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Abstract— In this paper, a class of nonlinear time varying de-
lay systems is considered. A sliding mode observer is proposed
by employing the structure of the uncertainty such that the
sliding motion associated with the error dynamics is uniformly
asymptotically stable. Then, based on the observer, a nonlinear
discontinuous control scheme is presented to stabilise the system
uniformly asymptotically. The Razuminkin Lyapunov approach
is used to deal with the time delay. The accessible part of both
the bounds and the nonlinear terms is separated and used in
the control design to reduce conservatism. A numerical example
is given to illustrate the proposed approach.

I. INTRODUCTION

Many theoretical studies assume that system states are
available for control design, which is not valid for many
real systems. In order to implement such developed control
schemes, an observer may be constructed to estimate the sys-
tem states. Unfortunately, the traditional separation principle
usually does not hold for nonlinear control systems, which
implies that the properties of existing state feedback control
law may not be valid when the control law is implemented
with the estimate states. Therefore, it is necessary to con-
struct an appropriate control strategy to combine with the
dynamical observer if nonlinearity exists in the system.

Recently, observer-based control for time delay systems
has received much attention [6], [5], [8], [3], [2]. The
backstepping approach is employed in [2]. By choosing
an appropriate Lyapunov Krasovskii function, a high gain
parameterized linear controller is presented in [3]. In both
[3] and [2], it is required that the systems considered have a
special structure. An observer-based sliding mode control is
proposed in [6] where it is required that the nonlinear term
is matched. Luo et al study a class of time-delay systems
using static and dynamic output feedback strategies in [5]
but it is required that the uncertainty is matched. Moreover,
all the results mentioned here require that the bounds on the
mismatched uncertainties satisfy a linear growth condition.
Since uncertainty bounds may have nonlinear forms in re-
ality, it is pertinent to consider the case when the bounds
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on the uncertainties are nonlinear. More recently, a sliding
mode control scheme is proposed for a class of nonlinear
system in [8] where the bounds on the uncertainties have
been extended to the nonlinear case. However, like most of
the existing work, it is required that the input distribution
matrix is constant. Compared with [8], the observer used in
this paper is sliding mode observer while the control is not
sliding mode control.

In this paper, a class of nonlinear time varying delay
control systems with uncertainties is considered. The bounds
on the uncertainties are nonlinear and time delayed. The
accessible parts of the bounds and the nonlinear terms are
separated and employed in the control design to reduce the
effects of the uncertainty and nonlinearity. By employing
the system structure and an appropriate coordinate trans-
formation, a robust sliding mode observer is designed for
the system. The error dynamics are uniformly asymptotically
stable and completely robust to the uncertainty. Then, based
on the designed observer, a discontinuous control law is
proposed to stabilise the system uniformly asymptotically
even in the presence of uncertainties and time delay. The well
known Razuminkhin Lyapunov approach is employed to deal
with the time delay in the stability analysis of the closed-
loop system Both the nonlinear term and the uncertainty
are mismatched. The input distribution matrix is a nonlinear
function matrix. The only limitation on the time delay is that
it is bounded. There is no limitation on the rate of change
(time derivative) of the time varying delay. Simulation results
reflect the effectiveness of the approach proposed.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Definition 1. A continuous function α : [0, a) 7→ [0,∞)

is called a class K function if it is strictly increasing and
α(0) = 0 (see, [4]). Further, a class K function α(·) is
called a strong class K function if α(r) = κ(r)r for some
continuous function κ(·) in R+.
Definition 2. A function vector/matrix f(x1, x2) (xi ∈ Ωi ⊂
Rni for i = 1, 2) is said to satisfy the Lipschitz condition
with respect to (w.r.t.) x2 in Ω2 if there exists a function
Lf (·) defined in x1 ∈ Ω1 such that for any x2, x̂2 ∈ Ω2

‖f(x1, x2)− f(x1, x̂2)‖ ≤ Lf (x1)‖x2 − x̂2‖, x1 ∈ Ω1

where the function Lf (·) is called the generalised Lipschitz
constant (see, [7]).
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Consider a nonlinear system described by

