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Abstract—This paper addresses the control of the blending
process in cement industries. This process can be modeled
by a nonlinear multivariable system with large parametric
uncertainty. Using a specific transformation, a linear parameter
varying (LPV) model with set-points as scheduling parameters
is developed. Moreover, the model uncertainty originated from
the stochastic variation of the composition of the input materials
is represented as a polytopic multimodel uncertainty. Then a
multivariable gain-scheduled robust controller is designed by
convex optimization to control the quality of the raw mix in
the blending process. The control performance is illustrated by
simulation and compared with a robust controller based on a
nominal model.

I. INTRODUCTION
The production of cement consists of many processing

steps such as crushing, input material blending and grinding
of the input materials, chemical conversion to clinker, and
grinding of the clinker to the final cement. The focus of
this work is the input material blending process whose task
is to mix the input materials in order to produce raw mix
which is ground in the raw mill to produce raw meal for
the kiln. It is well known that the oxide compositions of the
raw meal influence significantly the quality of the clinker
and the kiln operation. The goal of a blending controller is
to continuously maintain the raw mix quality on the desired
set-points by adjusting the weigh feeder proportions of the
input materials. Nonetheless, the control of the quality of the
raw mix is not a trivial task due to stochastic variation of
the chemical composition of the input materials, e.g., if they
are mined from different queries. The composition variations
may lead to undesired behaviour of the control system such
as off-sets and oscillations. Moreover, it is shown that the
system parameters also vary with changes of the operating
points. Therefore, the system can be described by a linear
parameter varying (LPV) model with parametric uncertainty.
Various approaches of blending control of the raw mix

are available in the literature. In [1], a model predictive
control (MPC) is proposed based on an identified parametric
multivariable model. An adaptive control of the raw mill
system is described in [2], where the composition of the input
materials are estimated on-line and used in a decoupling
network. The singular value decomposition algorithm (SVD)
to compute the feeder proportions of the raw mix was
introduced in [3]. A self-tuning MIMO composition control
strategy in which a multivariable model is estimated on-line
and used to update the controller parameters is investigated
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by [4]. Gradient-based predictive controller and non-linear
optimization techniques are used to compute the proportions
of the input materials in [5]. An optimal MIMO controller
with input saturation using linear programming is presented
in [6].
In this paper, an approach addressing the decoupling, the

parametric uncertainty and the dependence of the dynamics
on the operating point will be proposed. A robust gain-
scheduled MIMO blending controller will be illustrated for
three input material feeders using on-line measurements. The
controller will be robust with respect to the variation in
the composition of the input materials and its gains will be
function of the set-points of the quality modules of the raw
mix. The controller design method used is based on loop-
shaping in the Nyquist diagram under infinity norm con-
straints on closed-loop transfer functions and was proposed
in [7], [8]. The decoupling controllers and the controller for
the decoupled controlled system are designed simultaneously.
In this paper an extension of this design method is presented
which handles uncertain LPV models by using robust gain-
scheduled MIMO controllers with decoupling elements.
The article is organized as follows: the process and the

control problem are described in Section II; Section III
studies the robust control design method and the proposed
extension for LPV systems; Section IV presents a case study
where the proposed robust controller method is used to solve
the feeder blending control problem.

II. PROCESS DESCRIPTION

The plant considered in this work consists of input mate-
rials, such as limestone, marl, iron corrective, etc. that are
individually supplied to the plant by different weigh feeders.
Each of the input materials has a specific composition of
calcium oxide (CaO), silicon dioxide (SiO2), aluminum
oxide (Al2O3) and iron oxide (Fe2O3). The flow-rate of each
weigh feeder is controlled by a dosage controller based on
a scale and the set-point adjusted by the blending controller.
An on-line analyzer (OLA; e.g., prompt gamma neutron
activation - PGNA) measures on-line the composition of the
raw mix.
The focus of this work is the design of blending controllers

of the raw mix quality. Fig. 1 depicts the schematic of
the blending process. The goal of the blending controller
is to adjust the proportions of the input materials (the
manipulated inputs) such that the raw mix quality modules
(the controlled outputs), a set of nonlinear functions of the
raw mix composition, are on the desired set-points.
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Fig. 1. Blending control problem

