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Abstract— This paper addresses the problem of autonomous
transition between hover and level flight for a model-scale
fixed-wing Unmanned Air Vehicle (UAV). The UAV system is
described as a Hybrid Automaton where the different operating
modes correspond to the hover, transition, and level flight re-
gions of the flight envelope. Reference maneuvers are generated
so as to provide robustness to the system with respect to exoge-
nous disturbances and parametric uncertainty when performing
single operating mode and transition maneuvers. Controllers
rendering the closed-loop system Input-to-State Stable (ISS)
with restrictions are designed for all three operating modes
allowing for practical tracking of the reference maneuvers in
the presence of disturbances. Simulation results demonstrate
the performance and robustness of the proposed solution.

I. INTRODUCTION

The demand for Unmanned Air Vehicles (UAVs) has esca-
lated in the past few years due to their contributions in com-
mercial and defense applications, including fire surveillance
and mitigation operations, agricultural fields spraying, infras-
tructure inspection, among others (see e.g. [1], [2], [3], [4]
and [5]). Several UAV configurations have been developed to
meet the requirements imposed by such applications, includ-
ing fixed-wing and tilt wing aircraft, rotorcrafts and ducted-
fan vehicles. Recent developments described in [4], [6]
and [7] have shown that fixed-wing Vertical Take-Off and
Landing (VTOL) aircrafts can perform both long endurance
missions and precise maneuvering within exiguous envi-
ronments. The versatility of such aircrafts combines heli-
copter precise trajectory tracking with conventional fixed-
wing airplanes ability to cover large distances, delivering
a final solution which largely exceeds the capabilities of
its predecessors. However, the problem of achieving robust
transitions between hover and leveled flights is difficult
for its exquisite dynamics. To this end, several control
methodologies have been employed, including open-loop
maneuvers [7], linear optimal techniques [6], locally stable
nonlinear controllers [8] and adaptive controllers [9]. In [6],
the transition maneuver is performed in open-loop and tested
on a experimental setup. This approach however is not
systematic and it is not known the extent of its applicability.
The work reported in [9] characterizes the aircraft dynamics
in terms of several parameters which must be accurately
estimated in order to provide aircraft stability. In [8], the
transition problem is addressed much more carefully and a
path-following algorithm is developed. The work developed
in this paper draws inspiration from [8], [6] and [10] and
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introduces a novel way to tackle the transition between
hovered and leveled flight conditions, based on a hybrid
control system. The change in aircraft dynamics from hover
to level flight suggests that supervisory control is a plausible
solution for the given problem. Similar methodologies, like
the ones described in [11] and [12], have been successfully
employed in a variety of applications. Controller switching
during operating mode transitions adds discrete behavior to
the continuous UAV model, creating a new layer of complex-
ity that must be dealt appropriately. Systems displaying both
continuous and discrete behavior have been under an intense
research effort over the last decade. This study has given
rise to several concepts such as hybrid automata [10] and
switched systems [13] which fall within the broader category
of Hybrid Dynamical Systems described in [11]. The discrete
behavior built into these systems may appear naturally for
certain applications such as UAV landing and take-off (see
e.g. [14]) but may also be the consequence of digital control
or supervisory control [15].

The solution proposed in this paper employs supervisory
control by modeling the small-scale UAV within the Hybrid
Automata framework, dividing the aircraft flight envelope
into Hover, Transition and Level operating modes. Linear
optimal control techniques are employed for system stabiliza-
tion in Hover and Level Flight while a nonlinear controller
that renders the closed-loop system locally Input-to-State
Stable (ISS) with restrictions is developed for Transition
Flight, enabling practical reference maneuvers tracking with
an arbitrarily small tracking error. The nonlinear controller
provides robust transition between the two disjoint sets which
characterize the Hover and Level operating modes where
local stabilization is provided.

This paper is organized as follows. Section II presents
the aircraft nonlinear model. Section III introduces the Hy-
brid Automaton which characterizes the overall system and
addresses the reference transition maneuvers. Section IV
briefly discusses the local controllers used in hover and
level flights, proceeding into a thorough analysis of the
nonlinear controller. Finally, simulation results are presented
in Section V making use of the hybrid systems simulator
presented in [16].