ẋ = Ax+G(t, y)u+ Φ(t, x, xd) + ∆Φ(t, x, xd) (1)

y = Cx, (2)

where x ∈ Ω ⊂ Rn, u, y ∈ Rm are the states, inputs and
outputs respectively; A ∈ Rn×n and C ∈ Rm×n (m < n)
are constant matrices with C being of full rank; G(·) ∈
Rn×m is assumed to be known and full rank; Φ(·) is known
and ∆Φ(·) includes all the uncertainties. The symbol xd :=

x(t − d) is the delayed state where d := d(t) is the time
varying delay which is assumed to be known, continuous,
nonnegative and bounded in R+ := {t | t ≥ 0}, that is
d := supt∈R+{d(t)} <∞. The initial condition is given by

x(t) = φ(t), t ∈ [−d, 0] (3)

where φ(·) is continuous in [−d, 0]. All the nonlinear func-
tions are assumed to be smooth enough, which guarantees
that the unforced system has a unique continuous solution.
Assumption 1. The matrix pair (A,C) is observable. The
known function Φ(·) is Lipschitz w.r.t x and xd.

From Assumption 1, there exists a matrix L such that
A − LC is stable, and thus for any Q > 0 the following
Lyapunov equation has a unique solution P > 0

(A− LC)TP + P (A− LC) = −Q (4)

Assumption 2. The uncertainty ∆Φ(·) has decomposition

∆Φ(t, x, xd) = E∆Ψ(t, x, xd) (5)

and the distribution matrix E ∈ Rn×p satisfies

ETP = FC (6)

where F ∈ Rp×m, P satisfies (4), and ∆Ψ(·) satisfies

‖∆Ψ(t, x, xd)‖ ≤ ξ1(t, y, ‖yd‖)ξ2(t, x, xd) (7)

where ξ1(·, ·, r) is nondecreasing w.r.t. r in R+ with
ξ1(t, 0, r) = 0 and ξ2(t, x, xd) is Lipschitz w.r.t. x and xd.
Assumption 3. There exist continuous ua(·) : R+ ×Rn 7→
Rm which is Lipshitz w.r.t x, C1 function V0(t, x) : R+ ×
Rn 7→ R+, class K functions α1(·) and α2(·), and strong
class K functions α3(·) and α4(·) such that

i). α1(‖x‖) ≤ V0(t, x) ≤ α2(‖x‖);

ii). ∂V0

∂t +
(
∂V0

∂x

)T (
Ax+G(·)ua(t, x)

)
≤ −α3(‖x‖) where

α3(‖x‖) = $1(‖x‖)‖x‖2 (8)

for some continuous function $1(·).
iii).

∥∥∂V0

∂x

∥∥ ≤ α4(‖x‖) where for some continuous $2(·)

α4(r) = $2(r)r (9)

where x := col(x1, · · · , xn), ∂V0

∂x :=
[
∂V0

∂x1
· · · ∂V0

∂xn

]T
.

Assumption 4. The Lyapunov function V0(·) in Assump-
tion 3 satisfies

i). there exists a nonsingular matrix M(·) such that

GT (t, y)∂V0

∂x = M(t, y)y (10)

ii). there exists a continuous nondecreasing scalar function
ζ(r) > r for r > 0 such that for any d ∈ [0, d̄],

‖xd‖ ≤ ρ‖x‖ if V0(xd) ≤ ζ (V0(x))

where ρ is a positive constant.

Without loss of generality, it is assumed throughout the
paper that the output matrix C in (1)–(2) has the form

C = [ 0 Im ] (11)

Then, system (1)–(2) can be rewritten as[
ẋ1

ẋ2

]
=

[
A1 A2

A3 A4

]
︸ ︷︷ ︸

A

[
x1

x2

]
+

[
G1(t, y)

G2(t, y)

]
︸ ︷︷ ︸

G(·)

u

+

[
Φ1(t, x1, x2, x1d, x2d)

Φ2(t, x1, x2, x1d, x2d)

]
︸ ︷︷ ︸

Φ(·)

+

[
E1

E2

]
︸ ︷︷ ︸
E

∆Ψ(·)(12)

y = [ 0 Im ]x (13)

where x = col(x1, x2), x1 ∈ Rn−m, A1 ∈ R(n−m)×(n−m),
E1 ∈ R(n−m)×p and equation (5) is employed to obtain (12).
The terms G1(·) and Φ1(·) are the first n−m components
of G(·) and Φ(·) respectively.

