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Abstract— Vision based tracking of an object using the ideas
of perspective projection inherently consists of nonlinearly mo-
delled measurements although the underlying dynamic system
that encompasses the object and the vision sensors can be linear.
Based on a necessary stereo vision setting, we introduce an
appropriate measurement conversion techniques which subse-
quently facilitate using a linear filter. Linear filter together
with the aforementioned measurement conversion approach
conforms a robust linear filter that is based on the set values
state estimation ideas; a particularly rich area in the robust
control literature. We provide a rigorously theoretical analysis
to ensure bounded state estimation errors formulated in terms
of an ellipsoidal set in which the actual state is guaranteed to
be included to an arbitrary high probability.

Using computer simulations as well as a practical implemen-
tation consisting of a robotic manipulator, we demonstrate our
linear robust filter significantly outperforms the traditionally
used extended Kalman filter under this stereo vision scenario.

I. INTRODUCTION

This paper investigates the problem of tracking the real-

world position and velocity coordinates of an object using

sequences of images provided by a stereo-vision based sensor

system. Vision-based tracking systems permit cost-effective

and passive object tracking applications in numerous areas.

Increasing number of applications take advantage of this

form of technology over traditional technologies such as

radar or sonar due to hardware limitations and associated

complexities. Moreover, with this more popular form of

measurement, it is possible to complement such tracking

systems with higher-level event or object understanding

paradigms that is simply not possible with most alternative

technologies. For example, vision sensors can more readily

permit target identification and/or classification. For these

range of reasons, vision-based tracking systems have found

application in a number of diverse application areas, e.g. see

[1]–[8].

Specifically, we are focused on estimating the real-world

trajectory of an object point in question. There are two

fundamentally distinct approaches to the problem of target

trajectory estimation using a sequence of image frames

generated by a vision sensor. The first approach is feature

based, where the target’s image plane position is measured on

each frame in the sequence (i.e. video) and subsequently used

as the basis for a recursive real-world coordinate tracking

filter. In [9] for instance, a recursive target tracking filter
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is developed that uses the nonlinear perspective projection

measurements as the input to an iterated EKF (IEKF). A

number of papers have examined the problem along similar

lines. Different camera models lead to different measurement

systems. The second approach is based on so-called optical

flow where the motion in the image plane is represented

by a sampled velocity field. Again, this approach has been

used in conjunction with dynamic modelling of the targets

motion for the purpose of parameter estimation [10]. In [10]

a target tracking filter is developed that includes both a

perspective projection measurement system and an optical

flow based measurement system. This essentially results in

more nonlinear equations that include measures of the targets

velocity as well as position, hence the use of the EKF in

[10]. In [11], a robust version of the extended kalman filter

(REKF) is used to estimate the heading of a vehicle in an

automotive setting using fusion ideas in vision and sonar

sensing.

In this paper we employ a perspective projection measu-

rement system and the corresponding time-derivative mea-

surements in a stereo-vision-based tracking system. This

modified version of the measurement conversion method

specifically aimed at stereo-vision based target tracking

with both perspective projection and image-velocity based

measurements. It is well known that under the assumption

of time independent image intensity, image velocity corre-

sponds to the flow field motion [4], [12], [13] which can

be directly measured from the image sequence. Therefore

our measurement space essentially consists of not only the

projected locations on each image plane, but also the image

velocities. The novelty of our approach comes in the form

of a measurement conversion based linear robust filter algo-

rithm that we derive. Essentially, we analytically convert the

nonlinear measurement equations into linear measurements

and apply a robust filter. Hence, we solve the estimation

problem strictly within the linear domain since we also

consider linear state equations [14]. Traditionally, it has been

common to use non-linear estimators such as the extended

Kalman filter (EKF) which employ some form of numerical

approximation (e.g. Taylor-series). Thus, very few results

exist which give analytical analysis of convergence properties

and estimation error bounds. It is well known that initial

conditions are critical to the stability and convergence of the

EKF. Furthermore, the errors introduced during linearization

result in bias and filter inconsistency [15] often leading to

divergence. In [10] it is stated that after a detailed comparison

of the EKF, IEKF, and an iterated linear filter smoother in

[16] similar performances are observed for the problem of

vision-based target tracking.
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Alternatively, measurement conversion methods have been