II. NONLINEAR UAV MODEL
The UAV under analysis is the model-scale fixed wing

aircraft which has a total of six actuators: a) 2 Propellers;
b) Rudder; c) Elevator; d) Ailerons; e) Flaps. These actuators
are set up in a standard wing/tail configuration (see [18] for
a full description of the aerodynamic actuators).

The aircraft dynamics are described in the configuration
manifold S1×R2 considering that the aircraft motion occurs
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Fig. 1: Planar UAV model representation.

solely on the vertical plane, i.e. the lateral motion is assumed
to have a small influence on the longitudinal dynamics. This
approach has also been adopted in [8] and [17] because
it eases the controller design while not compromising the
stability of the three-dimensional system, provided that there
exists a lateral controller. In fact, the linear model of an
standard airplane flying on the vertical plane has decoupled
lateral/longitudinal dynamics (see e.g. [18]), therefore, lateral
stabilization can be provided separately by linear control
techniques. The actuators influencing the longitudinal motion
are the flaps, the elevator and the propellers’ common
mode (which provides the required thrust). The flap’s de-
flection δf ∈ [δfmin , δfmax ], the elevator’s deflection δe ∈
[δemin , δemax ] and the thrust per propeller T ∈ [Tmin, Tmax]
are assumed to be readily available, i.e. the propellers dynam-
ics are much faster than the aircraft dynamics therefore they
can be disregarded for control design purposes. Furthermore,
the thrust is collinear with the zero-lift line.

The aircraft dynamic model construction requires the
definition of an Inertial Reference Frame {I} and a Body
Reference Frame {B} depicted in Figure 1. The reference
frame {I} is fixed at some point in the Earth’s surface which
is considered to be flat and still for the current application.
It is identified by the set of unitary vectors {iI ,kI} where iI
is directed to geographic North and is parallel to the ground
and kI is perpendicular to iI and is directed towards the
Nadir. The reference frame {B} is identified by the set of
unitary vectors {iB ,kB} which match the principal axis of
inertia and has its origin at the vehicle’s center of gravity
(CG), as represented in Figure 1. For the sake of simplicity,
iB is coincident to the zero-lift line.

The configuration of the body frame {B} with respect to
{I} can be viewed as an element of the Special Euclidean
group, (R,p) ∈ SE(2) where

p = [x z]ᵀ, R =

[
cos θ sin θ
− sin θ cos θ

]
,

and the rotation matrix is parametrized by the pitch angle
θ. The kinematic equations of motion for the aircraft are
described by

θ̇ = q, ṗ = Rv. (1)

where v = [u w]ᵀ ∈ R2 is the linear velocity and q ∈ R
the angular velocity, expressed both in {B} (we borrow the
standard aircraft nomenclature described in e.g. [18]).

The forces and moments acting on the aircraft body which
affect its behavior are the gravity fg ∈ R2, the aerodynamic
lift L ∈ R, the aerodynamic drag D ∈ R, the thrust T ∈ R
and the aerodynamic torque Ma ∈ R which are depicted in
Figure 1. The gravity force acting on the aircraft is directed
downwards along kI and it is given by fg = [0 mg]ᵀ, where
m is the vehicle’s mass and g is the acceleration of gravity.
The aerodynamic force takes into account both lift and drag
components which are described by (see e.g. [19])

Li =
1

2
ρu2
∞AiCLi(α), Di =

1

2
ρu2
∞AiCDi(α),

respectively, where i is the lifting surface identifier1, u∞
denotes the airspeed, ρ denotes the atmospheric pressure,
A is the planform area, CL is the Coefficient of Lift and
CD is the Coefficient of Drag. These two parameters are
dependent on the angle of attack α = arctan(w/u), the
actuator deflection δi, the maximum angle of attack α, the
surface’s aspect ratio A, efficiency e and parasitic coefficient
of drag CD0 and are given by

CL(α, δi) =

{
CLαα+ CLδi δi, −α ≤ α ≤ α
0 , otherwise

CD(CL) = CD0 +
C2
L

πAe
.

