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Abstract— In this paper, the behaviour of nonlinear dynamic
systems driven by stationary random excitations is studied
from a model-based perspective – i.e. starting from a perfect
knowledge of the system under study and its driving random
input – over a finite time interval (a burst excitation is assumed).
For a given discrete-time nonlinear state-space model operating
in the neighbourhood of a stable equilibrium, a “blow-up” is
seen as the event of escaping out of a region of attraction. Based
on Laplace integration, a method is outlined to approximate a
future state’s probability density function (pdf) at low excitation
amplitudes. Inspection of this pdf can reveal additional insights
into the complex behaviour of an abstract state-space model,
compared with the simulation approach. The probability of
staying inside the region of attraction (viz. obtaining a bounded
operation subject to an input active in a finite time interval)
can be obtained by integration of this pdf. The state pdf
estimation is illustrated with numerical Monte-Carlo simulation
experiments.

I. INTRODUCTION

A. Motivation of this work

Since all real-life systems are to some extent nonlinear,
linear models can fail to represent their behaviour in a
way satisfactory to the user. A large class of nonlinear
plants can be very well approximated via the family of
polynomial state-space models (with a state evolution of
polynomial form in the state and input). It has good black-
box approximation capabilities, and was successfully applied
in practice [1]. The model can be constructed from input-
output measurements of the system under study, via a least-
squares data-fitting approach. The problem is that no stability
guarantees are given for the resulting nonlinear state-space
model; only the underlying linear dynamics are easy to
analyze. It is therefore desirable to investigate (automatically)
how a given state-space model behaves under a random input
with predefined nature when no stability information is given.
Moreover, an unstable system’s state can stay within a given
bounded region for very long periods of time and with a high
probability (possibly not arbitrary close to one). In this paper,
a method is proposed that allows one to approximate the
probability distribution of a future state, given the state space
equation, the initial state and the nature of the random input,
consisting of a Gaussian term with known power spectrum
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and (if desired) a known deterministic term. Besides the ran-
domly excited black box nonlinear model structures, possible
applications include the analysis of the start-up behaviour
of nonlinear oscillators, the investigation of physical (white-
box) models, and controlled nonlinear plants with random
noise on top of the deterministic reference signal.

B. Example of locally stable, globally unstable dynamics

The time interval over which a bounded response is
observed for unstable systems depends both on the system
itself and on the stochastic input’s properties [2]. Nonlinear
models’ responses (starting from rest) can, e.g., be bounded
(this behaviour can appear “stable”) for long periods of time
at low input amplitudes (variance for stochastic inputs), and
at high amplitudes only remain bounded for short periods of
time, revealing the true unstable nature of the system. For
the amplitude levels in between, there can be a transition,
with a decrease of the typical time over which the response
remains bounded as function of the input variance. This
kind of effect can be expected with state space systems
with a state transition function of the form f(x, u) =
Ax + Bu + o (x) + o (u) (where u is the input and x is
the state) with eigenvalues of the A matrix lying in the
open unit disk, i.e., nonlinear systems having asymptotically
stable underlying linear dynamics. If both the input and the
state vector are small, the o ()-term vanishes; as a result, the
origin is a locally stable equilibrium of the unforced system
(autonomous, u = 0). The autonomous system’s response is
a given deterministic state trajectory. In this sense, a nonzero
random input causes state fluctuations. Inside a so-called
Region Of Attraction (ROA) around the equilibrium point,
the state is attracted towards the equilibrium in the unforced
(i.e. zero input) situation. Outside, the nonlinear terms can
become very active and cause the state to be repelled away
from the origin.

C. Towards a concrete problem setting

In this context, the practical goal is to quantify the “risk”
for the state to leave a certain domain D in a given period
of time, say, of τ samples, for a specified random excitation.
In this work, we restrict ourselves to the case of a known
model equation, initial state and colored Gaussian input with
known power spectrum. To achieve this goal, we propose in
this chapter to calculate the probability density function (pdf)
of the state at time τ . If the pdf is integrated over a domain
D chosen as the ROA [3], [4], the probability is obtained
for the state to be asymptotically attracted to the equilibrium
after a burst of τ noise samples (followed by a zero input).
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This will be called bounded operation over a time interval
of length τ (to be defined in the sequel). The reader may
comment that the state pdf at time τ can also be estimated
from Monte-Carlo simulations of the system. One advantage
of the method to be presented, is that it obtains a much better
accuracy in low pdf regions, where a Monte-Carlo simulation
hardly ever turns up. A second advantage is that the results
for a range of standard deviations can be obtained, at almost
no additional computational cost.