Introduce partitions of P and Q which are conformable
with the decomposition in (12)–(13):

P =

[
P1 P2

PT2 P3

]
, Q =

[
Q1 Q2

QT2 Q3

]
(14)

It is clear from P > 0 and Q > 0 that P1 > 0, P3 > 0,
Q1 > 0 and Q3 > 0. Using the matrix partitions in (14), it
follows from (6) and (11) that

[0 F ] = FC = [ET1 ET2 ]P

= [
(
P1(E1 + P−1

1 P2E2)
)T

ET1 P2 + ET2 P3 ]

which implies that

P1(E1 + P−1
1 P2E2) = 0 (15)

Remark 1. Since y = x2 in equation (12)–(13), the condition
that a nonlinear function is Lipschitz w.r.t. x and xd can be
reduced to that the function is Lipschitz w.r.t. x1 and x1d in
their definition domain throughout the paper.

III. SLIDING MODE OBSERVER DESIGN

Firstly introduce a coordinate transformation:

z = Tx :=
[
In−m P−1

1 P2

0 Im

]
x (16)
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From (15), system (12)–(13), in the new coordinate system
z, can be described by

ż1 = (A1 + P−1
1 P2A3)z1 +

(
A2 −A1P

−1
1 P2 +

P−1
1 P2(A4 −A3P

−1
1 P2)

)
z2 + [In−m P−1

1 P2]G(·)u
+[In−m P−1

1 P2]Φ(t, T−1z, T−1zd) (17)

ż2 = A3z1 +
(
A4 −A3P

−1
1 P2

)
z2 +G2(t, y)u+

Φ2(t, T−1z, T−1zd) + E2∆Ψ(t, T−1z, T−1zd) (18)

y = z2 (19)

where z = col(z1, z2) with z1 ∈ Rn−m. From (3), the initial
condition related to the delay is given by

z(t) = Tφ(t) := ψ1(t), t ∈ [−d̄, 0] (20)

For system (17)–(19), consider a dynamical system

˙̂z1 = (A1 + P−1
1 P2A3)ẑ1 +

(
A2 −A1P

−1
1 P2 + P−1

1 P2

·(A4 −A3P
−1
1 P2)

)
y + [In−m P−1

1 P2]G(·)u
+[In−m P−1

1 P2]Φ(t, T−1ẑy, T
−1ẑyd) (21)

˙̂z2 = A3ẑ1 +
(
A4 −A3P

−1
1 P2

)
ẑ2 +D(y − ẑ2)

+G2(t, y)u+ Φ2(t, T−1ẑy, T
−1ẑyd) + ν(·) (22)

where
ẑy :=

[
ẑ1

y

]
, ẑyd :=

[
ẑ1d

yd

]
(23)

the matrix D is chosen such that A4 − A3P
−1
1 P2 − D is

Hurwitz stable, and the term ν(·) is defined by

ν(·) =
(
A4 −A3P

−1
1 P2 −D

)
(y − ẑ2) +

(
‖E2‖ξ1(·)

·ξ2(t, T−1ẑy, T
−1ẑyd) + k(·)

)
sgn(y − ẑ2) (24)

where k(·) is to be determined later. The initial condition
related to the delay is given by

ẑ(t) = ψ2(t), t ∈ [−d̄, 0] (25)

where ψ2(·) can be chosen as any continuous function such
that

‖ψ1(t)− ψ2(t)‖ ≤ b0 (26)

for some constant b0, where ψ1(·) is defined in (20).
Let ez1 = z1− ẑ1, and ez2 = z2− ẑ2. Then from (17)–(19)

and (21)–(22), the error dynamical equation is described by

ėz1 = (A1 + P−1
1 P2A3)ez1 + [In−m P−1

1 P2]δ(Φ) (27)

ėz2 =A3ez1 +
(
A4 −A3P

−1
1 P2 −D

)
ez2 + δ(Φ2)

+E2∆Ψ(t, T−1z, T−1zd)− ν(·) (28)

where ν(·) is defined by (24), and the functional operator
δ(·) is defined by (65) in the Appendix.