The coefficient of lift has a linear dependence with the
angle of attack and the coefficient of drag has a quadratic
dependence with CL(α) for small angles of attack (see
e.g. [19]). In general, the actuator deflection δi increases
the coefficient of lift while reducing the stall angle. This
effect should not be noticeable if the aircraft’s angle of
attack and actuator deflection remain bounded within small
values. The aircraft’s lifting surfaces (the wing, the horizontal
stabilizer and the vertical stabilizer) produce both lift and
drag forces, each of which has two contributions: one from
the free-stream flow velocity u∞ = ‖v‖ and another from
the propeller slipstream velocity u∞ = up, given by

up =
√

8T/ρπd2,

assuming an inviscid, steady and incompressible flow (see
e.g. [21]), being d the propellers’ diameter. These two con-
tributions are considered separately and combined together
in the end using superposition. These simplifications provide
following descriptions of the wing lift Lw, wing drag Dw

and horizontal stabilizer lift Lhs,

Lw =− 1

2
ρAw‖v‖2(CLαα+ CLδfw

δf )

− 1

2
ρAp,w(2u2

p)CLδfp,w
δf

Dw =− 1

2
ρAw‖v‖2

(
CD0w

+
(CLαα+ CLδf δf )2

πAwew

)
Lhs =− 1

2
ρAhs‖v‖2(CLαα+ CLδehs

δe)

− 1

2
ρAp,hs(2u

2
p)CLδep,hs

δe

1The i subscript identifies the source of any given attribute. The wing,
horizontal stabilizer, vertical stabilizer and propellers are identified by the
letters w, hs, vs and p, respectively.
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where the subscripts p, hs and p, w have been introduced to
distinguish the effects of the free-stream flow and that of
the propeller slipstream. Since the main contribution to the
aircraft drag is that of the wing, the horizontal and vertical
stabilizers drag are not taken into account (this approach
yields the positive experimental results reported in [6]). Both
the wing lift and the horizontal stabilizer lift are normal to the
aircraft velocity while the drag is collinear to it, as depicted
in Figure 1. According to this geometry, one may construct
the aerodynamic forces along the x-axis (Xa) and the z-axis
(Za) in terms of both lift and drag as follows[

Xa

Za

]
= −

[
cosα − sinα
sinα cosα

] [
Dw

Lhs + Lw

]
. (2)

The lifting surfaces also create torques which affect the
aircraft dynamics because their aerodynamic centers are
displaced from the CG along the x-axis. The corresponding
torques are given by

Mi = −xaciZai (3)

where i is the surface identifier and xac is the aerodynamic
center location along the x-axis of the {B} frame. There is
also a damping torque Mdamp which arises due to slipstream
lag and also an angle of attack increase in the tail due
to rotation. The stabilizing moment produced due to these
effects is described by the relation

Mdamp =− 1

2
ρAp,hsCLαhs q(xp − xachs)|xachs |2up

− 1

2
ρAhsCLαhsx

2
achs

qu
(4)

given in [6] and [18], where xp is the propellers’ location.
Having defined the reference frames {I} and {B}, their

relations and the forces acting upon the system, the aircraft
dynamic model is derived from newton equations of motion
(see e.g. [17]) and it is given by

u̇ =
Xa + 2T

m
− g sin θ − qw + δu(t),

ẇ =
Za
m

+ g cos θ + qu+ δw(t),

q̇ =
Mhs +Mw +Mdamp

J
+ δq(t),

where J is the aircraft’s moment of inertia, δu(t), δw(t) and
δq(t) denote unknown perturbations which may appear due
to parametric uncertainty, external disturbances and/or due
to deviations from the vertical plane.

The analysis of (5) reveals two very distinct regions of
operation: the leveled flight operative mode and the hovered
flight operative mode. In the former, it is the wing lift which
counteracts the gravity force whilst, in the latter, it is the
propellers’ thrust. It should be clear that the aerodynamic
surfaces always produce some actuation except when T = 0
and v = 0. This is a very unusual situation which does not
happen in any of the aircraft operative modes discussed from
hereon.

The next section builds the system’s Hybrid Automaton
resulting from the switching between operative modes, taking
into consideration the underlying framework and the mission
goals.