D. Related literature on stability and randomly excited sys-
tems

Several theoretical notions have been introduced to de-
scribe the stability of a model with external input, such
as input-output stability [5] and input-to-state stability (ISS;
see [6], [7]). The stability proofs for nonlinear systems are
usually established on a case-by-case basis (mostly via a
Lyapunov function). These concepts can guarantee bounds
on the state’s magnitude, consisting of a term coming from
the bounded input (which has to be piecewise continuous
in the continuous-time setting) and a term vanishing over
time depending on the initial state. Due to its unbounded-
ness, a random input with an infinite (amplitude) support
does not fit into the classical ISS framework (the state
upper bound in ISS degenerates to infinity); ISS has also
a stochastic counterpart in continuous-time, requiring Itô
stochastic calculus, in which the state upper bound holds with
probability arbitrary close to one (stability in probability,
[8]). However, as the other notions of stability, this concept
remains theoretical and is hard to apply.

To our best knowledge, the most closely related work
in the literature is the monograph by [9], giving a quite
theoretical and mathematically deep treatment of the problem
of continuous-time dynamical systems subject to random
perturbations (requiring advanced functional calculus), and
introducing interesting notions as escape probability, mean
exit time and most probable exit path. Besides, the optimal
path concept is studied for systems driven by Gaussian noise
in [10], focusing on the prehistory rather than the future.

In this contribution, the model is discrete in time, the input
fluctuations on top of the deterministic input are assumed to
be colored and Gaussian. We focus on the calculation of
the pdf of x(τ), without needing to simulate the model’s
response extensively and explicitly. Doing so, it can e.g. be
seen which regions of the state space are very unlikely to be
visited on the time scale τ . Since instability is inherently a
transient phenomenon, and initially the state can stay inside
a ROA for long periods of time, it is therefore interesting
to consider the state’s distribution after a finite time in the
future. Moreover, due to the instability, the state response to a
stationary input (without deterministic term) is not stationary.
In the locally stable situation, up to the initial transient and
before the leaving the ROA, it just appears as a stationary
random sequence.

E. Main contributions and organization

The main contributions of this paper are the following:

• (theoretical) calculation of a future state’s pdf as a
multivariate integral involving Dirac delta distributions;

• reformulation of the dominant contributions to the in-
tegral as a constrained optimization problem, providing
an interpretation of its solution;

• evaluation via a variant of the Laplace Integration
Method;

• verification of the theoretical results by means of a
Monte-Carlo simulation example.

This paper is organized as follows. In Section II, the as-
sumptions are formalized. In Section III, the state’s pdf
approximation is presented. Finally, Section IV shows the
results of Monte-Carlo simulations illustrating the method.

II. ASSUMPTIONS

Assumption 1: (the class of discrete-time state-space mod-
els considered)

In the state evolution equation

x(t+ 1) = f(x(t), u(t)) (1)

with x (t) ∈ Rn (n ∈ N0 is called the model order),
u (t) ∈ R, the function f (•, •) is a known continuously
differentiable function w.r.t. both arguments.

Assumption 2: (initial state)
The initial state x (0) is known.
To allow for an interpretation as a probability of un-

bounded operation, a ROA is assumed to exist and to be
compact. Therefore, it is also assumed that the origin is an
asymptotically stable and isolated equilibrium point of (1)
for u (t) = 0.

Note that the procedure also applies for non-state-affine
and non-input-affine state equations.

Assumption 3: (stochastic framework)
The input u(t) consists of the superposition

u (t) = u0(t) + nu (t) (2)

of a known deterministic term u0(t) (defined on the time
interval t ∈ [0, τ − 1]) and a zero-mean, stationary, colored
Gaussian noise term nu (t) with known power spectrum
Suu (ω), and with ω the (normalized, discrete-time) angu-
lar frequency. Translated into the frequency domain, this
means that the kth frequency component (normalized Dis-
crete Fourier Transform Fτ√

τ
, as defined below, and denoted

DFT for short) of u (t), Uk, is circular complex normally
distributed [11]

Uk ∼ NC(U0,k, σ
2
k) (3)

with U0,k the DFT of u0(t), σ2
k = Suu (ωk) > 0 the

(total complex) variance, and ωk the angular frequency at
frequency line k.

