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Abstract— We consider the problem of boundary stabilization
and state estimation for a 2×2 system of first-order hyperbolic
linear PDEs with spatially varying coefficients. First, we design
a full-state feedback law with actuation on only one end of
the domain and prove exponential stability of the closed-loop
system. Then, we construct a collocated boundary observer
which only needs measurements on the controlled end and prove
convergence of observer estimates. Both results are combined
to obtain a collocated output feedback law. The backstepping
method is used to obtain both control and observer kernels.
The kernels are the solution of a 4 × 4 system of first-order
hyperbolic linear PDEs with spatially varying coefficients of
Goursat type, whose well-posedness is shown.

I. INTRODUCTION

In this paper we are concerned with the problem of
boundary stabilization and state estimation for a 2 × 2
system of first-order hyperbolic linear PDEs with spatially
varying coefficients. We consider actuation in only one of
the boundaries, and measurement in the same boundary.

This problem has been previously considered for 2 × 2
quasilinear systems [7] and even n × n quasilinear sys-
tems [13], using the explicit evolution of the Riemann in-
variants along the characteristics. More recently, an approach
using control Lyapunov functions has been developed, for 2×
2 quasilinear systems [2] and n×n quasilinear systems [3].
These results use only static output feedback (the output
being the value of the state at the boundaries). However they
do not deal with the same class of systems considered in this
work (which includes some extra terms in the equations);
with these terms, it has been shown in [1] that there are
linear systems for which there are no control Lyapunov
functions of the form

∫ 1

0
wTQ(x)wdx (see the next sections

for notation) which would allow the computation of a static
output feedback law to stabilize the system (even when
feedback is allowed on both sides of the boundary).

Several other authors have also studied this problem. For
instance, the linear case has been analyzed in [23] (using a
Lyapunov approach) and in [14] (using a spectral approach).
The nonlinear case has been considered by [5] and [8] using
a Lyapunov approach, and in [15], [16], and [6] using a
Riemann invariants approach.

In this work, we use the backstepping method to design
a full-state feedback law (with actuation on only one end of
the domain) that makes the closed-loop system exponentially
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stable. Using the same method we construct a collocated
boundary observer with measurements on the controlled end,
and prove convergence of observer estimates. Then, both
results are put together to obtain a (collocated) dynamic
output feedback law. The gains of the feedback laws and
the observer are obtained as solutions of a 4 x 4 system
of first-order hyperbolic linear PDEs with spatially varying
coefficients, whose well-posedness is shown in an appendix.

The basis of our designs is the backstepping method [10];
initially developed for parabolic equations, it has been ap-
plied to first-order hyperbolic equations [12], delay sys-
tems [11], second-order hyperbolic equations [18], fluid
flows [20], nonlinear PDE equations [21] and even used for
PDE adaptive designs [19].

The result in this paper is related to the result in [12],
where the method of backstepping was used to deal with
a wave equation with antidamping. There, to eliminate
the antidamping, an invertible backstepping transformation
with a 2 × 2 structure was developed. The kernels of the
transformations were generated from two coupled second-
order hyperbolic PDEs in Goursat form. Similarly, in this
paper, we obtain four coupled first-order hyperbolic PDEs
in Goursat form which could be transformed to obtain two
coupled second-order hyperbolic PDEs; however, it is found
that well-posedness is more easily shown in the first-order
hyperbolic form.

The paper is organized as follows. In Section II we
formulate the problem. In Section III we introduce the
target system (which we show exponentially stable), the
backstepping transformation that maps the plant into the
target system, and the resulting full-state feedback law. We
close the section by proving exponential stability of the
closed-loop system. In Section IV we present our boundary
observer design and prove convergence of observer estimates
to the real states. Finally, in Section V we combine the full-
state feedback law and the observer to obtain a (collocated)
output-feedback law that stabilizes the system using only
measurements from the actuated boundary. In Section VI
we briefly cover a particular case of the system boundary
conditions not covered in the general treatment. We finish in
Section VII with some concluding remarks. We also include
an appendix with the proof of well-posedness of the kernel
equations.