III. HYBRID AUTOMATON
The system’s discrete behavior is captured by means of

a Hybrid Automaton which is identified by: a set of the
operating modes Q; a domain mapping D : Q⇒ Rn×Rm;
a flow map f : Q × D → Rn; a set of edges E ⊂ Q × Q;
a guard mapping G : E ⇒ Rn × Rm and; a reset map
R : E × Rn × Rm → Rn. The system state ξ ∈ R6 and
the actuator input µ ∈ R3 ×Q? are given by

ξ = [u w q θ x z]ᵀ, µ = [T δf δe q?]ᵀ,

where a new input variable q? ∈ Q? is required to inform
the controller which is the desired operating mode and
whether transition is required. The remaining state and input
variables are defined in Section II. The Hybrid Automaton
representation is provided in Figure 2.

HOVER TRANSITION LEVEL

Fig. 2: UAV Hybrid Automaton diagram.

In this Hybrid Automaton, the flight envelope is divided
into Hover, Level and Transition operative modes. In short,
the overall system is stable if: a) there exist local controllers
which stabilize the aircraft in Hover and Level operative
modes; b) the transition trajectory remains ε-far from the
domain limits, and; c) the transition controller is able to
perform practical trajectory tracking with arbitrarily small
tracking error. The reader is referred to [10] and [11] for
further details on the Hybrid Automaton framework.

The reference transition trajectories are computed by
means of nominal system inversion, verify |α(t)| < |ᾱ| and
are identified by

ξ?(t) = [u?(t) w?(t) q?(t) θ?(t) x?(t) z?(t)]ᵀ,
µ?(t) = [T ?(t) δ?f (t) δ?e (t) q?]ᵀ.

IV. CONTROLLER DESIGN

The controller design comprises two different methods:
linear optimal control techniques are used when in Hover or
Level operating modes, providing local stabilization; nonlin-
ear control is used to perform the transition between the two
disjoint operating modes.

Classic Linear Quadratic Regulator (LQR) techniques pro-
vide the full state feedback control law µ̃ = −Kξ̃ which
robustly stabilizes the aircraft within a sublevel set of the
Lyapunov function V (ξ̃) = ξ̃

T
ξ̃ near the linearization point

(ξ0,µ0), where ξ̃ = ξ − ξ0 and µ̃ = µ− µ0.
In order to improve the dynamic model clarity and sim-

plify the nonlinear controller design we propose a redefi-
nition of the control inputs as follows. The lift forces Le
and Lf produced upon actuator deflection are related to the
inputs δe and δf according to

Le = −δe
(

1

2
ρ(2u2p)Ap,hsCLδep,hs

+
1

2
ρ‖vB‖2AhsCLδehs

)
,
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Lf = −δf
(

1

2
ρ(2u2p)Ap,wCLδfp,w

+
1

2
ρ‖vB‖2AwCLδfw

)
.

The new control inputs τu, τw and τq are related to the real
control inputs byτuτw
τq

 =

[
2
m 0 0

0 1
m

1
m

0 −
xachs
I − xacwI

]1 sinα sinα
0 cosα 0
0 0 cosα

 TLe
Lf

 .

(6)
Substituting (6), (3), (4) and (2) into (1) and (5) we get

u̇ = τu + hu(u,w, q, θ) + δu(t),
ẇ = τw + hw(u,w, q, θ) + δw(t),
q̇ = τq + hq(u,w, q), + δq(t),

θ̇ = q,

(7)

where hu : R4 → R, hw : R4 → R and hq : R3 → R collect
the dynamics which do not depend on the actuator input. This
substitution effectively rescales the control input throughout
the maneuver. The proposed controller for system (7) is
described by

µ =

τ?u(t) + τ̃u
τ?w(t) + τ̃w
τ?q (t) + τ̃q

 ,

τ̃u = −kuũ
τ̃q = −kθ(θ̃ + kq q̃)

τ̃w = −kww̃
, (8)

where τ?u(t), τ?q (t) and τ?w(t) from T ?(t), δ?e (t) and δ?f (t) us-
ing the relation (6). Proportional-derivative (PD) controllers
are used to track the reference trajectories. Substituting (8)
into the system state equations (7), the aircraft error dynam-
ics are described by