Throughout, the (total) time domain variance will be
denoted as σ2

U .
Please notice that, by this assumption, the input signal is

automatically real (and hence never infinite) with probability
one on t ∈ [0, τ − 1]. As a second remark, it can be said
that a zero input power spectrum is not allowed, since
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it can create problems further on when it appears in the
denominator.

A. Consequence: bounded operation over a time interval of
length τ

Assuming (i) that the ROA of the origin exists in the
unforced situation, viz.

ROA =
{
x (0) ∈ Rn | lim

t→∞
x (t) = 0

withx(t+ 1) = f(x(t), 0)
}

and (ii) that the input is a burst of length τ , viz. u (t) =
0, t > τ , the probability to obtain a state finally converging
towards the (isolated) asymptotic equilibrium point at the
origin under all above-mentioned assumptions equals the
state’s pdf at time τ integrated over the ROA:∫

ROA

px(τ)(x)dx (4)

Note that the state may escape the ROA during the first
τ − 1 samples, as long as it comes down into it before the
time interval has come to an end. In the unforced situation,
initial states not contained into the ROA can – besides drift
away to infinity – also be attracted to other equilibria (fixed
points), limit cycles, periodic solutions or chaotic “strange”
attractors. If all these phenomena are considered as undesired
behaviour, the probability for undesired behaviour is the
complement of the above-defined probability (4).

III. ESTIMATION OF THE STATE’S PROBABILITY
DISTRIBUTION

This section contains the core material of this contribution,
which is the estimation of the state’s probability distribution
at time instant τ ∈ N0 under the above assumptions. The
probability density function (pdf) px(τ)(x(τ)) of the state
x(τ) can be calculated as the integrated form of a higher-
dimensional joint pdf based on all states and inputs:

px(τ)(x(τ)) =
∫ +∞

−∞
px,x(τ),u(x, x (τ) ,u)dxdu (5)

with xT =
[
x (1)T . . . x (τ − 1)T

]
∈ R(τ−1)n and

uT =
[
u (0) . . . u (τ − 1)

]
∈ Rτ the intermediate

states and inputs respectively. The integrand can be rewritten
as

px,x(τ),u(x, x (τ) ,u) = pu (u) px,x(τ)|u (x, x (τ) ,u) (6)

with pu (u) a known Gaussian pdf based on Assumption 3,
and px,x(τ)|u the conditional distribution of the states given
the input sequence. Since in any case, the initial state is
always known, the states are deterministic in px,x(τ)|u, which
becomes a multivariate Dirac delta distribution imposing
each state evolution equation (1) at t = 0 . . . τ − 1.

A. Detailed specification of the integrand: both factors in
(6)

The first factor is given by

pu (u) = (det 2πΣu)−
1/2 exp

(
−1

2
(u− u0)T Σ−1

u (u− u0)

)
(7)

with deterministic part uT0 =
[
u0 (0) . . . u0 (τ − 1)

]
.

Using the Whittle approximation (combination of
Toeplitz-circulant properties and the Wiener-Khinchin the-
orem), it can be shown that

(u− u0)T Σ−1
u (u− u0) ≈ εHε (8)

with
ε = diag

(
S−1/2
uu

) Fτ√
τ

(u− u0) (9)

and Fτ =
[
exp

(
−j 2π

τ kl
)]
k,l=0...τ−1

∈ Cτ×τ , Suu =
[Suu (ωk)]k=0...τ−1 =

[
σ2
k

]
k=0...τ−1

. This means that the
signal u−u0 has simply to be Discrete Fourier Transformed
and scaled frequency by frequency to obtain ε, which can be
interpreted as “driving” white noise.

The second factor is given by

px,x(τ)|u =
τ−1∏
t=0

δ (f (x (t) , u (t))− x (t+ 1)) (10)

with δ (x) the multivariate Dirac delta distribution. Since a
Dirac delta distribution only has nonzero contributions at
the places where its argument is nonzero, one observes that
this second factor introduces a constraint on the integration
variables (states and inputs).