II. PROBLEM STATEMENT

Consider the following system

ut = −ε1(x)ux + c1(x)v, (1)
vt = ε2(x)vx + c2(x)u, (2)
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evolving in x ∈ [0, 1], t > 0, with ε1(x), ε2(x) > 0 and
boundary conditions

u(0, t) = qv(0, t), (3)
v(1, t) = U(t), (4)

where U(t) is the actuation, which can be chosen as desired.
In what follows, we assume q 6= 0. The case q = 0 is briefly
covered in Section VI.

In (1)–(2), ε1, ε2 are assumed to be positive-valued
C1([0, 1]) functions and c1, c2 are assumed to be C([0, 1])
functions. The initial conditions, denoted as u0 and v0, are
assumed to belong to L2([0, 1]).

Based on the canonical transformation presented in [1],
this is the more general form for a one-dimensional 2 ×
2 hyperbolic linear system (without including integral or
boundary terms).

Taking into account the signs of the transport coefficients,
the variable u represents information that travels from left
to right, and v information that travels from right to left.
For this coefficients, the system is well posed since u has a
boundary condition on the left and v on the right [17].

Our objective is to choose U(t) to ensure that the closed-
loop system is globally asymptotically stable. Also we as-
sume that u(1, t) can be measured. First we design a full-
state feedback controller, then we design a boundary ob-
server, and finally we formulate an output feedback controller
combining both designs.

III. STABILIZING FULL-STATE FEEDBACK CONTROL LAW

A. Target system
Our approach to design U(t) will be to seek a mapping

that transforms (1)–(2) into

αt = −ε1(x)αx, (5)
βt = ε2(x)βx, (6)

with boundary conditions

α(0, t) = qβ(0, t), (7)
β(1, t) = 0, (8)

and then U(t) will be chosen to realize the transformation.
One can find the explicit solution of (5)–(8) as follows.

Define

φ1(x) =

∫ x

0

1

ε1(ξ)
dξ, φ2(x) =

∫ x

0

1

ε2(ξ)
dξ, (9)

noting that they are monotonically increasing functions of
x, and thus invertible. Now, if α0(x), β0(x) are the initial
condition for the states, the solution of the system is:

α(x, t) =

{
α0

(
φ−11 (φ1(x)− t)

)
t ≤ φ1(x)

qβ(t− φ1(x), 0) t ≥ φ1(x)
(10)

β(x, t) =

{
β0
(
φ−12 (φ2(x) + t)

)
t ≤ φ2(1)− φ2(x)

0 t ≥ φ2(1)− φ2(x)
(11)

Thus, after t = tF , where

tF = φ1(1) + φ2(1) =

∫ 1

0

(
1

ε1(ξ)
+

1

ε2(ξ)

)
dξ, (12)

one has that α ≡ β ≡ 0.

It can also be proved that the system is stable in the L2

sense by using the following Lyapunov function:

L =
1

2

∫ 1

0

(
2− ξ
ε1(ξ)

α2(ξ, t) +
(1 + ξ)2q2

ε2(ξ)
β2(ξ, t)

)
dξ,

(13)
since then one has, integrating by parts:

L̇ = −α2(1, t) + 4q2β2(1, t) + 2α2(0, t)− 2q2β2(0, t)

−
∫ 1

0

(
α2(ξ, t) + 2q2β2(ξ, t)

)
dξ, (14)

and applying the boundary conditions,

L̇ = −α2(1, t)−
∫ 1

0

(
α2(ξ, t) + 2q2β2(ξ, t)

)
dξ

≤ −cL, (15)

with c = minx∈[0,1] {ε1(x), ε2(x)}.

B. Backstepping transformation and kernel equations
To map the original system (1)–(2) into the target system

(5)–(6), we look for a transformation defined as follows:

α(x, t) = u(x, t)−
∫ x

0

Kuu(x, ξ)u(ξ, t)dξ

−
∫ x

0

Kuv(x, ξ)v(ξ, t)dξ, (16)

β(x, t) = v(x, t)−
∫ x

0

Kvu(x, ξ)u(ξ, t)dξ

−
∫ x

0

Kvv(x, ξ)v(ξ, t)dξ. (17)

Introducing (16)–(17) into (5)–(6), one obtains the equations
that the kernels must satisfy. To simplify the computations,
we introduce the following notation:

K(x, ξ) =

(
Kuu(x, ξ) Kuv(x, ξ)
Kvu(x, ξ) Kvv(x, ξ)

)
,

Q0 =

(
0 q
0 1

)
, Σ(x) =

(
−ε1(x) 0

0 ε2(x)

)
,

C(x) =

(
0 c1(x)

c2(x) 0

)
, w(x, t) =

(
u(x, t)
v(x, t)

)
,

γ(x, t) =

(
α(x, t)
β(x, t)

)
.