˙̃u =τ̃u + Ψu(ũ, w̃, q̃, θ̃, t) + δu(t), (9a)
˙̃w =τ̃w + Ψw(ũ, w̃, q̃, θ̃, t) + δw(t), (9b)
˙̃q =τ̃q + Ψq(ũ, w̃, q̃, t) + δq(t), (9c)
˙̃
θ =q̃, (9d)

where the functions Ψu, Ψw and Ψq are given by

Ψu(ũ, w̃, q̃, θ̃, t) =hu(u?(t) + ũ, w?(t) + w̃, q?(t) + q̃, θ + θ̃)

− hu(u?(t), w?(t), q?(t), θ?(t))

Ψw(ũ, w̃, q̃, θ̃, t) =hw(u?(t) + ũ, w?(t) + w̃, q?(t) + q̃, θ + θ̃)

− hw(u?(t), w?(t), q?(t), θ?(t))

Ψq(ũ, w̃, q̃, t) =hq(u?(t) + ũ, w?(t) + w̃, q?(t) + q̃)

− hq(u?(t), w?(t), q?(t)).

(10)

The reference trajectory is one of equilibrium, in the
absence of disturbances, because

[ũ w̃ q̃ θ̃] = [0 0 0 0]⇒ [ ˙̃u ˙̃w ˙̃q
˙̃
θ] = [0 0 0 0].

The previous set of equations provides the foundations
upon which the nonlinear controller’s robustness emerges.
Consider two separate but interconnected systems which
describe the pairs (ũ, w̃) and (θ1, θ2), where θ1 = θ̃ and
θ2 = q̃+ θ̃

kq
. Input-to-State Stability is proven firstly for each

of these systems separately in Propositions 1 and 2. Input-to-
State Stability for the overall system then follows from the
small gain theorem described in both [22] and [23], which
is applied to the feedback interconnection. The conditions
of the small gain theorem hold because it is possible to set
the input gains arbitrarily small with a proper choice of the
controller gains.

Proposition 1: For some c?u > 0 and c?w > 0 and any
numbers satisfying ∆ > 0, ∆θ > 0, 0 < cu < c?u and
0 < cw < c?w there exist ku ≥ k?u and kw ≥ k?w such that
the system with the dynamics (9a) and (9b) is rendered ISS
with restrictions cu in the initial state ũ(0), cw on the initial
state w̃(0), ∆ on the inputs δu(t) and δw(t) and ∆θ on the
input (θ1(t), θ2(t)).

Proof: Consider the Lyapunov function (11) and the
level set definition given in (12).

V1(ũ, w̃) =
1

2
(ũ2 + w̃2) (11)

Ω1(l) = {(ũ, w̃) ∈ R2 : V1(ũ, w̃) ≤ l} (12)

It turns out that, due to radial unboundedness there exist
positive l1 such that

{(ũ, w̃) ∈ R2 : |ũ| ≤ cu ∧ |w̃| ≤ cw} ⊂ Ω1(l1).

Moreover, for any given reference trajectory it is possible to
find c?u, c?w and l?1 such that

{(ũ, w̃) ∈ R2 : |ũ| ≤ c?u ∧ |w̃| ≤ c?w} ⊂ Ω1(l?1),

and{
(ũ, w̃) ∈ Ω1(l?1) : u?(t) + ũ > 0 ∧

∣∣∣∣arctan

(
w?(t) + w̃

u?(t) + ũ

)∣∣∣∣ < α

}
,

hold true for all t ≥ 0.
The functions defined in (10) are locally Lipschitz

because the functions hu, hw and hq are continuous and
proper, therefore there exist positive Γu and Γw such that
for all (ũ, w̃) ∈ Ω1(l1) and ‖(θ1(t), θ2(t))‖∞ < ∆θ the
following holds∥∥∥∥Ψu

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)∥∥∥∥ ≤ Γu‖(ũ, w̃, θ1, θ2, t)‖,∥∥∥∥Ψw

(
ũ, w̃, θ2 −

θ1

kq
, θ1, t

)∥∥∥∥ ≤ Γw‖(ũ, w̃, θ1, θ2, t)‖,

for all t ≥ 0. It can be shown that the Lyapunov function
derivative V̇1 is upper bounded by

V̇1 ≤− λmin(M)‖(ũ, w̃)‖2+

+ ‖(ũ, w̃)‖((Γu + Γw)‖(θ1, θ2)‖+
+ δu(t) + δw(t)),

where λmin(M) > 0 is the smallest eigenvalue of the matrix
M, given by

M =

[
ku − Γu

1
2 (Γu + Γw)

1
2 (Γu + Γw) kw − Γw

]
.