B. Performing the integration

The careful reader could wonder how the high-dimensional
integration containing Dirac distributions in (5) can be per-
formed. Let us first observe that (5) only has contributions
at the places where the argument of each Dirac delta is
zero, and consists of at least as many integration variables
((τ − 1)n+ τ ) as constraints implied by these Dirac delta’s
(nτ ) if τ ≥ n, which is the nontrivial case – otherwise
the integral would be zero. If the constraints are nowhere
satisfied (this situation corresponds to a non-controllability
of the model), then the integral vanishes too.

Now we briefly (due to space limitations we cannot go
into full detail here) explain how one can proceed with the
(approximate) integration of the integrand with a Dirac delta
distribution of the form

I =
∫ +∞

−∞
e−γV (η)δ (Ψ (η)) dη (11)

First, local linear and quadratic Taylor approximants
are formed to Dirac’s operand Ψ (η) (corresponding to
f (x (t) , u (t))− x (t+ 1) in vector form) and the exponent
V (η) (corresponding to the quadratic form (8), up to a
scalar factor denoted γ) respectively. Then the integral is
approximated by using the approximants instead of the
functions themselves. Then, the Delta distribution can be
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eliminated, and, due to the quadratic form in the exponent,
the resulting integral can be viewed as the normalization
constant of a multivariate Gaussian pdf, which is analytically
known (the obtention of the quadratic form combined with
the Gaussian pdf idea is known as Laplace’s integration
method [12]). Notice that the scaling of γ and V (η) in the
left hand side of γV (η) = (u− u0)T Σ−1

u (u− u0) is fixed
by viewing γ as the inverse of the input variance σ2

U

γ = σ−2
U (12)

The local expansions can be motivated as follows. The
integrand is, in the subspace satisfying Dirac’s constraint,
dominant at the minimizer of V (η), denoted η∗. A decrease
to zero of the input variance, corresponding to an increase
to infinity of the parameter γ in (11), tends to reduce the
region of “activity” of the integrand to a small neighbourhood
(on the constraint subspace) of the constrained minimizer of
V (η). As a consequence, the integral approximation error
tends to zero as the input variance tends to zero. Moreover,
in this specific situation (integral (5)), due to the quadratic
property of V (η), this error only comes from the local
linearization of the nonlinear function in Ψ (η).

C. Interpretation

Interesting to report is the interpretation of the constrained
minimizer η∗

η∗ = argmin
η

s.t.Ψ(η)=0

V (η) (13)

the neighbourhood of which is contributing the most to the
integral representing x(τ)’s pdf. The variable η corresponds
to the integration variables, which are the concatenation of
the states x and inputs u. The constrained optimization
problem, translated in these terms, reads

argmin
x,u

s.t. x(t+1)=f(x(t),u(t))

(u− u0)T Σ−1
u (u− u0) (14)

Due to the fulfillment of the constraints, η∗ coincides with
a state-input combination that satisfies the state equation at
each time instant, and the state trajectory obtained starts at
the initial state x (0) and it ends at the argument x(τ) of the
pdf px(τ)(x(τ)). Due to the minimization of the quadratic
form, we conclude, in the Gaussian case, that the normalized
input energy (normalized with the specified input power
spectrum) of η∗ has to be minimal. In general, even if the
pdf is not Gaussian, the input signal of η∗ can be interpreted
as the most likely one (maximization of pu (u)) that drives
the state of η∗ on a trajectory from x (0) to the point of
evaluation of px(τ).

D. Putting theory into practice
Applying the theoretical results (not presented here) to

the estimation of (5) involves nη = (τ − 1)n+τ integration
dimensions (related to the concatenation of x and u), and
nΨ = nτ constraint dimensions (related to the state evo-
lution at each time instant). Then the integration variables
are to be split up in two parts, η1 and η2, the first of
which is of dimension nΨ. The choice is made to let η1

correspond to x (1) , . . . , x (τ − 1) , u (0) , . . . , u (n− 1) and
η2 to u (n) , . . . , u (τ − 1). The respective columns of Ψ’s
Jacobian, evaluated at η∗, are then used to define the sparse
matrices J∗1 and J∗2 (∂Ψ