Then the original plant, target system and transformation can
be written compactly (omitting dependences in x and t) as

wt = Σwx + Cw,w(0, t) = Q0w(0, t), w(1, t) =

(
0
U

)
,(18)

γt = Σγx, γ(0, t) = Q0γ(0, t), γ(1, t) = 0, (19)

γ =w −
∫ x

0

K(x, ξ)w(ξ, t)dξ. (20)

Introducing the transformation into the target system, using
the plant equations, integrating by parts, and using the bound-
ary conditions, we obtain a set of three matrix equations:

0 = C(x) + Σ(x)K(x, x)−K(x, x)Σ(x), (21)
0 = Σ(x)Kx(x, ξ) +Kξ(x, ξ)Σ(ξ) +K(x, ξ)Σ′(ξ)

−K(x, ξ)C(ξ), (22)
0 = K(x, 0)Σ(0)Q. (23)
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Expanding these terms, we get the following kernel equa-
tions:

ε1(x)Kuu
x + ε1(ξ)Kuu

ξ = −ε′1(ξ)Kuu − c2(ξ)Kuv,(24)
ε1(x)Kuv

x − ε2(ξ)Kuv
ξ = ε′2(ξ)Kuv − c1(ξ)Kuu, (25)

ε2(x)Kvu
x − ε1(ξ)Kvu

ξ = ε′1(ξ)Kvu + c2(ξ)Kvv, (26)
ε2(x)Kvv

x + ε2(ξ)Kvv
ξ = −ε′2(ξ)Kvv + c1(ξ)Kvu,(27)

with boundary conditions

Kuu(x, 0) =
ε2(0)

qε1(0)
Kuv(x, 0), (28)

Kuv(x, x) =
c1(x)

ε1(x) + ε2(x)
, (29)

Kvu(x, x) = − c2(x)

ε1(x) + ε2(x)
, (30)

Kvv(x, 0) =
qε1(0)

ε2(0)
Kvu(x, 0). (31)

The equations evolve in the triangular domain T =
{(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}. Notice that they can be written
as two separate 2× 2 hyperbolic systems, one for Kuu and
Kuv and another for Kvu and Kvv .

By Theorem 4 (see the Appendix), one finds that, under
the assumptions of Section II, there is a unique solution to
(24)–(31), which is in C(T ).

C. The inverse transformation

To study the invertibility of the proposed transformation,
we look for a transformation of the the target system (5)–(6)
into the original system (1)–(2) as follows:

u(x, t) = α(x, t) +

∫ x

0

Lαα(x, ξ)α(ξ, t)dξ

+

∫ x

0

Lαβ(x, ξ)β(ξ, t)dξ, (32)

v(x, t) = β(x, t) +

∫ x

0

Lβα(x, ξ)α(ξ, t)dξ

+

∫ x

0

Lββ(x, ξ)β(ξ, t)dξ. (33)

Introducing (32)–(33) into (1)–(2), one obtains the equations
that the kernels must satisfy. Introduce as before the notation

L(x, ξ) =

(
Lαα(x, ξ) Lαβ(x, ξ)
Lβα(x, ξ) Lββ(x, ξ)

)
. (34)

Then the inverse transformation can be written compactly as

w(x, t) = γ(x, t) +

∫ x

0

L(x, ξ)γ(ξ, t)dξ. (35)

Introducing the transformation into the original system we
find, proceeding as before, a set of kernel equations:

ε1(x)Lααx + ε1(ξ)Lααξ = −ε′1(ξ)Lαα + c1(x)Lβα, (36)

ε1(x)Lαβx − ε2(ξ)Lαβξ = ε′2(ξ)Lαβ + c1(x)Lββ , (37)

ε2(x)Lβαx − ε1(ξ)Lβαξ = ε′1(ξ)Lβα − c2(x)Lαα, (38)