explored particularly for target tracking with radar measure-

ments [14], [17], [18]. The basic idea of these techniques

is to transform nonlinear measurements in to a linear com-

bination of the Cartesian coordinates, estimate the bias and

covariance of the converted measurement noise, and then

use the standard linear Kalman filter [19]. The measurement

conversion methods have proved to be superior to EKF in

performance [14], [17]–[19].

The overall measurement system is somewhat similar to

that proposed in [10] where the EKF is employed as the

state estimator. However, due to the measurement conversion

based approach we employ a robust version of the standard

linear Kalman filter from [20]–[22]. This linear robust filte-

ring approach has proved to be an effective tool for many

robust control and state estimation problems; see e.g. [20]–

[24] while the measurement conversion ideas have proven

to outperform EKF [17], [25]. Unlike most Taylor-series

based algorithms, we can give a mathematically rigorous

proof that the state estimation error is bounded with a certain

probability while there is no any mathematically rigorous

analysis results on the EKF nor on the existing measurement

conversion based approaches.

The underlying state estimation ideas we present are based

on bounded deterministic measurement noise as opposed to

Gaussian noise models which is an integral part in Kalman

filtering. Less restrictive bounded assumptions coupled with

more effective linear filtering due to measurement conversion

provide a stronger conceptual and practice basis for state esti-

mation particularly in a more uncertain vision based setting.

In addition, well known tuning difficulties and requirement

of accurate initial estimates associated with Kalman filtering

is directly addressed via this robust approach. In particular,

the initial condition uncertainty-omnipresent in vision based

estimation, is modelled in the uncertainty constraint included

in the worst case design paradigm. Further, this formulation

encapsulate the state estimation to a ellipsoidal bounding set

based on the assumed overall uncertainty and guarantees

to consists the true state to an arbitrary high probability

[22]. Although the resulting robust state estimator is sub-

optimal essentially due to relaxed noise model assumptions,

the knowledge of the bounded uncertainty allows easy tuning

the set values to a higher degree of precision.

The remainder of this paper is organized as follows : In

section II we introduce the state space formulation which

provides the basis for the non-linear measurement model

derived from the well known perspective projection ideas.

Section III, provides main results of this paper concerning

the boundedness of the filter error together with the converted

measurement of the non-linear measurements deriving filter

parameters for the robust filter. Underlying parameters are

presented in the form of standard uncertainty conditions in

a set value estimation setting. In section IV, we present

computer simulations as well as state estimation of an object

being moved by a robotic manipulator in a stereo vision

setting to demonstrate the effectiveness of the robust filter

while the concluding remarks are given in section V.

II. OBJECT-CAMERA DYNAMIC MODEL

In the kinematic modelling of an object(target) and a

tracker(camera) in a cartesian coordinate system the resulting

dynamic system equation is linear. A comprehensive survey

of dual body kinematic modelling is presented in [17] and

a basic principal approach is given in [26] where only the

translational kinematics were considered. Based on require-

ments of the specific application, rotational motion has been

considered and the resultant, non-linear dynamic models

have been used [9] in the kinematic parameter estimation.