For system (27)–(28), consider a sliding surface

S := {(ez1 , ez2) | ez2 = 0} (29)

Theorem 1. Under Assumptions 1 and 2, the sliding motion
of system (27)–(28) associated with the sliding surface (29)

is uniformly asymptotically stable if there exists a constant
q0 > 1 such that

q := λmin(Q1)−2‖[P1 P2]‖ ‖T−1‖LΦ

(
1+

√
q0
λmax(P1)
λmin(P1)

)
> 0

(30)
Proof: From the definition of the sliding surface in (29), it

is clear that system (27) is the sliding mode dynamics which
govern the sliding motion, and thus it is only necessary to
prove that (27) is uniformly asymptotically stable.

Applying matrix block multiplication to equation (4), it
follows from the partition (14) that

AT1 P1 +AT3 P
T
2 + P1A1 + P2A3 = −Q1

This implies

(A1 + P−1
1 P2A3)TP1 + P1(A1 + P−1

1 P2A3) = −Q1 (31)

From (66) in Lemma 1 in the Appendix,

‖δ(Φ)‖ ≤ ‖T−1‖LΦ(‖ez1(t)‖+ ‖ez1d(t)‖) (32)

For system (27), consider the Lyapunov function Ve =

eTz1P1ez1 . If there is a constant q0 > 1 such that Ve(ez1d) ≤
q0Ve(ez1), then, from the definition of Ve,

‖ez1d‖ ≤
√
q0
λmax(P1)
λmin(P1) ‖ez1‖ (33)

and thus, using (31), (32) and (33), the derivative of Ve along
the trajectories of the system (27) is described by

V̇e = −eTz1Q1ez1 + 2eTz1P1[In−m P−1
1 P2]δ(Φ)

≤−λmin(Q1)‖ez1‖2 + 2‖ez1‖ ‖[P1 P2]‖ ‖T−1‖LΦ(‖ez1‖

+
√
q0
λmax(P1)
λmin(P1) ‖ez1‖) = −q‖ez1‖2 (34)

Hence the conclusion follows from q > 0. ∇
Remark 2. Theorem 1 has shown that ez1(t) in the error
equation (27) is uniform asymptotic stable. From (34) and
the definition of Ve, there exist constants β1 > 0 and β2 > 0

such that

‖ez1(t)‖ ≤ β1 exp{−β2t} =: b1(t), t ≥ 0 (35)

where β1 is related to the initial value z1(0) and ẑ1(0). Both
β1 and β2 can be calculated using basic matrix theory. From
(26) and (35), it follows that

‖ez1d(t)‖ ≤ max
{
β1 exp{β2d̄} exp{−β2t}, b0

}
=: b2(t) (36)

where b0 is given in (26).

Theorem 2. Under Assumptions 1 and 2, system (27)–(28)
with ν(·) given in (24) is driven to the sliding surface (29)
in finite time and remains on it thereafter if k(·) is chosen
as

k = ‖A3‖b1(t) + (LΦ2
+ ‖E2‖ξ1(t, y, ‖yd‖)Lξ2) ‖T−1‖

· (b1(t) + b2(t)) + η (37)
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where the functions b1(·) and b2(·) are determined by (35)
and (36) respectively, ξ1(·) and ξ2(·) are defined in (7), and
η is a positive constant.
Proof: From equation (28)

eTz2 ėz2 = eTz2(A4 −A3P
−1
1 P2 −D)ez2 + eTz2

(
A3ez1 +

δ(Φ2) + E2∆Ψ(t, T−1z, T−1zd)
)
− eTz2ν(·) (38)

It is clear that for any vector ez2 ,

eTz2sgn(y − ẑ2) = eTz2sgn(ez2) ≥ ‖ez2‖ (39)

