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Abstract— This paper concerns the identification of nonlinear
systems using a variant of the Wiener G-Functionals. The
system is modeled by a cascade of a single input multiple output
(SIMO) linear dynamic system, followed by a multiple input
single output (MISO) static nonlinear system. The dynamic
system is described using orthonormal basis functions. The
original ideas date back to the Wiener G-functionals of Lee
and Schetzen. Whereas the Wiener G-Functionals use Laguerre
orthonormal basis functions, in this work Takenaka-Malmquist
orthonormal basis functions are used. The poles that these
basis functions contain, are estimated using the best linear
approximation of the system. The approach is illustrated on
the identification of a Wiener system.

I. INTRODUCTION

A Wiener model can describe a large class of nonlinear

systems [1]. The dynamics of the system being modeled are

described by a set of orthonormal basis functions. If the pole

locations of these basis functions match the system poles

closely, then highly accurate models are obtained with only

a relatively small number of parameters to be estimated [2].

In the original settings, Laguerre orthonormal basis functions

were used [1].

The Laguerre orthonormal basis functions are character-

ized by a real valued pole, which makes them suitable for

describing well-damped systems with dominant first order

dynamics. For describing moderately damped systems with

dominant second order dynamics, it is more appropriate to

use Kautz basis functions [3], [4]. In this paper the Takenaka-

Malmquist basis functions are used, since they can deal with

multiple real and complex valued poles [2].

In order to obtain good estimates of the system poles,

the best linear approximation [5], [6] of the system is used.

These estimates are then used to construct the Takenaka-

Malmquist basis functions.

Numerical simulations illustrate the proposed approach on

the identification of a Wiener system.

II. WIENER MODEL

The Wiener model of a nonlinear system, with a nonlin-

earity up to degree Q, basically consists of two components

connected in tandem (see Fig. 1): a single input multiple

output (SIMO) linear dynamic system and a multiple input

single output (MISO) nonlinear static system. In that way

This work was funded by the Methusalem grant of the Flemish Govern-
ment (METH-1), the Fund for Scientific Research (FWO), and the IAP VI/4
DYSCO program.

K. Tiels is with the Department ELEC, Vrije Universiteit Brussel, 1050
Brussels, Belgium koen.tiels@vub.ac.be

J. Schoukens is with the Department ELEC, Vrije Universiteit Brussel,
1050 Brussels, Belgium johan.schoukens@vub.ac.be

the dynamics of the system are completely modeled in the

first section and the nonlinearities are completely modeled

in the second section.
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ŷ(t)

Fig. 1. Wiener model

The first section of the model consists of a set of orthonor-

mal basis functions FL
k , which filter the input signal u(t). In

the original settings Laguerre filters were used [1]. Expressed

in the z-domain the Laguerre filters are given by [2]

FL
k (z) =

√
1− a2

z − a
︸ ︷︷ ︸

first order filter

with pole a

[
1− az

z − a

]

︸ ︷︷ ︸

all-pass filter

with pole a

k−1

,

−1 < a < 1, k = 1, . . . , n .

(1)

These Laguerre filters have a real valued pole a with mul-

tiplicity k. This makes it difficult to model an oscillating

system with a small number of Laguerre filters [4]. For that

reason we will replace the Laguerre basis functions with the

Takenaka-Malmquist basis functions (see section III).

The second section of the Wiener model is a multivariate

polynomial function g(x1, x2, . . . , xn) of degree Q, which

contains all possible products of Hermite polynomials [1]

Hki
[xi(t)] =

[ki/2]∑

m=0

(−1)mki!

m!(ki − 2m)!

(
σ2
xi

2

)m

xki−2m
i (t) (2)

of degree ki, in which σ2
xi

is the variance of xi(t). Since

g(x1, x2, . . . , xn) is of degree Q, the condition
∑n

i=1 ki ≤ Q
must be met. The coefficients of g(x1, x2, . . . , xn) are esti-

mated using a Gaussian input signal u(t), since the Hermite

polynomials are then orthogonal. Although the model is built

using a Gaussian time function, the resulting model is valid

for any input [1].