For the case of vision based tracking, it is suffice to consider

only the translational effects and the subsequent linear model

[17] as no camera motion is engaged. Let the position of

the target in each of the traditionally denoted x, y and z

directions, and with respect to the camera based coordinate

system be [x1, x2, x3]
′ ∈ R

3. Let the velocity component

in each direction be given by [x4, x5, x6]
′ ∈ R

3 and let

the acceleration in each traditionally denoted x, y and z

direction be given by [x7, x8, x9]
′ ∈ R

3. Hence, we can

define x = [x1, x2, x3, x4, x5, x6, x7, x8, x9]
′ ∈ R

9 such that

the state evolves according to

x(k) = Ax(k − 1) + Bw(k) (1)

where A and B are suitably defined transition matrices [14]

given by

A =




I3 ksI3

k2

s

2 I3
O3 I3 ksI3
O3 O3 I3



 B =




k2

s

2 I3
ksI3
I3



 (2)

and w(k) ∈ R
3 is an uncertainty parameter that encom-

passes the target’s maneuvers and ks is the sampling time.

Our filtering algorithm is derived quite generally and permits

a large class of linear dynamic models to be employed. If a

point target is considered, then the target’s position in R
3 is

projected onto the image plane of a suitably defined sensor

via the principle of perspective projection. In Figure 1 we

can observe how a target’s position is mapped from real R
3

space onto the R
2 image plane.

Camera 1

Camera 2

d

f

y2

y1

y3

y4

x3

x1

x2

Fig. 1. The principle of perspective projection.

The principle of perspective projection provides a system

of nonlinear measurements that serve as the basis for the

work in this paper. We also work with measurements of
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the velocity of those projected image plane points. Two

sensors are used in a stereo-vision-based system with sensor

1 located at the origin of the global coordinate system and

sensor 2 located a distance d > 0 away on the positive x1-

axis of sensor 1. We require the two sensor’s image planes to

be orientated in the same direction such that the two local x3-

directions (defined by each camera’s local coordinate system,

e.g. Figure 1) are parallel. This requirement simplifies the

subsequent derivations and presentation significantly. Howe-

ver, it is possible to extend the algorithms derived here to

arbitrarily oriented camera systems involving multiple ≥ 2
vision sensors.

Remark 1: The choice of coordinate basis is determined

first by locating sensor 1 at the origin, secondly by locating

sensor 2 a distance d > 0 away on the positive x1-axis of

sensor 1 and such that the two positive x3-directions of each

camera’s local coordinate basis are parallel. Then, we can

define the direction of the horizontal, or equivalently, we

choose orientations for the x1-axis and x2-axis, which are

only determined up to a rotation by sensors 1 and 2.

In traditional target tracking, the dynamics of a moving

target are typically modeled in Cartesian coordinates and the

resulting dynamic equations are linear, e.g. see [14]. In [9],

[10] the targets are modeled via a dual translational/rotational

motion model. The translational and rotational velocities are

assumed to be constant. The resulting model is nonlinear

and adds to the complexity of the filter required. Here we

consider a point target (or a number N of point features)

that obey a linear dynamic model such as those described in

[14]. Any arbitrary number of point targets can be included

in this model and object rigidity is not required since each

point is tracked independently. However, the data associa-

tion problem (also known as the feature point association

problem) [27], [28] exists in practice for tracking multiple

point targets.

III. LINEAR ROBUST FILTERING WITH

NONLINEAR VISION MEASUREMENTS

In this section we outline the measurement model and the

subsequent measurement conversion technique along with

the robust linear filter which we derive as the state estimator.

Throughout this paper we let f > 0 denote the focal length

of the two cameras which is assumed to be the same and we

let d > 0 denote the separation distance of the two cameras

on the positive x-axis.