Then, by applying (7), (39) and (24) to (38),

eTz2(t)ėz2(t) ≤ ‖A3‖ ‖ez1‖ ‖ez2‖+
(
‖E2‖ξ1(t, y, ‖yd‖)

·δ(ξ2) + δ(Φ2)
)
‖ez2‖ − k(·)‖ez2‖ (40)

where δ(·) is a functional operator defined in (65) in Ap-
pendix. From (66) in Lemma 1, (35) and (36),

‖δ(ξ2)‖ ≤ Lξ2‖T−1‖(b1(t) + b2(t)) (41)

‖δ(Φ2)‖ ≤ LΦ2‖T−1‖(b1(t) + b2(t)) (42)

Applying (37), (41) and (42) to (40) yields

eTz2 ėz2 ≤ −η‖ez2‖ (43)

Hence the conclusion follows. ∇
Theorems 1 and 2 together show that system (27)–(28) is

uniform asymptotically stable. Thus, (21)–(22) is a sliding
mode observer for system (17)–(19). Clearly , the formula

x̂ = T ẑy (44)

gives an estimate for the states x of the dynamical system
(1), where T is defined in (16) and ẑy is defined in (23) with
ẑ1 given by (21)–(22). Actually, from z = Tx,

‖x− x̂‖ =
∥∥T−1z − T−1ẑy

∥∥ ≤ ‖T−1‖ ‖ez1‖ (45)

and thus x̂ defined in (44) gives an estimate for the state x.

IV. OUTPUT FEEDBCAK SYNTHESIS

Introduce a function

H(t, x, xd) := $2(‖x‖)ξ2(t, x, xd) (46)

where $2(·) and ξ2(·) are given in (9) and (7) respectively.
Assumption 5. The nonlinear term Φ(·) satisfies(

∂V0

∂x

)T
Φ(t, x, xd) = yTN(t, x, xd)

where V0(·) is defined in Assumption 3, and N(·) ∈ Rn×m
is Lipschitz w.r.t. x and xd in the considered domain.

For system (1)–(2), consider the control law

u := ua(t, x̂) + ub(t, y, yd, x̂, x̂d) + uc(t, y, x̂, x̂d) (47)

where ua(·) is given in Assumption 3, and ub(·) and uc(·)
are, respectively, defined by

ub(·) :=

{
− ε1M

−T (·)y
2‖y‖2 ‖E‖ξ2

1(t, y, ‖yd‖)H2(t, x̂, x̂d), y 6= 0

0 y = 0
(48)

uc(·) :=

{
−M−T (·)y

(
ε2
2 + ‖yTN(t,x̂,x̂d)‖

‖y‖2

)
, y 6= 0

0 y = 0
(49)

where x̂ is given by (44) and (21)–(22), ε1 and ε2 are positive
constants, H(·) is defined in (46) and M(t, y) satisfies (10).

Theorem 3. Suppose H(·) in (46) is Lipschitz w.r.t x and xd.
Then, under Assumptions 1-5, the closed-loop system formed
by applying control (47) to system (1)–(2) is uniformly
asymptotically stable if the matrix W (·) := [wij(·)]2×2 is
positive definite with inf{λmin(W (·))} > 0 where

w11 := $1(‖x‖)− 1
2ε1

w22 := λmin(Q1)− 1
2ε2
‖T−1‖2L2

N (1 + γ2
2)

−2‖[P1 P2]‖ ‖T−1‖LΦ(1 + γ2)

w12 = w21 := 1
2‖T

−1‖
(
$2(‖x‖)‖G(t, y)‖Lua

+ξ1(t, y, γ1‖y‖)‖E‖(1 + γ2)LH
)

for ε1 > 0, ε2 > 0, γ1 > 1 and γ2 > 1.
Proof: By applying the control law in (47) to system (1)–(2),
the closed loop system is described by

ẋ = Ax+G(t, y)(ua(t, x̂) + ub(t, y, yd, x̂, x̂d)