There are some difficulties in this process that make it
a challenging control problem. First, the static gains of the
system depend on the chemical compositions of the input
materials, which are uncertain and may vary considerably.
Second, the system is multivariable with strong coupling
between the outputs. Third, the system has LPV behaviour
since the static gains of the system are also functions of
the set-points. Fourth, the quality modules are nonlinear
functions of the feeder proportions. Finally, the manipulated
inputs are constrained due to physical, chemical or eco-
nomical restrictions. The challenges are summarized in the
following.
1) Uncertainty of the input material compositions
2) Strongly coupled plant
3) LPV behaviour due to operating points
4) Nonlinear behaviour
5) Constrained inputs

The first three problems will be handled by a robust MIMO
gain-scheduled control design method that will be presented
in the next section. The nonlinearities will be dealt with
by using a transformation proposed in [6] which transforms
the nonlinear quality modules into an affine form when the
set-points are given. The constraints of the input will be
iteratively checked by simulations since introducing these
constraints in the control design technique would only pro-
duce more conservative controller.

III. CONTROL DESIGN METHOD
In this section, we will first present the method given

in [7] to design fixed-order MIMO controllers. Then, an
extension of the method will be proposed to design robust
gain-scheduled controllers.
As it has been discussed, the blending process can be de-

scribed as a MIMO system. One approach that can be used to
design controllers for MIMO systems consists of a two-step
technique: in the first step, the MIMO system is transformed
into a diagonally dominant system using a decoupler. Once
the system is diagonally dominant, the techniques used for
SISO systems are used to design decoupled controllers for
each diagonal element of the MIMO system.
Galdos et al. [7] proposed a method to design robust

MIMO controllers for spectral models using convex opti-
mization. One of the main features of this technique is that

a one-step convex optimization algorithm can be used to si-
multaneously design decoupling controller and the decoupled
controlled system.

A. Design of robust MIMO controllers
Consider the class of fixed-order linearly parametrized

MIMO controllers and the systems described by non-
parametric spectral models. If a parametric model is available
a similar technique can be applied. The class of continuous-
time or discrete-time LTI-MIMO systems with bounded
infinity norm is given by

G := {Gi(jωk) i = 1, . . . ,m; k = 1, . . . , N} (1)

where m is the number of models in the set and G i(jωk) is
a n0 × ni matrix of complex values with ni the number of
inputs and n0 the number of outputs. N should be large
enough so that it will give a good approximation of the
open-loop frequency response of the system in the Nyquist
diagram. For simplicity, consider only the nominal model G
which belongs to the class.
Consider the class of multivariable controllers given by

a ni × n0 matrix K(s) whose elements Kpq(s) for p =
1, . . . , ni and q = 1, . . . , n0 are linearly parametrized as
follows:

Kpq(s) = ρTpqφpq(s) (2)

where
ρTpq = [ρpq1, ρpq2, . . . , ρpqn] (3)

φT
pq = [φpq1(s),φpq2(s), . . . ,φpq(s)] (4)

and ρTpq corresponds to the controller parameters and φT
pq is

a vector containing the basis functions. For example, using
this parametrization a PID controller could be described by

ρT = [Kp,Ki,Kd] , φT = [1,
1

s
,

s

Tds+ 1
]T

The Generalized Nyquist Stability criterion states that the
feedback system will be stable if and only if the net sum of
the anticlockwise encirclements of the critical point (-1+j0)
by the set of eigenvalues of the n0 × n0 open-loop transfer
matrix L(jω, ρ) = G(jω)K(jω) is equal to the number
of unstable poles of L(jω). The eigenvalues of the matrix
L(jωk, ρ) at each frequency is a non-convex function of the
controller parameters ρ. Reminding that every eigenvalue lies
within at least one Gershgorin band [9], sufficient conditions
of the closed-loop stability can be obtained and written as
a set of convex constraints. Given a spectral model G(jω),
it can be proved [7] that the controller K(s) stabilizes the
closed-loop if

rq(ωk, ρ)−
Re {[1 + LDq(−jωk)][1 + Lqq(jωk, ρ)]}

|[1 + LDq(jωk)]|
< 0

q = 1, . . . , n0 k = 1, . . . , N (5)

where LD(jω) is a diagonal desired open-loop transfer
matrix chosen such that the number of anticlockwise encir-
clements of the critical point on the Nyquist plot of the set
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of eigenvalues is equal to the number of unstable poles of
G(jω). The q-th Gershgorin band rq of L(jω) is defined as

rq(ωk, ρ) =
n0∑

p=1,p!=q

|Lpq(jωk, ρ)| (6)