Let [y1(k) y2(k)]
′

and [y3(k) y4(k)]
′

denote the true va-

lues of the measured coordinates of the target point in the

image plane of camera 1 and camera 2 respectively. That is

we have,

y1(k) =





y1(k)
y2(k)
y3(k)
y4(k)



 = f





x1(k)
x3(k)
x2(k)
x3(k)

(x1(k)−d)
x3(k)
x2(k)
x3(k)




(3)

where y1 is simply the true values of the nonlinear per-

spective projection based coordinates in the image planes of

camera 1 and 2. Moreover, let ŷ1(k) = y1(k) + v1 denote

the noisy (actual) measured image coordinates of the target

point where v1 = [v1, v2, v3, v4]
′ are the corresponding

measurement errors. Note that y2(k) = y4(k) but that in

general ŷ2(k) 6= ŷ4(k). Hence, for notational simplicity let

us define a new (noisy) measurement vector

ψ̂1(k) =




ψ̂1(k)

ψ̂2(k)

ψ̂3(k)



 =




ŷ1(k)

ŷ2(k)+ŷ4(k)
2

ŷ3(k)



 (4)

where the true measured values of yi, ∀i ∈ {1, 2, 3, 4} are

defined as before, i.e. in equation (3). Note that the error in

ψ̂2(k) = ŷ2(k)+ŷ4(k)
2 is now given by v2+v4

2 .

Moreover, let [y5(k) y6(k)]
′

and [y7(k) y8(k)]
′

be the true

values of the image coordinate velocities (between successive

frames) in the planes of camera 1 and camera 2 respectively.

Then we get the following measurement model

y2(k) =





y5(k)
y6(k)
y7(k)
y8(k)





= f





x4(k)
x3(k)

− x1(k)x6(k)
x3(k)2

x5(k)
x3(k)

− x2(k)x6(k)
x3(k)2

x4(k)
x3(k)

− x1(k)x6(k)
x3(k)2

+ dx6(k)
x3(k)2

x5(k)
x3(k)

− x2(k)x6(k)
x3(k)2




(5)

where y2 is thus the true values of the time derivatives of

the image plane coordinates given in (3) by y1. Again, we

let ŷ2(k) = y2(k) + v2 denote the noisy (actual) measured

values where v2 = [v5, v6, v7, v8]
′ are the corresponding

measurement errors. Note that y6(k) = y8(k) but that in

general ŷ6(k) 6= ŷ8(k). Hence, for notational simplicity let

us define a new (noisy) measurement vector

ψ̂2(k) =




ψ̂4(k)

ψ̂5(k)

ψ̂6(k)



 =




ŷ5(k)

ŷ6(k)+ŷ8(k)
2

ŷ7(k)



 (6)

where the true measured values of yi, ∀i ∈ {5, 6, 7, 8}
are defined as before, i.e. in equation (5) and the error in

ψ̂5(k) = ŷ6(k)+ŷ8(k)
2 is now given by v6+v8

2 .

Let ψ̂(k) = [ψ̂1(k), ψ̂2(k)]
′ such that in a noiseless

environment it is clear that the true value of ψ̂(k) denoted

by ψ(k) is simply a re-organization of the independent

measurements in both (3) and (5). This is because y2(k) =
y4(k) and y6(k) = y8(k) implies that one of the true values

from each pair offers no additional information when the

values are error-free. However, in a noisy environment we

find that ŷ2(k) 6= ŷ4(k) and ŷ6(k) 6= ŷ8(k) which means

that ψ̂(k) = [ψ̂1(k), ψ̂2(k)]
′ provides a well-defined system

of measurement equations (i.e. an equal number of equations

as there is unknowns) with the added redundancy and noise

tolerance of the additional measurements. Now assume that

the target motion is described by (1) where the matrix A

is non-singular. Let 0 < p0 ≤ 1 be a given constant and

suppose that the system initial condition x(0), noise w(k)
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and the actual measurement noises vi(k), ∀i ∈ {1, . . . , 8}
satisfy the following assumption.

Assumption 1: The following inequalities with probability

p0 simultaneously hold:

|vi| ≤ ǫ|yi| ∀i ∈ {1, . . . , 4}, |vi| ≤ δ|yi| ∀i ∈ {5, . . . , 8} (7)

(x(0) − x0)
′N(x(0) − x0) +

T−1∑

0

w(k)′Q(k)w(k) ≤ d. (8)

Here x0 is a given initial state estimate vector, N = N′

and Q = Q′ are given positive definite weighting matrices,

d > 0 is a given constant associated with the system, and

T > 0 is a given time.