Then, it is straightforward to verify that for any ∆ > 0 and
∆θ > 0 there exist k?w > 0 and k?u(k?w) > 0 such that for any
ku ≥ k?u, kw ≥ k?w, (δu(t), δw(t)) satisfying ‖δu(t)‖∞ ≤ ∆,
‖δw(t)‖∞ ≤ ∆, and ‖(θ1(t), θ2(t))‖∞ ≤ ∆θ and for any
(ũ, w̃) ∈ Ω1(l1) the following holds

V̇1 < 0 if ‖(ũ, w̃)‖ >
Γu + Γw

λmin(M)
‖(θ1(t), θ2(t))‖+

δu(t) + δw(t)

λmin(M)
.

The system has a local ISS-Lyapunov function, therefore it
is ISS with restrictions cu on the initial state ũ(0), cw on
the initial state w̃(0) and ∆ on the inputs δu(t) and δw(t)
as long as the conditions cu < c?u and cw < c?w are satisfied.
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Proposition 2 employs similar arguments to those in Propo-
sition 1 proof in order to justify the Input-to-State Stability
of the closed-loop system (θ1, θ2).

Proposition 2: For any arbitrary positive numbers ∆, ∆V ,
kq , cq and cθ there exists k?θ(kq) > 0 such that kθ > k?θ
renders the system with the dynamics (9c) and (9d) ISS with
restrictions cq on the initial state q̃(0), cθ on the initial state
θ̃(0), ∆V on the input (ũ(t), w̃(t)) and ∆ on the input δq(t).

Proof: Consider the Lyapunov function described by

V2(θ1, θ2) =
1

2
(θ2

1 + θ2
2)

and the level set definition given by
Ω2(l) = {(θ1, θ2) ∈ R2 : V2(θ1, θ2) ≤ l}

Due to radial unboundedness, there exists positive l2 such
that{

(θ1, θ2) ∈ R2 : |θ1| ≤ cθ ∧
∣∣∣∣θ2 −

θ1

kq

∣∣∣∣ ≤ cq} ⊂ Ω2(l2).

The function Ψq defined in (10) is locally Lipschitz in
Ω2(l2) because hq is continuous and proper, therefore there
exists positive Lq such that for all (θ1, θ2) ∈ Ω2(l2),
‖(ũ(t), w̃(t))‖∞ < ‖(ũ, w̃)‖ the following holds∥∥∥∥Ψq

(
ũ, w̃, θ2 −

θ1

kq
, t

)∥∥∥∥ ≤ Γq‖(ũ, w̃, θ1, θ2, t)‖,

uniformly for all t ≥ 0. For any ς > 0 it is possible to
find the following upper bound on the Lyapunov function
derivative V̇2

V̇2

∣∣∣
Ω2(l2)

≤ −
(

1

kq
− ζ

2

(
1 + Γq +

1

k2
q

))
θ2

1

−
(
kθkq −

1

kq
− Γq −

1

2ζ

(
1 + Γq +

1

k2
q

))
θ2

2

+ |θ2|(|δq|+ Γq‖(ũ, w̃)‖).
For any kq > 0 and λ > 1/kq , the choice of parameters
ζ ≤ ζ?(kq) and kθ ≥ k?θ(ζ, kq) with

ζ? =
2

1 + Γq + 1
k2q

(
λ− 1

kq

)
, and

k?θ =
1

kq

(
λ+

1

kq
+ Γq +

1

2ζ

(
1 + Γq +

1

k2
q

))
,

provides the following upper bound on the Lyapunov func-
tion derivative

V̇2

∣∣∣
Ω2(l2)

≤ −λ‖(θ1, θ2)‖2 + ‖(θ1, θ2)‖(|δq|+ Γq‖(ũ, w̃)‖).