III. TAKENAKA-MALMQUIST BASIS FUNCTIONS

In contrast to the Laguerre basis functions, the Takenaka-

Malmquist basis functions FTM
k (z) can contain complex
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valued poles ξk. They are given by [2]

FTM
k (z) =

√

1− |ξk|2

z − ξk
︸ ︷︷ ︸

first order filter

with pole ξk

k−1∏

i=1

[
1− ξ∗i z

z − ξi

]

︸ ︷︷ ︸

all-pass filter

with pole ξi

,

k = 1, . . . , n, ξi ∈ C, |ξi| < 1 .

(3)

Similarly as the kth Laguerre basis function FL
k (z) in

(1), the kth Takenaka-Malmquist basis function FTM
k (z) is

constructed as the product of a first order filter GTM
k (z) with

pole ξk and the product of the all-pass filters HTM
i (z) with

the previous poles ξi.

A. Real filters

In general, the Takenaka-Malmquist basis functions are

complex filters. This means that a real signal filtered by a

Takenaka-Malmquist basis function is in general a complex

signal. However, if ξj+1 = ξ∗j it is possible to form

linear combinations of FTM
j (z) and FTM

j+1 (z) to obtain two

orthonormal real filters, which span the same space [2].

The so-called real Kautz form is obtained. It is sufficient

to replace

GTM
j (z) =

√
1−|ξj |2
z−ξj

by

Gj(z) =
√
1−c2(z−b)

z2+b(c−1)z−c ,

GTM
j+1(z) =

√
1−|ξj+1|2
z−ξj+1

by

Gj+1(z) =
√
1−c2

√
1−b2

z2+b(c−1)z−c ,

HTM
j (z) =

1−ξ∗j z

z−ξj
by

Hj(z) = 1 and

HTM
j+1 (z) =

1−ξ∗j+1z

z−ξj+1
by

Hj+1(z) = −cz2+b(c−1)z+1
z2+b(c−1)z−c ,

in which the coefficients b and c are given by

b =
ξj + ξj+1

ξjξj+1 + 1
(4)

c = −ξjξj+1 . (5)

We denote the obtained real versions of the Takenaka-

Malmquist basis functions by Fk(z). They are still orthonor-

mal.

B. One extra basis function

We will also introduce one extra basis function, namely

Fn+1(z) = 1, to make it possible to model systems that have

a direct feedthrough of the input to the output. Eventually

the model structure shown in Fig. 2 is obtained.

IV. BEST LINEAR APPROXIMATION

As stated before, the poles ξk in (3) should be close to

the system poles so that a minimal set of basis functions is

needed [2]. We will estimate the system poles by means of

the best linear approximation (BLA) of the system.

g(x1, x2, . . . , xn+1)

F1

...

Fn

u(t)

x1(t)

xn(t)

xn+1(t)

ŷ(t)

Fig. 2. The proposed model structure

First we will define the BLA of a nonlinear system. Con-

sider a single input single output (SISO) nonlinear system

with input signal u(t) and output signal y(t). This system can

be linearized around its operating point (E{u(t)}, E{y(t)}).
The obtained linear system g(t) that minimizes the mean

square error

E{|ỹ(t)− g(t) ∗ ũ(t)|2} with

{

ỹ(t) = y(t)− E{y(t)}
ũ(t) = u(t)− E{u(t)}

,

(6)

is called the best linear approximation gBLA of the nonlinear

system. The BLA can be obtained with correlation methods,

which in the frequency domain corresponds to the calculation

of the frequency response function (FRF) [5]:

GBLA(jω) =
SỸ Ũ (jω)

SŨŨ (jω)
, (7)

in which SỸ Ũ (jω) is the cross-power spectrum between ỹ(t)
and ũ(t) and SŨŨ (jω) is the auto-power spectrum of ũ(t).