The weighting matrices N and Q can be adjusted in order

to compensate appropriately for the relative uncertainties.

For example, given perfect initial state knowledge then the

weighting matrix N should be given by N = I.

Using the preceding noisy measurement model ψ̂(k) =
[ψ̂1(k), ψ̂2(k)]

′ we can define the converted measurement

system as





x̃1(k)
x̃2(k)
x̃3(k)
x̃4(k)
x̃5(k)
x̃6(k)




=





dψ̂1(k)

ψ̂1(k)−ψ̂3(k)
dψ̂2(k)

ψ̂1(k)−ψ̂3(k)
df

ψ̂1(k)−ψ̂3(k)
d(ψ̂6(k)ψ̂1(k)−ψ̂4(k)ψ̂3(k))

(ψ̂1(k)−ψ̂3(k))2

d(ψ̂2(k)(ψ̂6(k)−ψ̂4(k))+ψ̂5(k)(ψ̂1(k))−ψ̂3(k))

(ψ̂1(k)−ψ̂3(k))2

df(ψ̂6(k)−ψ̂4(k))

(ψ̂1(k)−ψ̂3(k))2





(9)

where the x̃i(k) are the converted noisy measurements of

the state components xi(k), ∀i ∈ {1, . . . , 6} which will be

applied to the linearly formulated estimation algorithm to

be derived. We denote the converted measurement vector as

m = [x̃1(k) x̃2(k) x̃3(k) x̃4(k) x̃5(k) x̃6(k)]. Immediately,

we notice that we have not employed any Taylor-series

based approximations in determining (9). We have in some

regards transformed the non-linearities into the measurement

errors that are ultimately associated with each of the x̃i(k).
Essentially, each of the x̃i(k) are found by solving the

equations in ψ̂(k) = [ψ̂1(k), ψ̂2(k)]
′ for the xi as if they

were noiseless. Of course since they are not noiseless we

find that x̃i(k) are corrupted by a non-additive and state-

dependent error which we will subsequently try and correct.

Note that ŷi = yi + vi with |vi| ≤ ǫ|yi|, ∀i ∈ {1, . . . , 4}
or |vi| ≤ δ|yi|, ∀i ∈ {5, . . . , 8} implies that any ψ̂i ∈ ψ̂1

obeys ψ̂i ≤ ψi + ǫ|ψi| and any ψ̂i ∈ ψ̂2 obeys ψ̂i ≤
ψi+δ|ψi|. Indeed, these relationships are straightforward for

ψ̂i with i ∈ {1, 3, 4, 6}. The error in ψ̂2(k) = ŷ2(k)+ŷ4(k)
2 is

given by v2+v4
2 which clearly obeys either |v2+v42 | ≤ ǫ|y2|

or |v2+v42 | ≤ ǫ|y4| since y2 = y4. Moreover, the error

in ψ̂5(k) = ŷ6(k)+ŷ8(k)
2 is given by v6+v8

2 which clearly

obeys either |v6+v82 | ≤ δ|y6| or |v6+v82 | ≤ δ|y8| since

y6 = y8. Finally, we can easily find that ŷi − ŷj for any

i, j ∈ {1, 2, 3, 4} implies that vi − vj ≤ ǫ|yi − yj | and

similarly ŷi − ŷj for any i, j ∈ {5, 6, 7, 8} implies that

vi − vj ≤ δ|yi − yj |.
Therefore, our solution to the state estimation problem

involves the following Riccati difference equation,

F(k + 1) =
[
B̂′S(k)B̂ + I

]
−1

B̂′S(k)Â,

S(k + 1) = ÂS(k)
[
Â − B̂F(k + 1)