The stability condition given by Eq. (5) adds some conser-
vatism since the eigenvalues are no longer located in a point
but are allowed to be in a circle of radius rq(ωk, ρ). To reduce
the conservatism, one can minimize the radius rq(ωk, ρ)
which is equivalent to minimize the off-diagonal components
of the open-loop transfer function matrix L(jω, ρ). Thus, it
is judicious to minimize the following criterion

J(ρ) = ‖L(ρ)− LD‖22 (7)

This way the off-diagonal elements will be minimized which
helps to decouple the system. Approximating the cost func-
tion J(ρ) = ‖L(ρ)− LD‖22 by

∑
ω ‖L(jω, ρ)− LD(jω)‖F

where ‖·‖F is the Frobenius norm and considering the whole
set of modelsG, it leads to the following convex optimization
problem

min
ρ

m∑

i=1

N∑

k=1

‖Li(jωk, ρ)− LDi(jωk)‖F (8)

subject to

rq(ωk, ρ)−
Re {[1 + LDqi(−jωk)][1 + Lqq(jωk, ρ)]}

|[1 + LDqi(jωk)]|
< 0

q = 1, . . . , n0 k = 1, . . . , N i = 1, . . . ,m

B. Extension to design MIMO LPV controllers
A natural extension of this method is to consider a gain-

scheduling controller in which the controller’s gains are func-
tion of a scheduling vector parameter θ [10]. Consider the
multivariable controller K(s, θ) whose elements Kpq(s, θ)
are linearly parametrized by

Kpq(s, θ) = ρTpq(θ)φpq(s) (9)

where the basis function vector φpq is defined on Eq. (4) and
ρTpq(θ) is given by

ρTpq(θ) = [ρpq1(θ), ρpq2(θ), . . . , ρpqn(θ)] (10)

Every gain is a polynomial function of order δ of the
scheduling parameter and is defined as

ρpqi(θ) = (νpqi,δ)
T θδ + . . .+ (νpqi,1)

T θ + νpqi,0 (11)

where θk denotes element-by-element power of k of vector
θ.
If an LPV model is available, there will be an infinity

number of models corresponding to different values of the
scheduling parameters. This problem can be solved by grid-
ding θ leading to mg different LTI models. In the case of
multimodel uncertainty, the procedure should be repeated
for each one of the mu uncertain LPV models. The design
procedure is stated in the following.

Let L(s, θ) = G(s, θ)K(s, θ) be the open loop transfer
function. The gain-scheduled controller is thus obtained from
the following convex optimization problem:

min
ρ

mu∑

i=1

mg∑

l=1

N∑

k=1

‖Li(jωk, θl)− LDi(jωk)‖F (12)

subject to

rqi(ωk, θl)−
Re {[1 + LDiq(−jωk)][1 + Liqq(jωk, θl)]}

|[1 + LDiq(jωk)]|
< 0

q = 1, . . . , n0 k = 1, . . . , N, l = 1, . . . ,mg, i = 1, . . . ,mu

where θl is a vector with particular values of the scheduling
parameters θ obtained from the gridding. The proposed
procedure will be illustrated in the next section by the three-
feeder blending problem.

IV. CASE STUDY
First, the model of the process is presented. Next, the

modeling of the uncertainty in the composition of the input
material is illustrated. Finally, the robust gain-scheduled
controller is designed and evaluated for different conditions.