∂η |η∗ =
[
J∗1 J∗2

]
). The constrained

minimization (14) can be achieved via, e.g., Lagrange-
Newton algorithms, and involves a Fast-Fourier-Transform-
based implementation combined with sparse matrices. Not
forgetting the first factor of (7), the approximation of the
pdf’s logarithm (obtained via Laplace integration) becomes,

log I ≈ − log |det J∗1 |−γV (η∗)+
∆n

2
log 2π− 1

2
log |det γHW |

(15)
in which ∆n = nη − nΨ, and

HW =

[
−J∗−1

1 J∗2
I∆n×∆n

]T
∂2V

∂η2

[
−J∗−1

1 J∗2
I∆n×∆n

]
(16)

(with identity matrices I∆n×∆n) can be rewritten as:

log px(τ)(x(τ)) ≈ −n
2

log 2π − 1
2

log |det Σu| − log |det J∗1 |
− 1

2
(u− u0)T Σ−1

u (u− u0)− 1
2

log |det γHW |
(17)

Remark. The pdf at another input variance can be obtained
with almost no additional computational effort (the optimiza-
tion problem, and so its solution, remain the same, just a
slight modification of the constants in the pdf’s expression
is needed at the places where a γ or covariance matrix is
present).

IV. SIMULATION RESULTS

The present implementation is based on the Matlab’s
nonlinear constrained optimization routine fmincon, and
uses an interior point algorithm (iteration step computed
via conjugated gradients, Hessian calculated via finite differ-
ences, analytically calculated gradients of cost and constraint
functions, and a constraint tolerance of 10−13). The method
is illustrated by means of 2-dimensional examples, since this
allows graphical representations of the pdf.

The following continuous-time state equation, formulated
in polar coordinates (ρ, φ), is considered:

ρ̇ = −ρ
(
1− ρ2

)
(18)

φ̇ = 1 (19)

It has as ROA the region ρ < 1 located inside the unit circle
(all initial states inside get attracted to the origin, while those
starting outside get repelled, towards infinity). This is easily
seen from the sign of the function −ρ

(
1− ρ2

)
changing

at ρ = 1, and the decoupling of both coordinates. Writing
in Cartesian coordinates and adding a linear input-term, one
obtains

ẋ = −x
(
1− xTx

)
+
[

0 −1
1 0

]
x+Bu

Inspired by this continuous-time system, the discrete-time
system given by Euler discretization of the former is intro-
duced:

f (x, u) = x+ Ts

(
−x
(
1− xTx

)
+
[

0 −1
1 0

]
x+Bu

)
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Fig. 1. Phase portrait of the autonomous system under consideration
(dashed lines). The states rotate counterclockwise. The ROA is the region
located inside the unit circle (bold curve). Initial states inside the unit disk
get attracted towards the origin, while initial states starting outside tend
towards infinity.
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Fig. 2. (Naperian) logarithm of the estimated pdf px(τ).

with Ts = 0.01. We let the method estimate the pdf for τ =
300, a Gaussian input with time-domain standard deviation
σU = 3 (white power spectrum), x (0) =

[
0 0

]T
,

u0 (t) = 0 (∀t = 0 . . . τ − 1), B =
[

1 1
]T

. A grid over
the ROA (which is here the unit disk), parameterized in polar
coordinates, was chosen with 30 linearly spaced ρ-values
and 30 linearly spaced φ-values. Each grid point requires a
constrained optimization.

A. Nonlinear model equations

Figures 2 and 3 show respectively the pdf’s (naperian)
logarithm, and the location of the state x (τ) for 1500 Monte-
Carlo runs (using a Gaussian input satisfying the assump-
tions) shown on top of the pdf logarithm’s contour plot. The
pdf shows how the states x (τ) are distributed at time τ . The
distribution of the random Monte-Carlo realizations of the
states is in good agreement with the estimated pdf. It is seen
that the pdf deviates from a Gaussian distribution and the
contour lines are not elliptical (the pdf’s logarithm clearly
deviates from a paraboloid). This indicates that, although
a linearization took place in the method, the method still

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

 

 

x(0)

Final random state
Contour lines pdf

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Fig. 3. Contour lines of the logarithm of px(τ), with a scatter plot
of random Monte-Carlo values of the state x (τ) indicated with crosses.
Notice the excellent agreement between both. The major axis of the
approximately elliptical contour lines around the origin is slightly rotated
compared with the diagonal axis along which the input enters into the state
(B =

[
1 1

]T ); this is due to the natural rotation in the phase plane
induced by φ̇ = 1.