]
+ CC′ − K′K,

S(0) = N (10)

where Â , A−1 and B̂ , A−1B and where we define

C ,





β1 0 0 0 0 0 0 0 0
0 β2 0 0 0 0 0 0 0
0 0 β3 0 0 0 0 0 0
0 0 0 β4 0 0 0 0 0
0 0 0 0 β5 0 0 0 0
0 0 0 0 0 β6 0 0 0




(11)

K ,





α̃1 0 0 0 0 0 0 0 0
0 α̃2 0 0 0 0 0 0 0
0 0 α̃3 0 0 0 0 0 0
0 0 0 α̃4 0 0 0 0 0
0 0 0 0 α̃5 0 0 0 0
0 0 0 0 0 α̃6 0 0 0




. (12)

Furthermore, let us define

β1 =
1 + ǫ

2(1 − ǫ)
+

1 − ǫ

2(1 + ǫ)
, β3 =

1

2(1 + ǫ)
+

1

2(1 − ǫ)

β2 = β1, β4 =
(1 + δ)(1 + ǫ)

2(1 − ǫ)2
+

(1 − δ)(1 − ǫ)

2(1 + ǫ)2

β5 = β4, β6 =
(1 + δ)

2(1 − ǫ)2
+

(1 − δ)

2(1 + ǫ)2
(13)

and

α̃1 =
1 + ǫ

2(1 − ǫ)
−

1 − ǫ

2(1 + ǫ)
, α̃3 =

1

2(1 + ǫ)
−

1

2(1 − ǫ)

α̃2 = α̃1, α̃4 =
(1 + δ)(1 + ǫ)

2(1 − ǫ)2
−

(1 − δ)(1 − ǫ)

2(1 + ǫ)2

α̃5 = α̃4, α̃6 =
(1 + δ)

2(1 − ǫ)2
−

(1 − δ)

2(1 + ǫ)2
(14)

Also, we consider a set of state equations of the form

η(k + 1) =
[
Â − F(k + 1)

]
′

η(k) + C′m(k + 1),

η(0) = Nx0,

g(k + 1) = g(k) + m(k + 1)′m(k + 1) −

η(k)′B̂
[
B̂′S(k)B̂ + Q(k)

]
−1

B̂′η(k),

g(0) = x′

0Nx0. (15)

The above state equations (15) and Riccati equations (10)

can simply be thought of as a robust implementation of the

standard linear Kalman Filter [29] for uncertainties obeying

Assumption 1, e.g. see [22], [29], [30]. Now we are in a

position to present the main result of this section.

Theorem 1: Let 0 < p0 ≤ 1 be given, and suppose that

Assumption 1 holds. Then the state x(T ) of the system (1)

with probability p0 belongs to the ellipsoid
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ET ,






xT ∈ Rn :

‖(S(T )
1

2 xT − S(T )−
1

2η(T ))‖2

≤ ρ+ d




 (16)

where

ρ , η(T )′S(T )−1η(T ) − g(T )

and η(T ) and g(T ) are defined by the equations (15). Also,

we require ρ+ d ≥ 0.

Proof: The proof will be provided in an extended

version of the paper

Corollary 1: A so-called point value state estimate can

be obtained from the bounded ellipsoidal set’s center and is

given by x̂ = S(k)−1η(k).
We have therefore proved our algorithm’s estimation errors

are bounded in a probabilistic sense when the relevant un-

certainties obey Assumption 1. The sum quadratic constraint

given in Assumption 1 accommodates a large class of non-

linear and dynamic process noise characteristics. Indeed,

Gaussian measurement, process and initial condition errors

form special cases of Assumption 1. We solve the problem

in the linear domain and our algorithm permits very large

initial errors. No similar proofs exist for the extended Kalman

filter (EKF) or the majority of other approaches that employ

some form of Taylor-series based approximation. Indeed,

the fact that we can prove bounded tracking performance

with arbitrarily large initial condition errors is a novel

contribution.