+uc(t, y, x̂, x̂d)) + Φ(t, x, xd) + ∆Φ(t, x, xd) (50)

where x̂ is given by (44), (21) and (22). In col(x, ez1 , ez2)

coordinates, the closed-loop system can be described by
(50), (27) and (28). For the closed-loop system, consider
the Lyapunov candidate function

V (t, x, ez1 , ez2) = V0(t, x) + eTz1P1ez1 + 1
2e
T
z2ez2

where V0(·) satisfies Assumption 3, and P1 is given in (14).
Then, the time derivative of the function V (·) along the
trajectories of the closed-loop systems is described by

V̇ = ∂V0

∂t +
(
∂V0

∂x

)T (
Ax+G(t, y)ua(t, x̂)

)
+
(
∂V0

∂x

)T
G(t, y)ub(·) +

(
∂V0

∂x

)T
∆Φ(t, x, xd)

+
(
∂V0

∂x

)T
G(t, y)uc(·) +

(
∂V0

∂x

)T
Φ(t, x, xd)

+ėTz1(t)P1ez1(t) + eTz1P1ėz1 + eTz2(t)ėz2(t) (51)

From Assumptions 3 and 4,

∂V0

∂t +
(
∂V0

∂x

)T (
Ax+G(t, y)ua(t, x̂)

)
≤ −α3(‖x‖) + α4(‖x‖)Lua‖G(t, y)‖ ‖x− x̂‖
≤ −$1(‖x‖)‖x‖2 +$2(‖x‖)Lua‖G(t, y)‖
·‖T−1‖‖ez1‖ ‖x‖ (52)
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where (8) and (9) are employed above. From Assumptions
2-4 and Young’s inequality ab ≤ 1

2εa
2 + ε

2b
2 for any ε > 0,(

∂V0

∂x

)T
G(t, y)ub(·) +

(
∂V0

∂x

)T
∆Φ(t, x, xd)

≤ yTMT (t, y)ub(·) +$2(‖x‖)‖x‖ ‖E‖ξ1(·)ξ2(t, x, xd)

≤yTMT (t, y)ub(·) +
ε1

2
‖E‖2ξ2

1(t, y, ‖yd‖)H2(t, x̂, x̂d)

+
1

2ε1
‖x‖2 + ‖x‖ ‖E‖ξ1(t, y, ‖yd‖)δ(H) (53)

where the operator δ(·) is given in (69) in the Appendix.
From the definition of ub(·) in (48), it is easy to obtain that

yTMT (·)ub(·) +
ε1

2
‖E‖2ξ2

1(·)H2(t, x̂, x̂d) = 0 (54)

Further, from (66) in the Appendix

‖x‖ ‖E‖ξ1(t, y, ‖yd‖)δ(H)

≤ ξ1(·)‖E‖ ‖T−1‖LH
(
‖ez1‖+ ‖ez1d‖

)
‖x‖ (55)

Substituting (54) and (55) into (53) yields(
∂V0

∂x

)T
G(t, y)ub(·) +

(
∂V0

∂x

)T
∆Φ(t, x, xd)

≤ ‖x‖
2

2ε1
+ ξ1(·)‖E‖ ‖T−1‖LH

(
‖ez1‖+ ‖ez1d‖

)
‖x‖(56)

From Assumption 5, (45) and Young’s inequality, it follows
that for any ε2 > 0(

∂V0

∂x

)T
Φ(t, x, xd)

= yT (N(t, x, xd)−N(t, x̂, x̂d)) + yTN(t, x̂, x̂d)

≤ 1

2ε2
‖T−1‖2L2

N

(
‖ez1‖2 + ‖ez1d‖2

)
+
ε2

2
‖y‖2

+‖yTN(t, x̂, x̂d)‖ (57)

where (67) in Lemma 1 in Appendix is employed above.
From (57), the definition of uc(·) in (49), and by the similar
reasoning as for (54), it follows that(

∂V0

∂x

)T
G(t, y)uc(·) +

(
∂V0

∂x

)T
Φ(t, x, xd)

≤ 1

2ε2
‖T−1‖2L2

N

(
‖ez1‖2 + ‖ez1d‖2

)
(58)