grasps some nonlinear behaviour. The method allows one
to predict which regions are less likely locations of the
state x (τ), without requiring extensive simulation efforts
as would be the case with a purely Monte-Carlo approach.
Based on this mesh, a 2-dimensional Simpson integration
of the pdf over the ROA returns as probability of bounded
operation over a time interval of length τ (P (x (τ) ∈ ROA))
the value 98.53% (the integration error is approximately
0.1%). This can be compared with the value 97.27% (with
estimated standard deviation of 0.42%) obtained from the
fraction of Monte-Carlo simulations resulting in a state
x (τ) in the ROA. The 95% confidence-interval does not
contain the estimated value, indicating a small mismatch
between both values. This has probably to do with the
violation of the assumption that the input should have a small
standard deviation. Anyway, the method clearly succeeds
in providing an order of magnitude of the risk of leaving
the ROA, which is the complement of the above-mentioned
probability values: 1.47%±0.1% against 2.73%±0.84% (2σ-
confidence). Performing a linear analysis with the underlying
linear system, would result in a severe underestimation of
the risk P (x (τ) /∈ ROA) = 0.03%. In addition, it can be
mentioned that the whole procedure on this mesh (run on a
PC with a 2.0 GHz Intel Xeon with 4.0 GB RAM), takes
less than 8 minutes of computation time.

B. Gathering information at other input standard deviation
values

Another advantage of the method is that it allows one
to estimate the probability of stable operation also at other
input standard deviation values at once, without needing to
solve additional constrained optimization problems (just the
constants in the pdf expressions are changing). Figure 4
shows the estimated probabilities of stable operation, both in
the nonlinear case and in the linear case, and compared with
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Fig. 4. Top figure: Estimated probabilities of stable operation over a time
interval of length τ , both in the nonlinear case and in the linear case.
Notice that the part of the graph below σU = 2 is not reliable, since
the integration grid has not been modified, while the pdf concentrates more
around the origin (serious integration errors are taking place). Notice the
underestimation of the risk of leaving the ROA when the underlying linear
model is used. The results are compared with the fraction of 1500 Monte-
Carlo runs of length τ resulting in a bounded behaviour (grey line; the 95%
confidence interval is shown with a dashed grey line). Bottom figure: detail.

the results of 1500 Monte-Carlo simulations of length τ . The
limitation of this method is as follows: at small σU -values
a discrepancy occurs between the true probabilities (very
close to 1) and the estimated one (cf. the part of the figure
corresponding to σU < 2). This is due to the integration
grid, which is not well matched to the fast variations of
the pdf around the origin at low σU -values. In the region
2 < σU < 4.5, a reasonable approximation is obtained.

V. CONCLUSIONS

In this paper, given the input’s deterministic part, the
power spectrum of the Gaussian part, the analytic form of
the state evolution equation, and the initial state, the pdf
of a future state was calculated as an integral and using
Bayes’ rule. If the input variance is small, the (very high
dimensional) integral can be well approximated at any point
of the state space via the Laplace integration method. This,
in turn, requires the solution of a constrained optimization
problem, which can be interpreted as the most likely scenario
(trajectory) driving the state from its initial position to the
pdf’s argument. The constrained optimization involves sparse

matrices. A few options for the generation of initial estimates
to the nonlinearly constrained optimization problem have
been presented. The problem setting (model equation, input
noise and initial state) can be extended and generalized
in different ways. A theoretical analysis of the integration
error shows that it essentially depends on the magnitude
of second derivatives of the state equation. If the input is
a finite-time burst, one obtains the probability of getting
asymptotically attracted towards the origin via the integral of
the pdf over the region of attraction of the unforced system.
The proposed method provides more insight and is more
efficient to estimate the pdf than a brute-force simulation
approach, especially in the regions where the pdf is very
low, since this could require a huge number of simulations to
get an accurate result. Another advantage compared with the
Monte-Carlo approach, is that the pdf computations at other
input standard deviations can be performed at once, without
needing to solve additional constrained optimization prob-
lems. Simulation results are shown to illustrate and support
the theory. Although the estimated probability of bounded
operation is not always perfectly correct, due to the fact that
the input standard deviation is not (very) small as assumed
in the theory, a correct order of magnitude is obtained,
outperforming a classical analysis of the underlying linear
dynamics, which would result in a severe underestimation of
the risk. The optimization of the choice of the integration
method and of the density of the integration grid, is left for
future research.
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