Remark 2: It is well known that Gaussian noise is boun-

ded within the first standard deviation with a probability

p0 ≈ 0.68 and within two standard deviations with pro-

bability p0 ≈ 0.95 etc. Thus, we lose no generality by

considering uncertainties satisfying Assumption 1. Indeed,

there are systems in place in many practical frameworks to

remove large Gaussian outliers (e.g. gating etc.). Furthermo-

re, in many vision systems, the assumption of a bounded

uniformly distributed measurement error is more realistic

than a Gaussian error assumption. Finally, we point out that

the system uncertainty w(k) in (1) may be better represented

by an unknown deterministic uncertainty as compared to a

white Gaussian random variable.

IV. ILLUSTRATIVE EXAMPLES

In this section we present an example using a real physical

experiment.

A. Real Experimental Data

In this second simulation subsection we examine a simple

practical vision-based tracking problem in order to illustrate

that our algorithm is feasible using real vision sensors and

real moving objects.

Figure 2 shows the actual locations of the end effector of

the robotic arm. Figure 3 shows the estimated path using the

stereo vision ideas. It is quite evident that the robust filter

out performs the extended kalman filter. In fact the extended

kalman filter diverges. Further the converted measurements

are improved due to the robustness of the filter. Figure 4

Fig. 2. End effector measured path from the video sequence
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shows the error in comparison to the actual path data obtai-

ned using robot co-ordinate readings. Although there seems a

noticeable inaccuracy due to alignments etc in the converted

measurements the robust filter improves this measurements.
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We have used 20 pixel/ml and identical cameras with focal

length of 50mm. The distance between the two cameras

d = 360mm and the duration of the experiment was 36s

with a frame rate of 23.5.

V. CONCLUSIONS

In this paper we derived a linear state estimator with

provable performance limits for vision-based surveillance

and object tracking using nonlinear perspective projection

and image velocity measurements. We use a novel measu-

rement conversion approach that does not use Taylor-series

approximation and allows us to derive a completely linear

algorithm. A significant contribution of this technique is the

mathematically rigorous approach of the boundedness of the

filtering error. No such results can be easily given for the

extended Kalman filter.

REFERENCES

[1] I. Horswill. Visual collision avoidance by segmentation. In IEEE

International Conference on Intelligent Robots and Systems, Munich,
Germany, 1994.

[2] D. Pomerleau and T. Jochem. Rapidly adapting machine vision for
automated vehicle steering. IEEE Expert, 11(2):19–27, 1996.

[3] M. Nashman and H. Schneiderman. Real-time visual processing for
autonomous driving. In IEEE Symposium on Intelligent Vehicles, 1993.

[4] B.K. Horn. Robot Vision. McGraw-Hill Higher Education, New York,
NY, 1986.

[5] D.A. Pomerleau. Neural Network Perception for Mobile Robot

Guidance. Kluwer Academic, Boston, 1994.
[6] P. Gurfil. Robust guidance for electro-optical missiles. IEEE Transac-

tions on Aerospace and Electronic Systems, 39(2), April 2003.
[7] V. Malyavej, I.R. Manchester, and A.V. Savkin. Precision missile

guidance using radar/multiple-video sensor fusion via communication
channels with bit-rate constraints. Automatica, 42(5):763–769, 2006.

[8] G. L. Foresti, C. Micheloni, L. Snidaro, P. Remagnino, and T. Ellis.
Active video-based surveillance system. IEEE Signal Processing

Magazine, 22(2):25–37, March 2005.
[9] T.J. Broida, S. Chandrashekhar, and R. Chellappa. Recursive 3-

D motion estimation from a monocular image sequence. IEEE

Transactions on Aerospace and Electronic Systems, 26(4):639–656,
July 1990.