A. Process Model
Consider a blending process comprising three input mate-

rials namely, limestone, marl and iron corrective that are fed
by three weigh feeders. The oxide composition of the raw
mix is measured by an OLA whose sampling time is Ts = 2
min. The goal of the controller is to adjust the proportions of
limestone, marl and iron corrective, respectively, z1, z2 and
z3. The quality of the raw mix is related to the value of the
following quality modules, namely, limestone saturation α
(LS) and aluminum ratio γ (AR) or iron module (IR) which
are defined as

α = α(x1, x2, x3, x4) =
100x1

2.8x2 + 1.18x3 + 0.65x4

γ = γ(x3, x4) =
x3

x4

(13)

where x1, x2, x3, x4 respectively stand for the weight
fractions of CaO, SiO2, Al2O3, and Fe2O3 of the raw mix.
Let z = [z1, z2, z3]T be the vector of feeder proportions

that add up to unity leading to the following constraint:

z1 + z2 + z3 = 1. (14)

Without loss of generality, the manipulated inputs are chosen
to be z1 and z2 whereas the feeder proportion z3 is be
computed from Eq. (14).
Defining r = [α, γ]T the vector of quality modules to

control, the nonlinear input-output steady-state relation is
given by r = f(Wz), where W is a 4 × 3 composition
matrix in which each column represents the composition of
the corresponding input material as it is shown, for instance,
in Table I, f represents the functions given in Eq. (13). Note
that x = Wz where x = [x1, x2, x3, x4]T .
By making use of the set-points vector rc = [αc, γc], the

quality modules can be transformed into a linear form by
applying the transformation matrix M(rc) to the measured
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compositions vector x. The transformed qualities is then y =
M(rc)x where

M(rc) =

[
100 −2.8αc −1.18αc −0.65αc

0 0 1 −γc

]
(15)

Note that by using this transformation, the input-output static
relation becomes y = M(rc)Wz, which is affine in z
for a fixed set-point vector rc. The set-point vector of the
transformed qualities is always yc = [0, 0]T .
The 2×2 transfer function matrix G(s) between the feeder

proportions z and the transformed qualities y is given by

G(s) =
∆y(s)

∆z(s)
=

[
k11g11(s) k12g12(s)

k21g21(s) k22g22(s)

]
(16)

where the unitary-gains transfer functions g ij account for
the feeder dynamics, transport and measurement delays, the
noise filter dynamics of the jth feeder on the ith transformed
quality module. The static gains of the system are given by:

k11 = ∂y1

∂z1
= a11αc + b11 k12 = ∂y1

∂z2
= a12αc + b12

k21 = ∂y2

∂z1
= a21γc + b21 k22 = ∂y2

∂z2
= a22γc + b22

Note that the gains are affine functions of the quality module
set-points and the coefficients aij and bij depend on the
oxide compositions of the input materials. This means that
the system is LPV due to variation of the set-points and
has parametric uncertainty. The modeling of the uncertainties
will be shown in the next section.

B. Modeling the uncertainty
The variation of the input material compositions, given by

matrix W , is one of the main issues in blending processes
since it affects directly the static gains of the system. A first
formulation to design a robust controller considers the vari-
ance of each entry of W independently. However, it would
lead to conservatism if strong correlation in the variances
is observed. Instead, a method applying the well known
principal component analysis (PCA) to identify patterns in
the varying composition of each input material is proposed.
Consider a composition matrix W given by

W = [w1, w2, . . . , wnf ] (17)

where the 4 × 1 vector we contains the composition of the
eth input material and nf is the number of feeders. Each
vector can be written as

we = we0 +∆we (18)

where ∆we represents the variation around the average
composition we0. The goal is to compute the bounds of the
variation ∆we by analyzing a set of measurements of the
compositions of the input materials using PCA.
Consider the composition we of the eth input material be

analyzed for L samples leading to an L× 4 matrix W e. The
matrix of variations can be defined by

∆W e = W e − 1Lw
T
e0 (19)

where 1L is a L × 1 vector of ones and we0 is the column
mean of We. Applying PCA leads to an approximation of
∆We:

∆W e $ TaP
T
a (20)

where Ta is an L×a matrix of the first a scores and P T
e1 the

a× 4 matrix of the first a loadings. Here, a = 1 for all the
input materials since the first principal component (PC) of
limestone retains already 96.2% of the variance, that of marl
90.94%, and that of the iron corrective 88.7%. Computing
the standard deviation of the scores vector, σe = σ(T1), the
lower and upper bounds of the variation ∆we can be defined
as ∆w−

e $ −2σePT
1 and ∆w+

e $ 2σePT
1 .