We state here the following properties of the BLA:

Property 1 (cascade rule): The best linear approximation

GBLA of the cascade of two systems equals the product of

the best linear approximations of each of the systems if at

least one of the systems is linear. [7]

Property 2 (BLA of a static nonlinear system): The best

linear approximation of a static nonlinear system y(t) =
f(u(t)) with u(t) a signal belonging to the class of exci-

tations with a Gaussian distribution is a constant. [6]

We will now show that, under certain conditions, the poles

of the BLA are equal to the true system poles. If the system

to be identified is the cascade of linear systems Gi and one

nonlinear system f (e.g. Wiener, Hammerstein or Wiener-

Hammerstein), then Property 1 can be applied successively

on the BLA of the system, so that

GBLA = GBLA,f

∏

i

Gi , (8)

in which GBLA,f is the BLA of the nonlinear system f .

Moreover, if f is static, then for input signals with a Gaussian

distribution, Property 2 can be applied as well:

GBLA = c
∏

i

Gi , (9)

in which c is an unknown constant. We see that the BLA and

the system itself have the same poles. Hence the poles of

the estimated ĜBLA match the system poles closely, which
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makes them suitable to be used in the construction of the

Takenaka-Malmquist orthonormal basis functions.

V. EXAMPLE

We will now identify a Wiener system using the Takenaka-

Malmquist orthonormal basis functions and the BLA.

A. The system to be identified

Consider the Wiener system shown in Fig. 3. The lin-

G1(z) f(x) = x+ α2x
2 + α3x

3
u(t) x(t) y(t)

Fig. 3. Wiener system with G1(z) a third order Chebyshev filter and f(x)
a static nonlinearity

ear time-invariant system G1(z) is a third order low-pass

Chebyshev Type I filter with 10 dB peak-to-peak ripple in

the passband and with a normalized passband edge frequency

ωp = 0.2846. Its FRF is shown in Fig. 4. The coefficients

α2 and α3 of the static nonlinearity f(x) are equal to 0.8

and 0.7 respectively. The input signal u(t) is a random phase

multisine [6]

u(t) =

NF∑

k=−NF

Uke
j2πfmaxkt/NF , (10)

with Uk = U∗
−k = |Uk|ejφk ; fmax the maximum frequency

of the excitation signal, chosen equal to one sixth of the

sampling frequency fs; NF = 1365 the number of frequency

components; and the phases φk uniformly distributed in the

interval [0, 2π[. The amplitudes |Uk| are chosen equal to each

other and such that the rms value of u(t) is equal to 1.

The system has a complex conjugate pole pair p1 = p∗2 ≈
0.6720 + j 0.6805 and a real valued pole p3 ≈ 0.9004.

0 1/6 0.25 0.5
−100

−50

−20
−10

0

f/fs

|G
1
| (

in
 d

B
)

Fig. 4. FRF of the third order Chebyshev filter G1(z) in Fig. 3

B. Identification procedure

1) Identify ĜBLA: First the BLA is estimated using M =
2, 5, 10, 100 realizations of the random phase multisine u.

Since the input is a periodic signal, (7) boils down to the

division of the output spectrum Y (jω) by the input spectrum

U(jω), so that the BLA is estimated as

ĜBLA(jωk) =
1

M

M∑

m=1

Y [m](k)

U [m](k)
, (11)

in which Y [m](k) and U [m](k) are the discrete Fourier

transforms (DFTs) of the output and the input, corresponding

to the mth realization of the input signal.

2) Calculate the poles of ĜBLA: Next a third order

parametric model is fitted on ĜBLA and its poles (ξ1 = ξ∗2
and ξ3) are calculated. Table I gives an overview of the pole

estimates.