[10] S.D. Blostein, L. Zhao, and R.M. Chann. Three-dimensional trajectory
estimation from image position and velocity. IEEE Transactions on

Aerospace and Electronic Systems, 36(4):1075–1089, October 2000.
[11] P.N Pathirana, A Lim, A.V. Savkin, and P.D. Hodgson. Robust

video/ultrasonic fusion based estimations for automotive applications.
IEEE Transactions on Vehicle Technology, 56(4):1631–1639, 2005.

[12] B Lucas and T Kanade. An iterative image registration technique
with an application to stereo vision. pages 121–130. DARPA Image
understanding Workshop, DARPA, 1981.

[13] T.A Murat. Digital Video Processing. Prentice Hall PTR, Upper Saddle
River, NJ, 1995.

[14] X.R. Li and V.P. Jilkov. Survey of maneuvering target tracking part
I: Dynamic models. IEEE Transactions on Aerospace and Electronic

Systems, 39(4):1333–1364, 2003.
[15] S.J. Julier and J.K. Uhlmann. Unscented filtering and nonlinear

estimation. Proceedings of the IEEE, 92(3), March 2004.
[16] R.M. Chann. Recursive estimation of 3-D motion and structure in

image sequences based on measurement transformations. Master’s

Thesis, Queen’s University, 1994.
[17] X.R. Li and V.P. Jilkov. Survey of maneuvering target tracking part

III: Measurement models. In SPIE Conference on Signal and Data

Processing of Small Targets, San Diego, USA, July-August 2001.
[18] D.Lerro and V.P. Jilkov. Tracking with debiased consistent converted

measurements versus ekf. EEE Transactions on Aerospace and

Electronic Systems, 29(3):1015–1022, July 1993.
[19] Z. Zhao, X.R. Li, and V.P. Jilkov. Best linear unbiased filtering with

nonlinear measurements for target tracking. IEEE Transactions on

Aerospace and Electronic Systems, 40(4):1324–1336, 2004.
[20] A.V. Savkin and I.R. Petersen. Recursive state estimation for uncertain

systems with an integral quadratic constraint. IEEE Transactions on

Automatic Control, 40(6):1080, 1995.
[21] A.V. Savkin and I.R. Petersen. Model validation for robust control of

uncertain systems with an integral quadratic constraint. Automatica,
32(4):603–606, 1996.

[22] I.R. Petersen and A.V. Savkin. Robust Kalman Filtering for Signals

and Systems with Large Uncertainties. Birkhauser, Boston, 1999.
[23] I.R. Petersen, V.A. Ugrinovskii, and A.V. Savkin. Robust Control

Design Using H
∞ Methods. Springer-Verlag, London, 2000.

[24] A.V. Savkin and R.J. Evans. Hybrid Dynamical Systems. Controller

and Sensor Switching Problems. Birkhauser, Boston, 2002.
[25] D. Lerro and Y. Bar-Shalom. Tracking with debiased consistent con-

verted measurements versus EKF. IEEE Transactions on Aerospace

and Electronic Systems, 29(3):1015–1022, July 1993.
[26] A.V. Savkin, P.N. Pathirana, and F.A.Faruqi. The problem of pre-

cision missile guidance : LQR and H
∞ control framework. IEEE

Transactions on Aerospace and Electronic Systems, 39(3):901 – 910,
2003.

[27] Y. Bar-Shalom. Tracking and Data Association. Academic Press
Professional, Inc, San Diego, CA, 1987.

[28] Y. Bar-Shalom and X.R. Li. Estimation and Tracking Principles,

Techniques and Software. Artech, Norwood, MA, 1993.
[29] B.D.O Anderson and J.B. Moore. Optimal Filtering. Prentice Hall,

Englewood Cliffs, N.J., 1979.
[30] A.V. Savkin and I.R. Petersen. Robust state estimation and model

validation for discrete-time uncertain systems with a deterministic
description of noise and uncertanity. Automatica, 34(2):271–274,
1998.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC02.1

1303