The last step is to model the uncertain composition matrix
W . For this particular case with three input materials, the
matrix becomes

W = [(w10 +∆w1), (w20 +∆w2), (w30 +∆w3)] (21)

Considering all compositions vary within the vertices of the
respective intervals

∆we ∈ [∆w−
e ,∆w+

e ], e = 1, . . . , 3 (22)

then 23 = 8 matrices Wi for i = 1, . . . , 8 are found. Note
that if each composition had been treated independently,
212 = 4096 matrices would have been computed, increasing
considerably the computational complexity in the design. The
standard deviation of the first scores of the three feeders are
respectively σ1 = 1.28, σ2 = 2.99 and σ3 = 1.59.
Finally, the composition matrices Wi are used to generate

8 LPV models in the form Gi(θ), where θ is the vector of
scheduling parameters such that θ = [αc, γc]T . These models
are necessary to design a robust gain-scheduled controller.
The next section presents the results of the proposed robust
controller and a comparison with a fixed-gain controller
based on the nominal model with average compositions at
one set-point.

C. Control design
1) Fixed-gain controller design: The first approach is to

design a discrete MIMO PI controller Cn(z) using only the
nominal model Gn which is computed using the average
compositions of the input materials given in Table I at the set-
points αc = 100 and γc = 1.3. Since the transfer functions
gij(s) are equal they can be replaced by one single transfer
function

g(s) =
e−Tds

(Tis+ 1)(Tfs+ 1)
(23)

where Ti = 2 min is the time constant of the dynamics of the
feeders, Tf = 4.64 min is the time constant of the noise filter
and Td = 2.5 min is the delay accounting for the transport
and measurement delays.
The gains of the nominal model under the given conditions

are shown in Table II. The controller is a 2×2 matrix where
all basis functions φpq are given by

φpq =

[
z

z − 1
,

1

z − 1

]T
(24)
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TABLE I
Average weight percentage oxide compositions of the 3 input materials,

corresponding to WT .

Material CaO SiO2 Al2O3 Fe2O3

Limestone 51.9280 3.5851 1.2953 0.5773
Marl 10.3746 53.7396 13.1175 4.9608

Iron Correctives 1.2102 25.4592 3.3082 64.0195

TABLE II
Static gains of the nominal model

k11 k12 k21 k22
1.55× 104 −4.32× 103 80.46 86.58

Defining the desired open loop transfer function

LD =




ωc
z−1 0

0 ωc
z−1



 (25)

where ωc = 0.4489 and solving the optimization problem
stated by Eq. (8) with m = 1 and N = 50 equally spaced
frequency points between ωc

N and π
Ts
, the following controller

is obtained:

Cn(z) =





10−4(1.1−z−1)
1−z−1

0.006−0.005z−1

1−z−1

10−4(−1.03+009z−1)
1−z−1

0.0200−0.0180z−1

1−z−1



 (26)

2) Robust gain-scheduled controller design: Here, a ro-
bust gain-scheduled will be designed using the LPV models
Gi(θ), where i = 1, . . . , 8, computed in Section IV-B.
Consider the gain-scheduled controller Cr(z, θ)

Cr(z, θ) =





ρ111(θ)+ρ112(θ)z
−1

1−z−1
ρ121(θ)+ρ122(θ)z

−1

1−z−1

ρ211(θ)+ρ211(θ)z
−1

1−z−1
ρ221(θ)+ρ222(θ)z

−1

1−z−1





Every element Kpq(z, θ) of the multivariable controller is a
discrete-time PI whose basis functions are given by Eq. (24)
and whose gains are linearly parametrized as shown below.