ε2(x)Lββx + ε2(ξ)Lββξ = −ε′2(ξ)Lββ − c2(x)Lαβ , (39)

with boundary conditions

Lαα(x, 0) =
ε2(0)

qε1(0)
Lαβ(x, 0), (40)

Lαβ(x, x) =
c1(x)

ε1(x) + ε2(x)
, (41)

Lβα(x, x) = − c2(x)

ε1(x) + ε2(x)
, (42)

Lββ(x, 0) =
qε1(0)

ε2(0)
Lβα(x, 0). (43)

Again by Theorem 4 (see the Appendix), one finds that
there is a unique solution to these equations, which is C(T ).

D. Control law and main result
From the transformation (17) evaluated at x = 1, one gets

U =

∫ 1

0

Kvu(1, ξ)u(ξ, t)dξ +

∫ 1

0

Kvv(1, ξ)v(ξ, t)dξ. (44)

With this control law, we obtain our main state-feedback
result, summarized in the following theorem.

Theorem 1: Consider system (1)–(2) with boundary con-
ditions (3)–(4), initial conditions u0 and v0, and with control
law (44) where the kernels Kvu and Kvv are obtained from
(24)–(31). Then, under the assumptions

ε1, ε2 ∈ C1([0, 1]), c1, c2 ∈ C([0, 1]), u0, v0 ∈ L2([0, 1]), (45)

and ε1(x), ε2(x) > 0, the equilibrium u ≡ v ≡ 0 is expo-
nentially stable in the L2 sense. Moreover, the equilibrium
is reached in finite time t = tF , where tF is given by (12).

Proof: Since the transformation (16)–(17) is invertible,
when applying control law (44) the dynamical behavior of
(1)–(2) is the same as the behavior of (5)–(6), which is well-
posed from standard results and whose explicit solution we
know. Thus, we obtain the explicit solutions of (1)–(2) the
system from the direct and inverse transformation, as follows:

w(x, t) = γ∗(x, t) +

∫ x

0

L(x, ξ)γ∗(ξ, t)dξ, (46)

where γ∗(x, t) is the explicit solution of the α, β system,
given by (10)–(11), with initial conditions:

γ0(x) = w0(x)−
∫ x

0

K(x, ξ)w0(ξ)dξ. (47)

In particular, we know that α and β go to zero in finite
time t = tF , therefore u and v also share that property.
Finally, since the α, β system is L2 exponentially stable,
we conclude, using the inverse transformation, that the u, v
system is also L2 exponentially stable.

IV. A (COLLOCATED) BOUNDARY OBSERVER

A. Observer structure
Next we assume that we can measure u(x, t) at the

boundary x = 1, and design an observer to estimate both
infinite-dimensional states. The estimates are denoted by a
hat, and we construct our estimator as a copy of the system
with output injection terms, as follows:

ût = −ε1(x)ûx + c1(x)v̂ + p1(x) (u(1, t)− û(1, t)),(48)
v̂t = ε2(x)v̂x + c2(x)û+ p2(x) (u(1, t)− û(1, t)) , (49)
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with the following boundary conditions:

û(0, t) = qv̂(0, t), (50)
v̂(1, t) = U(t). (51)

The terms p1(x) and p2(x) are output injection gains to be
designed.

Subtracting the estimates from the states, we get the
estimation error system (error estimates are denoted by a
tilde):

ũt = −ε1(x)ũx + c1(x)ṽ − p1(x)ũ(1, t), (52)
ṽt = ε2(x)ṽx + c2(x)ũ− p2(x)ũ(1, t), (53)

with the following boundary conditions:

ũ(0, t) = qṽ(0, t), (54)
ṽ(1, t) = 0. (55)

B. Backstepping observer transformation
To find the output injection gains that guarantee that

the error system decays to zero, we use a backstepping
transformation to map the error system into the target system:

α̃t = −ε1(x)α̃x, (56)
β̃t = ε2(x)β̃x, (57)

with boundary conditions

α̃(0, t) = qβ̃(0, t), (58)
β̃(1, t) = 0. (59)

The backstepping transformation is:

ũ(x, t) = α̃(x, t)−
∫ 1

x

Puu(x, ξ)α̃(ξ, t)dξ

−
∫ 1

x

Puv(x, ξ)β̃(ξ, t)dξ, (60)