TABLE I

POLE ESTIMATES OF THE WIENER SYSTEM SHOWN IN FIG. 3, WITH

TRUE SYSTEM POLES p1 = p∗
2
≈ 0.6720 + j 0.6805 AND p3 ≈ 0.9004,

FOR DIFFERENT NUMBERS OF REALIZATIONS M OF THE INPUT SIGNAL

M ξ1 = ξ∗
2

|p1−ξ1|
|p1|

ξ3
|p3−ξ3|

|p3|

(in %) (in %)

2 0.6737 + j 0.6818 0.229 0.8964 0.443
5 0.6716 + j 0.6810 0.060 0.8978 0.285
10 0.6719 + j 0.6802 0.027 0.8995 0.098

100 0.6718 + j 0.6806 0.023 0.9001 0.033

3) Construct the orthonormal basis functions: These

poles are then used to construct the Takenaka-Malmquist

basis functions (see equation (3)). It can be observed that the

Wiener system shown in Figure 3 can be exactly modeled

by the proposed model, shown in Figure 2 (see Appendix

I). Since the pole estimates are not exactly equal to the true

system poles, additional basis functions are needed, besides

the essential ones. These allow us to compensate for the

modeling errors in the first step.

As explained in section III-A, real filters are formed out

of the Takenaka-Malmquist basis functions and the filtered

input signals xk(t) are calculated.

4) Estimate the nonlinearities: Finally the coefficients of

the multivariate polynomial function g(x1, x2, . . . , xn+1) are

estimated by solving the linear least squares problem

ĝ = argmin
g

MSE(g) , (12a)

in which the mean square error MSE is equal to

1

N

N∑

k=1

[y(k)− g(x1(k), x2(k), . . . , xn+1(k))]
2 . (12b)

Note that the static nonlinearity is described by a multivariate

polynomial, instead of a univariate one (f(x) in Fig. 3).

This means that more parameters are introduced. However,

g(x1, x2, . . . , xn+1) can describe the static nonlinearity per-

fectly.

C. Results

In order to validate the obtained model, a random phase

multisine uval(t) is applied to the input of the system given

in Fig. 3. Its output yval(t) is estimated with the obtained

model. Fig. 5 shows the rms error for different numbers of

realizations M and the number of parameters to be estimated

as a function of the number of basis functions.

We observe that the rms error on the modeled output can

be made arbitrarily small by increasing the number of basis
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Fig. 5. Rms error on the modeled output of the Wiener system shown in
Fig. 3 for different numbers of realizations M and the number of parameters
to be estimated as a function of the number of basis functions n+ 1

functions. As the number of realizations increases, the pole

estimates are better (see Table I) and less basis functions are

needed. We also observe that the number of parameters to be

estimated increases rapidly as the number of basis functions

increases. This shows the importance of good pole estimates.

VI. DISCUSSION

A. Noise sensitivity

In this section the Wiener system shown in Fig. 3 is

identified in the presence of disturbing output noise (see Fig.

6). The output noise ny(t) is zero mean white Gaussian noise

with standard deviation σny
= 0.001.

G1(z) f(x) = x+ α2x
2 + α3x

3 +

ny(t)

u(t) x(t) y0(t) y(t)

Fig. 6. Wiener system with G1(z) a third order Chebyshev filter, f(x) a
static nonlinearity and ny(t) output noise

The identification procedure explained in section V-B is

followed. From Table II it can be observed that the BLA

still gives a consistent estimate of the pole locations in the

presence of disturbing output noise.

TABLE II

POLE ESTIMATES OF THE WIENER SYSTEM SHOWN IN FIG. 6, WITH

TRUE SYSTEM POLES p1 = p∗
2
≈ 0.6720 + j 0.6805 AND p3 ≈ 0.9004,

FOR DIFFERENT NUMBERS OF REALIZATIONS M OF THE INPUT SIGNAL

M ξ1 = ξ∗
2

|p1−ξ1|
|p1|

ξ3
|p3−ξ3|

|p3|

(in %) (in %)

2 0.6736 + j 0.6810 0.185 0.9004 0.002
5 0.6721 + j 0.6803 0.024 0.9025 0.242
10 0.6721 + j 0.6803 0.023 0.8994 0.104

100 0.6718 + j 0.6805 0.016 0.8999 0.048

Because of the output noise, the rms error on the modeled

output is at least equal to the noise level σny
, as shown in

Fig. 7. The noise level can be reduced by applying P ≥ 2
consecutive periods of the input signal u(t) for every one of
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number of basis functions (n + 1)
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M = 5