From (27), (31) and (32),

ėTz1(t)P1ez1(t) + eTz1(t)P1ėz1(t)

≤ −λmin(Q1)‖ez1‖2 + 2‖ez1‖ ‖[P1 P2]‖ ‖T−1‖LΦ

·(‖ez1‖+ ‖ez1d‖) (59)

Substituting (52), (56), (58) and (59) into (51), and using
(43) yields

V̇ ≤ −$1(‖x‖)‖x‖2 +$2(‖x‖)Lua‖G(t, y)‖ ‖T−1‖

·‖ez1‖ ‖x‖+
‖x‖2

2ε1
+ ξ1(·)‖E‖ ‖T−1‖LH

(
‖ez1‖

+‖ez1d‖
)
‖x‖+

1

2ε2
‖T−1‖2L2

N

(
‖ez1‖2 + ‖ez1d‖2

)
−λmin(Q1)‖ez1‖2 + 2‖ez1‖ ‖[P1 P2]‖ ‖T−1‖
·LΦ(‖ez1‖+ ‖ez1d‖)− η‖ez2‖ (60)

From the condition ii) in Assumption 4, and the fact that
the variables x, ez1 and ez2 are independent of each other, it
is straightforward to see the fact that there exists a function
ζ(r) > r such that for any d ∈ [0, d̄]

V (t− d, x, ez1d , ez2d) ≤ ζ(V (t, x, ez1 , ez2)) (61)

implies that there exists γi > 1 for i = 1, 2 such that

‖yd‖ ≤ γ1‖y‖, ‖ez1d‖ ≤ γ2‖ez1‖ (62)

Therefore, whenever (61) holds, it follows from (62) that
(60) can be described by

V̇ ≤−
(
$1(·)− 1

2ε1

)
‖x‖2 −

(
λmin(Q1)− 1

2ε2
‖T−1‖2

·L2
N (1 + γ2

2)− 2‖[P1 P2]‖ ‖T−1‖LΦ(1 + γ2)
)
‖ez1‖2

+
(
$2(‖x‖)Lua‖G(t, y)‖+ ξ1(t, y, γ1‖y‖)‖E‖

·LH(1 + γ2)
)
‖T−1‖‖ez1‖ ‖x‖

=− [‖x‖ ‖ez1‖]W (·)
[
‖x‖
‖ez1‖

]
− η‖ez2‖

Since the matrix function W is positive definite with
inf λmin(W (·)) > 0, and η > 0, the conclusion follows from
Razumikhin Theorem (see, e.g. [1]). ∇

V. NUMERICAL SIMULATION

Consider a nonlinear time varying delay system

ẋ =

[
−5 0

1 1

]
︸ ︷︷ ︸

A

x+

[
0
1

1+sin2(t+x2)

]
︸ ︷︷ ︸

G(·)

u(t)

+

[
0.2x2x2d

0.2x1dx2 exp{−t}

]
︸ ︷︷ ︸

Φ(·)

+
[

1
−5

]
∆Ψ(·)︸ ︷︷ ︸

∆Φ(·)

(63)

y = [ 0 1 ]︸ ︷︷ ︸
C

x (64)

where x = col(x1, x2) ∈ R2, u ∈ R and y ∈ R are
respectively the states, input and output of the system. The
term ∆Ψ(·) includes all uncertainties which satisfy

‖∆Ψ(·)‖ ≤ |x2d|(|x1d|+ |x1|) exp{−2− t} sin2 x2

The domain considered here is

Ω = {(x1, x2) | x1 ∈ R, |x2| < 10.15}

Clearly system (63)–(64) has the form in (12)–(13). Also
(A,C) is observable, and Φ(·) is Lipshitz w.r.t. x1 and x1d

with generalised Lipschitz constant LΦ = 0.2|y| exp{−t},
and thus from Remark 1, Assumption 1 holds. Let

E = [ 1 −5 ]
T
, L = [−1 6 ]

T

ξ1 = |yd| sin2 y, ξ2 = (|x1d|+ |x1|) exp{−2− t},
F = −5, Q = 10I2
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Then, Lξ2 =
√

2 exp{−2− t},

P =

[
1.041667 0.208333

0.208333 1.041667

]
, T =

[
1 0.2

0 1

]
and Assumption 2 is satisfied. Let

ua = −(1 + sin2(t+ y))(x1 + 6y), V0 = 0.1(x2
1 + x2

2)

It follows that Assumption 3 holds with

α1(r) = 0.1r2, α2(r) = 0.1r2, α3(r) = r2,

α4(r) = 0.2r, $1(r) = 1, $2(r) = 0.2.

