sets are

constructed via Pontriagin subtraction of a minimal robust

invariant set from state constraint set X and its multiplication

by K from control constraint set U. One such MPC-based

constraint tightening method proposed in [12] is as follows:

U
∗

i = U ∼ KFK

X
∗

i = X ∼ FK , i = 1, · · · , N − 1

X
∗

f ⊂ X ∼ FK ,

(43)

where X
∗

f satisfies the following property

AKX
∗

f ⊂ X
∗

f , X
∗

f ⊂ X ∼ FK , KX
∗

f ⊂ U ∼ KFK . (44)

If Xi and Ui and Xf are replaced by X
∗

i and U
∗

i and X
∗

f in

(6) and (7), we have a new set of constrains which is called

C̄(x).
In [12], a controller is proposed which provides the

following domain of attraction:

R̄ = {x|∃ x0 s.t. x ∈ x0 + FK , C̄(x0) is feasible}. (45)

Here, we show that R̄ is contained in the region of attraction

of the proposed controller, namely, R̄ ⊂ R.

Let us assume x ∈ R̄ and x0 and u = {u0, · · · , uN−1}
are associated state and control sequence. Assume x =
{x0, x1, · · · , xN} is the state trajectory produced by initial

state x0 and control sequence u subject to nominal dynamics

x+ = Ax+Bu. Now let us define control and state sequences

u∗ = {u∗

0, · · · , u∗

N−1
} and x∗ = {x, x∗

1, · · · , x∗

N} as follows

x∗

0 = x,

u∗

i = ui + K(x∗

i − xi),

x∗

i+1 = Ax∗

i + Bu∗

i , i = 0, · · · , N − 1.

(46)
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From (46) we have

x∗

i+1 − xi+1 = AK(x∗

i − xi),

u∗

i − ui = K(x∗

i − xi).
(47)

Let w = x − x0 ∈ FK . Then

u∗

i = ui + KAi
KFK ,

x∗

i = xi + Ai
KFK , i = 0, · · · , N − 1.

(48)

Since ui ∈ U ∼ KFk and xi ∈ X ∼ Fk, we have

u∗

i ∈ (U ∼ KFK) + KAi
KFK

= (U ∼ K

∞
∑

j=0

A
j
KW ) + K

∞
∑

j=i

A
j
KW

⊂ U ∼ K

i−1
∑

j=i

A
j
KW ⊂ Ui,

i = 1, · · · , N − 1,

(49)

and u∗

0 ∈ U. With the same argument, we have

x∗

i ∈ Xi, i = 0, · · · , N − 1. (50)

Moreover, at i = N we have

x∗

N ∈ xN + AN
KFK . (51)

Since xN ∈ X
∗

f , we have x∗

N ∈ X
∗

f + AN
KFK . In addition

AK(X∗

f + AN
KFK) + AN

KFK ⊂ X
∗

f + AN
KFK .

Therefore X
∗

f + AN
KFK is robust positive invariant for the

system x+ = Ax + Bu + w, w ∈ AN
KW . Since Xf is the

maximal robust invariant set for the same system, we have

X
∗

f + AN
KFK ⊂ Xf .

Therefore, u∗ and x∗ satisfy the set of constraints C(x),
hence x ∈ R and R̄ ⊆ R.

Remark 4.1: Given the region of attraction R̄, the method

proposed in [12] can be modified such that the iterative

optimization is eliminated using suboptimal strategies, e.g.

[16].

Remark 4.2: While we show that R̄ ⊆ R in general, we

can also show numerically that R̄ 6= R for an example given

in Section VI in Figure 3.

V. CALCULATING THE FEEDBACK GAIN K

In order for the target set Xt to be attractive for the

controlled system, according to Theorem 3.2, it is sufficient

to have set inclusion FK ⊂ Xt. If Xt is robust positive

invariant for the system (8) with w ∈ W , based on definition

of FK , the FK ⊂ Xt is satisfied. In this section we introduce

a Linear Programming algorithm to compute a feedback gain

K which makes Xt robust invariant for the system (8).