ṽ(x, t) = β̃(x, t)−
∫ 1

x

P vu(x, ξ)α̃(ξ, t)dξ

−
∫ 1

x

P vv(x, ξ)β̃(ξ, t)dξ, (61)

Introducing (60)–(61) into (52)–(53), one obtains the equa-
tions that the kernels must satisfy. Introducing, as before, the
following notation:

P (x, ξ) =

(
Puu(x, ξ) Puv(x, ξ)
P vu(x, ξ) P vv(x, ξ)

)
,

w̃(x, t) =

(
ũ(x, t)
ṽ(x, t)

)
, γ̃(x, t) =

(
α̃(x, t)

β̃(x, t)

)
,

Pi(x) =

(
p1(x) 0
p2(x) 0

)
, Q1 =

(
1 0
0 0

)
. (62)

Then the original plant, target system and transformation can
be written compactly as

w̃t = Σw̃x + Cw̃ − Piw̃(1, t), (63)
w̃(0) = Q0w̃(0), w̃(1) = Q1w̃(1), (64)
γ̃t = Σγ̃x, γ̃(0) = Q0γ̃(0), γ̃(1) = Q1γ̃(1),(65)

w̃(x, t) = γ̃(x, t)−
∫ 1

x

P (x, ξ)γ̃(ξ, t)dξ. (66)

Introducing the transformation into the estimation error
system we find as before the following system of kernel
equations:

ε1(x)Puux + ε1(ξ)Puuξ = −ε′1(ξ)Puu − c1(x)P vu, (67)
ε1(x)Puvx − ε2(ξ)Puvξ = ε′2(ξ)Puv − c1(x)P vv, (68)
ε2(x)P vux − ε1(ξ)P vuξ = ε′1(ξ)P vu + c2(x)Puu, (69)
ε2(x)P vvx + ε2(ξ)P vvξ = −ε′2(ξ)P vv + c2(x)Puv, (70)

with boundary conditions:

Puu(0, ξ) = qP vu(0, ξ), (71)

Puv(x, x) =
c1(x)

ε1(x) + ε2(x)
, (72)

P vu(x, x) = − c2(x)

ε1(x) + ε2(x)
, (73)

P vv(0, ξ) =
1

q
Puv(0, ξ), (74)

and the additional conditions on the output injection kernels:

p1(x) = −ε1(1)Puu(x, 1), (75)
p2(x) = −ε1(1)P vu(x, 1). (76)

By Theorem 4 (see the Appendix), one finds that there is
a unique solution to (67)–(74), which is in C(T ). Thus the
output injection gains can be found and are continuous.

C. Inverse observer transformation

The inverse observer transformation is defined as:

α̃(x, t) = ũ(x, t) +

∫ 1

x

Rαα(x, ξ)ũ(ξ, t)dξ

+

∫ 1

x

Rαβ(x, ξ)ṽ(ξ, t)dξ, (77)

β̃(x, t) = ṽ(x, t) +

∫ 1

x

Rβα(x, ξ)ũ(ξ, t)dξ

+

∫ 1

x

Rββ(x, ξ)ṽ(ξ, t)dξ, (78)

As before, defining:

R(x, ξ) =

(
Rαα(x, ξ) Rαβ(x, ξ)
Rβα(x, ξ) Rββ(x, ξ)

)
, (79)

the transformation is written as

γ̃(x, t) = w̃(x, t) +

∫ 1

x

R(x, ξ)w̃(ξ, t)dξ. (80)

Introducing the transformation into the estimation error sys-
tem we find as before the following equations:

ε1(x)Rααx + ε1(ξ)Rααξ = −ε′1(ξ)Rαα − c2(ξ)Rαβ ,(81)

ε1(x)Rαβx − ε2(ξ)Rαβξ = ε′2(ξ)Rαβ − c1(ξ)Rαα, (82)

ε2(x)Rβαx − ε1(ξ)Rβαξ = ε′1(ξ)Rβα + c2(ξ)Rββ , (83)

ε2(x)Rββx + ε2(ξ)Rββξ = −ε′2(ξ)Rββ + c1(ξ)Rβα, (84)
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with boundary conditions:

Rαα(x, 0) = qRβα(x, 0), (85)

Rαβ(x, x) =
c1(x)

ε1(x) + ε2(x)
, (86)

Rβα(x, x) = − c2(x)

ε1(x) + ε2(x)
, (87)

Rββ(x, 0) =
1

q
Rαβ(x, 0). (88)

By Theorem 4 (see the Appendix), one finds that there is
a unique solution to (81)–(88), which is in C(T ). Thus the
output injection gains can be found and are continuous.