M = 10

M = 100

Fig. 7. Rms error on the modeled output of the Wiener system shown in
Fig. 6 with σny = 0.001 as a function of the number of basis functions
n+ 1 for different numbers of realizations M

the M realizations. The BLA is then estimated as

ĜBLA(jωk) =
1

M

M∑

m=1

(

1

P

P∑

p=1

Y [m,p](k)

U [m,p](k)

)

, (13)

in which Y [m,p](k) and U [m,p](k) are the DFTs of the

output and the input, corresponding to the mth realization

and the pth period of the input signal. The coefficients of

the multivariate polynomial function g(x1, x2, . . . , xn+1) are

estimated by solving the linear least squares problem in (12),

in which y(t) is replaced by

1

P

P∑

p=1

y[p](t) , (14)

in which y[p](t) is the output signal corresponding to the

pth period of the input signal. Consider for example the

identification of the Wiener system shown in Fig. 6 with

ny(t) zero mean white Gaussian noise with standard devia-

tion σny
= 0.1. Fig. 8 shows the rms error on the modeled

output for M = 2 realizations and P = 10, 100, 1000 periods

of the input signal. The noise level drops with a factor 1/
√
P

and can be made arbitrarily small at a cost of increased

measuring time. It can be concluded that the method is robust

to output noise.

From Figs. 7 and 8, it can be seen that as the number

of basis functions increases, the rms error on the modeled

output first decreases and then slighly increases. In the

beginning the extra basis functions reduce the modeling error,

but once the noise level is reached, the model becomes more

sensitive to the noise, due to the use of too many parameters.

B. Sensitivity to the distribution of the input

If the intermediate signal x(t) of the Wiener system shown

in Fig. 3 doesn’t have a Gaussian distribution, then Property

2 no longer holds. Consequently the BLA and the system

itself will not have the same poles anymore. We will now

see the effect on the identification method.

Consider the input signal u(t) to be uniformly distributed

noise with zero mean and standard deviation equal to 1. Then

the intermediate signal x(t) is filtered uniformly distributed

noise. But since the filter G1(z) is a third order filter, the

distribution of x(t) is almost Gaussian (see Fig. 9). For that
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Fig. 8. Rms error on the modeled output of the Wiener system shown in
Fig. 6 with σny = 0.1 as a function of the number of basis functions n+1
for M = 2 realizations and for different numbers of periods P
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Fig. 9. Probability density function (pdf) of the intermediate signal x(t) of
the Wiener system shown in Fig. 3 in case G1(z) is a third order Chebyshev
filter (full line), and pdf of a normal distribution with the same mean and
standard deviation (dotted line)

reason we will replace the filter G1(z) by a first order filter,

given by

G1(z) =
1

z − 0.4
. (15)

Fig. 10 shows the distribution of x(t), which is clearly not

Gaussian. Consequently the BLA of the nonlinearity f is not

constant anymore, but from Fig. 11 it can be seen that the

errors made are small. Remark that since the input signal is

no longer periodic, the BLA is estimated as

ĜBLA(jωk) =
ŜY U (jωk)

ŜUU (jωk)

=
1
M

∑M
m=1 Y

[m](k)U [m](k)

1
M

∑M
m=1

∣
∣U [m](k)

∣
∣
2 .

(16)

The error on the estimated pole locations is much larger

than is the case for Gaussian input signals (see Table III).

However, this can be compensated with extra basis functions,

as can be seen by comparing Figs. 12 and 13. So, we can

conclude that the method can compensate for pole variations

that are due to a change of the distribution of the signal.

So, we can conclude that the method works for an arbitrary

distribution of the excitation signal [8].