ρpq1 = (νpq1,1)
T ·

[
αc

γc

]
+ νpq1,0 (27)

ρpq2 = (νpq2,1)
T

[
αc

γc

]
+ νpq2,0 (28)

where νpqi,1 is a vector of length 2 and νpqi,0 is a scalar.
The set-points αc and γc can vary within the ranges [96, 103]
and [1.3, 2.1], respectively.
Define u and v the coordinates used to grid the allowable

ranges of αc and γc. The open loop transfer matrix is then
Li(θ(u, v)) = Gi(θ(u, v))Cr(θ(u, v)). Thus, the robust gain-
scheduled controller is given by the following optimization
problem:

min
ρ

u0∑

u=1

v0∑

v=1

m∑

i=1

N∑

k=1

‖Li(jωk, θ(u, v))− LDi(jωk)‖F (29)

subject to

rqi(ωk)−
Re {[1 + LDiq(−jωk)][1 + Liqq(jωk, θ(u, v))]}

|[1 + LDiq(jωk)]|
< 0

q = 1, . . . , n0 k = 1, . . . , N i = 1, . . . ,m (30)

The set-point ranges are equally divided into u0 = 5 and
v0 = 5 points. The number of LPV models is m = 8 and the
frequency range is gridded byN = 50 linearly spaced points.
Both controllers are compared in two different cases. Firstly,
only the nominal model is used and a set-point tracking is
performed. Next, the controllers is evaluated using another
model of the set.

D. Controller evaluation
1) Nominal model: In this simulated example, γc changes

within 1.3 and 2.1. Gaussian measurement noise is added to x
with zero-mean and variance µ = [0.12, 0.04, 0.06, 0.003]T ,
which are typical values in the industry. Figures 2 and 3
compare the outputs and inputs for the nominal controller
with fixed gains with those of the gain-scheduled controller.
The performance of the fixed-gain controller deteriorates
after the set-point change since the system gains increase.
The decoupling of the gain-scheduled controller is also
better as it can be seen in Fig. 2. Table III compares the
performance of both controllers. The integral absolute error
(IAE) and the integral square error (ISE) of the outputs α
and γ for the gain-scheduled controller are up to 83% and
42.86% lower, respectively.
It is worth to point out that for both controllers, the

controlled variables are the transformed outputs y1 and y2
which automatically guarantees the tracking of the quality
modules α and γ.

TABLE III
Comparison of the performance of the fixed-gain controller (PI) and the

gain-scheduled controller (GS).

αGS αPI γGS γPI

IAE 2.5×103 2.9×103 417 765.1
ISE 1.4×103 2×103 160.8 194.7

2) Uncertain model: Here, the performance of each con-
troller is evaluated for rejecting disturbances in the com-
positions of the input materials. In order to evaluate the
controllers, the following simulation is carried out. Starting
from the nominal average composition matrixW0 (see Table
I) a disturbance variation ∆Wd is added such that the new
composition matrix becomes Wd = W0 +∆Wd at time 50
min. After stabilization, a set-point change is performed. The
variation is computed using the bounds of ∆we obtained
using PCA as presented above. Matrix ∆Wd is generated
using ∆w1 = ∆w−

1 , ∆w2 = ∆w+
2 and ∆w3 = ∆w+

3 and is
given by

∆Wd =





1.5845 −2.6875 −0.0722
−1.8836 5.3333 2.5874
−0.6144 0.1912 0.7530
−0.2852 −0.3930 −1.7007



 (31)
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As it can be seen in Fig. 4 both controllers are able to
reject the disturbances and reach to the steady state after
50 minutes. Nevertheless, it can be seen that the fixed-
gain controller is much more oscillatory after the inlet
composition change and the set-point change, while the
robust gain-scheduled controller keeps its performance close
to the nominal despite of the increased system gains after
disturbance.

V. CONCLUSIONS
This article presented a methodology to design robust

gain-scheduled MIMO controller with application to a blend-
ing control problem of the raw mix quality in the cement
industries. The robust gain-scheduled controller, which is
obtained from a one-step convex optimization problem,
showed considerable advantage when compared to a fixed-
gain controller in the case study example.

100
105
110
115
120

Q
ua

lit
y 

 

 

 

0 50 100 150 200 250 300 350
1

1.5

2

2.5

Time [min]

Q
ua

lit
y 

 

 

 

Reference
Gain Scheduled
Fixed PI

Compositions
changed

Fig. 4. Quality modules: uncertain model

Moreover, by using PCA it has been possible to describe
the uncertainties of the composition of the input materials in
a way that the conservatism is reduced as well as the number
of models necessary to design the controller.
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