D. Main observer result

From what has been shown, exponential stability of the
estimation error system follows, which implies that the state
estimates go to the real values as time grows. In fact, they do
in finite time. This is summarized in the following theorem,
whose proof we skip since it is identical to the proof of
Theorem 1.

Theorem 2: Consider system (52)–(53) with boundary
conditions (54)–(55) and initial conditions ũ0 and ṽ0, with
output injection kernels given by (75)–(76), where Puu and
P vu are obtained from (67)–(74). Under the assumptions of
Theorem 1, the equilibrium ũ ≡ ṽ ≡ 0 is exponentially stable
in the L2 sense. Moreover, the equilibrium is reached in finite
time t = tF , where tF is given by (12). This implies that
‖û(·, t)−u(·, t)‖L2(0,1) → 0 and ‖v̂(·, t)−v(·, t)‖L2(0,1) → 0
as t→ tF .

V. COLLOCATED OUTPUT FEEDBACK CONTROL

Combining the full state feedback law and the observer
estimates, we propose a feedback law

U =

∫ 1

0

Kvu(1, ξ)û(ξ, t)dξ +

∫ 1

0

Kvv(1, ξ)v̂(ξ, t)dξ, (89)

where û and v̂ are computed from

ût = −ε1(x)ûx + c1(x)v̂

−ε1(x)Puu(x, 1) (u(1, t)− û(1, t)) , (90)
v̂t = ε2(x)v̂x + c2(x)û

−ε1(x)P vu(x, 1) (u(1, t)− û(1, t)) , (91)
û(0, t) = qv̂(0, t), v̂(1, t) = U, (92)

and where the kernels K and P are obtained from their
respective kernel equations. The following result follows
from standard arguments, combining Theorems 1 and 2.

Theorem 3: Consider system (1)–(2) with boundary con-
ditions (3)–(4), initial conditions u0 and v0, and with control
law (89)–(92) where the kernels Kvu and Kvv are obtained
from (24)–(31) and the kernels Puu and P vu from (67)–
(74). Under the assumptions of Theorem 1, the equilibrium
u ≡ v ≡ 0 of is exponentially stable in the L2 sense.
Moreover, the equilibrium is reached in finite time t = 2tF ,
where tF is given by (12).

VI. THE CASE OF SMALL OR ZERO VALUES OF q

If the coefficient q is zero in (3), the method presented in
the paper is not valid since (31) would require the value of
one of the control kernels to be infinity in the boundary of
the domain T . Similarly, if the coefficient is close to zero
one still gets very large values for the kernels close to the
boundary.

The method can be modified to accommodate zero or small
values of q by setting a slightly different target system (5)–
(6), as follows:

αt = −ε1(x)αx + g(x)β(0, t), (93)
βt = ε2(x)βx, (94)

where g(x) is to be obtained from the method; regardless of
the value of g(x), this is a cascade system which is still L2

exponentially stable by standard arguments.
The kernel equations resulting from the transformation

are still the same (24)–(27), with the same boundary con-
ditions (29)–(31) for Kuv , Kvu and Kvv (which reduces
to Kvv(x, 0) = 0 when q = 0), but one obtains an
undetermined boundary conditions for Kuu:

Kuu(x, 0) = h(x), (95)

where h(x) can be chosen as desired. After h(x) has been
chosen and the kernels have been computed, one must set
g(x) = qε1(0)Kuu(x, 0)− ε2(0)Kuv(x, 0).

Invertibility of the transformation follows as before, thus
one obtains a result equivalent to Theorem 1. The non-
uniqueness in (95) gives the designer some freedom in
shaping the input function g(x) from β to α.