VII. CONCLUSIONS

The identification of nonlinear systems using a variant of

the Wiener G-Functionals has been presented. The use of

Takenaka-Malmquist basis functions allowed us to tune the

basis functions to the system to be modeled. The approach

was illustrated on the identification of a Wiener system,

−3 −2 −1 0 1 2 3
0

0.2

0.4

x(t)

p
d
f(

x
(t

))

Fig. 10. Probability density function (pdf) of the intermediate signal x(t)
of the Wiener system shown in Fig. 3 in case G1(z) is a first order filter
(full line), and pdf of a normal distribution with the same mean and standard
deviation (dotted line)

0 0.1 0.2 0.3 0.4 0.5
5

10

15

f/fs

|G
B

L
A

,f
 (

k
)|

 (
in

 d
B

)

Fig. 11. Estimated BLA of the nonlinearity f in case of a uniformly
distributed input signal u(t) with zero mean and standard deviation equal
to 1

TABLE III

POLE ESTIMATES OF THE WIENER SYSTEM SHOWN IN FIG. 3, WITH

G1(z) REPLACED BY THE FIRST ORDER FILTER GIVEN BY (15), WITH

TRUE SYSTEM POLE p1 = 0.4, FOR DIFFERENT NUMBERS OF

REALIZATIONS M OF THE INPUT SIGNAL

Gaussian input uniformly distributed input

M ξ1
|p1−ξ1|

|p1|
(in %) ξ1

|p1−ξ1|
|p1|

(in %)

2 0.3966 0.851 0.5410 35.238
5 0.4076 1.891 0.4471 11.763
10 0.3984 0.413 0.4396 9.910

100 0.4003 0.072 0.4387 9.674
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Fig. 12. Rms error on the modeled output of the Wiener system shown
in Fig. 3, with G1(z) replaced by the first order filter, given by (15), as a
function of the number of basis functions n + 1 for different numbers of
realizations M (uniformly distributed input)
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Fig. 13. Rms error on the modeled output of the Wiener system shown
in Fig. 3, with G1(z) replaced by the first order filter, given by (15), as a
function of the number of basis functions n + 1 for different numbers of
realizations M (random phase multisine input)

where it was shown that the rms error could be made

arbitrarily small. The method was also shown to be robust

to output noise and to the distribution of the input.

APPENDIX I

EXACT REPRESENTATION OF THE WIENER

SYSTEM BY THE MODEL

Consider the basis functions FB
k given by

FB
k (z) =

1

z − pk
k = 1, 2, 3 . (17)

Applying the Gram-Schmidt procedure to these basis func-

tions results in the Takenaka-Malmquist basis functions [2]

FTM
k , which are linear combinations of the FB

k ’s. The

orthonormal basis functions Fk (k = 1, 2, 3) are in their

turn linear combinations of the FTM
k ’s, and therefore linear

combinations of the FB
k ’s. When the partial fraction expan-

sion of the third order Chebyshev filter G1(z) is made, one

obtains

G1(z) =

3∑

i=1

ri
z − pi

+ kdirect (18)

=

(
3∑

i=1

riF
B
i (z)

)

+ kdirect . (19)

Since the Fk’s (k = 1, 2, 3) are linear combinations of the

FB
k ’s and F4(z) = 1,

G1(z) =

4∑

i=1

aiFi(z) , (20)

in which the coeficients ai are unknown constants. The

intermediate signal x(t) of the Wiener system is equal to

x(t) = G1(z)u(t) (21)

=

4∑

i=1

aixi(t) . (22)

The output signal y(t) of the Wiener system is equal to

y(t) = x(t) + α2x
2(t) + α3x

3(t) (23)

=

4∑

i=1

aixi(t) + α2

(
4∑

i=1

aixi(t)

)2

+ α3

(
4∑

i=1

aixi(t)

)3

(24)

=

4∑

i=1

βixi(t) +

4∑

i=1

4∑

j=i

βijxi(t)xj(t)

+

4∑

i=1

4∑

j=i

4∑

k=j

βijkxi(t)xj(t)xk(t) ,

(25)

which, like the output signal of the model ŷ(t), is a mul-

tivariate polynomial function of the filtered input signals

xi(t). When the coefficients of both polynomial functions

are chosen equal to each other, then the model is an exact

representation of the Wiener system.
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