Our objective is to find K such that

(A + BK)Xt ⊂ Xt ∼ W,

KXt ⊂ U.
(52)

Since W is non-empty and 0 ∈ int(W ), it can be easily

shown that (52) implies that A + BK is stable.

Let yi be the ith row of matrix Y in (3), i = 1, · · · , r.

Then Xt ∼ W can be written as [14]

Xt ∼ W = {z ∈ R
n|yiz ≤ qi − hW (yi), i = 1, · · · , r},

(53)

where hS(η) is the support function of a bounded set S at

η ∈ R
n (a row vector) defined as follows

hS(η) := sup
s∈S

ηs. (54)

If Xt has vertices {g1, · · · , gnv
}, then the first condition in

(52) can be written as

yi(A + BK)gj ≤ qi − hW (yi), i ∈ {1, · · · , r},
j ∈ {1, · · · , nv}.

(55)

Moreover, if

U = {u ∈ R
m|tiu ≤ 1, i = 1, · · · ,M}, ti ∈ R

m

then the second condition in (52) can be written as

tiKgj ≤ 1, i ∈ {1, · · · ,M}, j ∈ {1, · · · , nv}. (56)

Let us consider the following Linear Programming problem:

max
K,β

β

subject to:

yi(A + BK)gj ≤ qi − βhW (yi), i ∈ {1, · · · , r},
j ∈ {1, · · · , nv}

tiKgj ≤ 1, i ∈ {1, · · · ,M}, j ∈ {1, · · · , nv}.

(57)

If this Linear Programming is feasible with βm as the

solution, then Xt is robust invariant for disturbance set βmW .

If βm ≥ 1, then constraints (55) and (56) are feasible and

Km is the desired feedback gain.

Remark 5.1: If Xt is robust invariant for disturbance set

βW , larger β results in a more contractive matrix AK and

therefore constraint tightening will be less conservative.

VI. NUMERICAL EXAMPLE

In this section, we consider the following constrained

linear model

x+ =

[

1 1
0 1

]

+

[

0.5
1

]

u + w. (58)

The state and control constraint sets are

X = {[x1 x2]|x2 ≤ 2}
and

U = {u|u ≤ 1},
respectively. The disturbance set is W = {w|‖w‖∞ ≤ 0.1}
and the target constraint set is Xt = {x|‖x‖∞ ≤ 0.3}. The

feedback gain K = [−0.528 − 1.13] is designed such that

Xt contains the minimal invariant set corresponding to the

system x+ = AKx+w, w ∈ W . The terminal constraint set

Xf which is the maximal robust invariant set for the system

x+ = Ax+Bu+w, w ∈ AN
KW , satisfying (10), is shown in

Figure 1. Moreover, the constrained sets X, X1, · · · , XN are

parallel lines in Figure 1. The length of horizon is N = 10.
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Figure 1 shows the state trajectory for initial state x0 =
[−20 1]′. It can be seen that the state trajectory is steered

to the target set (because FK ⊂ Xt), while the terminal

constraint set Xf is much larger than Xt. Figure 2 shows the

control signal corresponding to the state trajectory depicted

in Figure 1.
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0

0.5

1

1.5

2

X1

X
2

Xf
X,X1,...,XN

Xt

state trajectory

Fig. 1. Trajectories for the example in Section V.
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0.8
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time

u

Fig. 2. Control signal for the example in Section V.

Remark 6.1: For the case where the additive disturbance

is W = {w|‖w‖∞ ≤ 0.2} the region off attractions

introduced in [12] and the one introduced in this paper are

compared in Figure 3. It can be seen that, as prooved in

Section IV, the region of attraction of the method introduced

in [12], blue line, is subset of the one introduced in this

paper, red one.

VII. CONCLUSION

This paper presented a robust controller for constrained

linear systems with bounded disturbances. The novel feature

of the robust controller is that the control action is a linear

combination of known data at each sampling time and

therefore it is highly computationally effective. The proposed

controller guarantees convergence of state trajectory to a

minimal invariant set of the desired system while explicit

specification or approximation of such set is not required.
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Fig. 3. Comparison of region of attractions introduced in Section IV.
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