To design a boundary observer for small or zero q, it is
necessary to use measurements of v from the x = 0 end.
Then, the boundary condition (50) is modified to

û(0, t) = qv̂(0, t) + q̂(v̂(0, t)− v(0, t)), (96)

where q̂ can be chosen as desired. Thus boundary condition
(54) is changed to

ũ(0, t) = (q + q̂)ṽ(0, t), (97)

which implies that q is substituted by q + q̂ in the observer
kernel equations, a value that can be chosen to avoid large
boundary conditions of the kernels. A equivalent result to
Theorem 2 then follows.

To avoid the need of using measurements from the two
boundaries, one might design instead an anti-collocated
observer that requires only measurements of v at the un-
controlled end. We skip the details for lack of space.

VII. CONCLUDING REMARKS

In this work, we have solved the problem of boundary
stabilization and state estimation for a 2 × 2 system of
first-order hyperbolic linear PDEs with spatially varying
coefficients. We have shown L2 exponential stability of the
state (and of the error system, for the boundary observer).

The method can also be applied if the system is not linear
but quasilinear, obtaining a local result; the details can be
found in [22]. There, it is shown that to guarantee well-
posedness of the closed-loop system one must obtain H2

stability [2], which requires the control kernels to be at least
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twice differentiable. The results of Theorem 5 guarantee this
degree of differentiability if the coefficients of the system
are smooth enough. The quasilinear case is of interest since
several relevant physical systems are described by 2 × 2
systems of first-order hyperbolic quasilinear PDEs, such as
open channels, transmission lines, gas flow pipelines or road
traffic models.
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APPENDIX

A. Well-posedness of the kernel equations
We show well-posedness of the following hyperbolic 4×4

system, which is generic enough to contain all the kernel
equation systems that appear in the paper:

ε1(x)F 1
x + ε1(ξ)F 1

ξ = g1(x, ξ)+

4∑
i=1

C1i(x, ξ)F
i(x, ξ), (98)

ε1(x)F 2
x − ε2(ξ)F 2

ξ = g2(x, ξ)+

4∑
i=1

C2i(x, ξ)F
i(x, ξ), (99)

ε2(x)F 3
x − ε1(ξ)F 3

ξ = g3(x, ξ)+

4∑
i=1

C3i(x, ξ)F
i(x, ξ),(100)

ε2(x)F 4
x + ε2(ξ)F 4

ξ = g4(x, ξ)+

4∑
i=1

C4i(x, ξ)F
i(x, ξ),(101)

evolving in the domain T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}, with
boundary conditions:

F 1(x, 0) = h1(x) + q1(x)F 2(x, 0) + q2(x)F 3(x, 0),(102)
F 2(x, x) = h2(x), F 3(x, x)= h3(x), (103)
F 4(x, 0) = h4(x) + q3(x)F 2(x, 0) + q4(x)F 3(x, 0).(104)

This type of system has been called “generalized Goursat
problem” by some authors [9]. However the boundaries
of the domain T are characteristic for (98) and (101),
thus the general results derived in [9] cannot be applied.
The following theorems discusses existence, uniqueness and
smoothness of solutions to the equations.

Theorem 4: Consider the hyperbolic system (98)–(104).
Under the assumptions

qi, hi ∈ C([0, 1]), gi, Cji ∈ C(T ), i, j = 1, 2, 3, 4 (105)

and ε1, ε2 ∈ C([0, 1]) with ε1(x), ε2(x) > 0, there exists a
unique C(T ) solution F i, i = 1, 2, 3, 4.

Theorem 5: Consider the hyperbolic system (98)–(104).
Under the assumptions of Theorem 4, and the additional
assumptions

εi, qi, hi ∈ CN ([0, 1]), gi, Cji ∈ CN (T ), (106)

there exists a unique CN (T ) solution F i, i = 1, 2, 3, 4.
We skip the proof of the theorems due to page limitation.

The steps used in the proof are transforming the equations
into integral equations (using the method of characteristics)
and solving them using a successive approximation method,
which results in a series solution. Thus existence and unique-
ness is proven. To prove smoothness of solutions, one takes
derivatives in (98)–(101) with respect to x and ξ finding new
hyperbolic systems of equations which are formally similar
to (98)–(101). Applying Theorem 4 to this system one finds
solutions for these derivatives. Iterating this procedure, the
required degree of smoothness can be shown.
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