Clearly, H(·) = 0.2(|x1d|+ |x1|) exp{−2− t}. Let

M(·) = 0.2
1+sin2(t+y)

, ζ(r) = 1.0201r

N(·) = 0.04(x1x2d + x1dx2 exp{−t}), ρ = 1.01

It is straightforward to check that Assumptions 4 and 5 hold.
Choose q0 = 1.01. By computation directly,

LN = 0.04
√

1 + γ2
1 |y|, Lua = 1 + sin2(t+ y),

LH = 0.0383 exp{−t}, q > 10− 0.8541|y|

and all the conditions in Theorems 1–3 are satisfied in the
domain Ω with γ1 = γ2 = 1.01. Therefore, the observer
(21)-(22) and the controller (48) and (49) are well defined,
and can be obtained directly. For implementation purposes,
let d(t) = 2 + sin t and φ(t) = col(cos(t), 1 − sin(t)).
The simulation results shown in Figure 1 confirms that the
proposed approach is effective.
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Fig. 1. The time responses of the system states and the estimation error
(upper) and the control signal and the sliding function (bottom)

VI. CONCLUSIONS

A sliding mode observer-based control design approach
has been proposed for a class of nonlinear time delay
systems. The sliding mode observer can estimate the sys-
tem state uniformly asymptotically and is insensitive to the
uncertainty. Sufficient conditions have been derived using the
Lyapunov Razuminkin approach under which the observer-
based control law can stabilize the corresponding closed-loop
system uniformly asymptotically. There is no limitation to

the rate of change of the time delay. The accessible parts
have been separated from the nonlinear terms and employed
in the control design to reduce conservatism.

APPENDIX

Lemma 1 Assume that the function Θ(t, z, zd) is Lipschitz
w.r.t. z and zd in their definition domain, and

δ(Θ) := Θ(t, T−1z, T−1zd)−Θ(t, T−1ẑy, T
−1ẑyd) (65)

where T is defined in (16), and ẑy and ẑyd are defined by
(23). Then

‖δ(Θ)‖ ≤ ‖T−1‖LΘ(‖ez1‖+ ‖ez1d‖) (66)

‖δ(Θ)‖2 ≤ ‖T−1‖2L2
Θ

(
‖ez1‖2 + ‖ez1d‖2

)
(67)

where ez1 := z1 − ẑ1 and ez1d := ẑ1d − ẑ1d.
Proof: Since Θ(t, z, zd) is Lipschitz w.r.t. variables z and
zd, it follows from the structure of T in (16) that

‖δ(Θ)‖ =
∥∥Θ(t, T−1z, T−1zd)−Θ(t, T−1ẑy, T

−1ẑyd)
∥∥

≤ LΘ

∥∥∥∥diag{T−1, T−1}
[
z − ẑy
zd − ẑyd

]∥∥∥∥
≤ LΘ‖T−1‖

∥∥∥∥∥
 z1 − ẑ1

0
z1d − ẑ1d

0


︸ ︷︷ ︸

Y

∥∥∥∥∥ (68)

It is clear that

‖Y ‖ ≤ ‖z1 − ẑ1‖+ ‖z1d − ẑ1d‖ = ‖ez1‖+ ‖ez1d‖
‖Y ‖2 = ‖z1 − ẑ1‖2 + ‖z1d − ẑ1d‖2 = ‖ez1‖2 + ‖ez1d‖2

Hence the conclusion follows. ∇
From (44) and definition of operator δ(·) in (65),

δ(Θ) = Θ(t, x, xd)−Θ(t, x̂, x̂d) (69)

which satisfies both (66) and (67).
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