Therefore, the system has a local ISS Lyapunov function with
asymptotic gain λ−1 ∈ R. The restrictions on the inputs
‖δq(t)‖∞ ≤ ∆ and ‖(ũ(t), w̃(t))‖∞ ≤ ∆V can be set
arbitrarily large because the asymptotic gain can be made
arbitrarily small. Thus, the proposition holds.

Notice that the restrictions on the inputs of the interconnected
systems
‖(ũ(t), w̃(t))‖∞ ≤ ∆V and ‖(θ1(t), θ2(t))‖∞ ≤ ∆θ

are satisfied by taking
∆V = max

(ũ,w̃)∈Ω1(l1)
‖(ũ, w̃)‖, ∆θ = max

(θ1,θ2)∈Ω2(l2)
‖(θ1, θ2)‖.

Under the previous definitions and results, the input-to-state
stability for the overall system is established in Proposition 3.

Proposition 3: For some c?u > 0 and c?w > 0 and any
numbers satisfying ∆ > 0, 0 < cu < c?u, 0 < cw < c?w,
kq > 0, cq > 0 and cθ > 0 there exist k?u > 0, k?w > 0
and k?θ(kq) > 0 such that the system with dynamics (9) is
rendered ISS with restrictions cu on the initial state ũ(0), cw
on the initial state w̃(0), cq on the initial state q̃(0), cθ on
the initial state θ̃(0) and ∆ on the inputs δu(t), δw(t) and
δq(t).

Proof: Input-to-state stability with restrictions for the
individual systems (ũ, w̃) and (θ1, θ2) is proved in Proposi-
tions 1 and 2, respectively. The small gain theorem requires
that the condition

k1k2 < 1

is met, where k1 is the closed-loop system (ũ, w̃) asymptotic
gain relative to the input (θ1, θ2) and, similarly, k2 is
the closed-loop system (θ1, θ2) asymptotic gain relative to
the input (ũ, w̃). The asymptotic gain k1 decreases with
increasing ku or kw and k2 can be fixed arbitrarily with an
appropriate choice of kθ, therefore, the small gain theorem
condition is met. Moreover, the tracking error can be made
arbitrarily small.
Proposition 3 concludes the stability and robustness analysis.
We have proven that a transition trajectory can be tracked
with an arbitrary small error. This allows for the use of
the Hybrid Automata framework to achieve stability of the
overall hybrid system. The next section presents simulation
results which makes use of the open-source hybrid systems
simulator presented in [16].

V. SIMULATION RESULTS

The simulations were performed using the open-source
tool provided in [16] employing the hybrid automaton equiv-
alence to the generic hybrid system which is given in [11].
These simulations require the definition of the reference
maneuvers and of the quantities which define the guard and
the domain maps. These quantities are α = 15◦, Tmin = 0
N, Tmax = 13 N, δfmax = 7.5◦ and δemax = 15◦. It
is noticeable that the flaps’ maximum deflection is half of
the elevators’, because the flaps and the ailerons share the
same surface. Moreover, the quantities δfmin and δemin are
symmetric to their maximum counterparts.

The reference transition trajectories for the transition
maneuvers employed in the simulation meet the restriction
identified in Section III. The simulation environment includes
the influence of atmospheric turbulence, given by the Von-
Karman turbulence model described in [24] considering a
low turbulence scenario. The simulations also require the
definition of the controller gains ku = kw = 10 N.s/m,
kq = 1 s and kθ = 10 N.s/m. The remaining aircraft
parameters are m = 1.64 kg, I = 0.08 kg.m2, Aw = 0.29
m2, Aw = 3.89, ew = 0.8, CD0w

= 0.01, xacw = 0.03 m,
Ap,w = 0.066 m2, CLαw = 4.07 rad−1, CLδfp,w = 3.63,
CLδfw

= 2.88, Ahs = 0.0575 m2, xachs = −0.56 m,
Ap,hs = 0.0155 m2, CLαhs = 4.07, CLδep,hs = 4.07 and
CLδehs

= 4.07, d = 0.23 m, xp = 0.1 m.
Figures 3, 4 and 5 depict the aircraft behavior in terms of

state and input variables. Moreover, the references maneuvers
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are also depicted in dashed lines. The aircraft starts in hover
at u = 0 m/s and the local controller increases thrust in
order to achieve a forward velocity of u = 1 m/s which
is the transition maneuver starting point. When the aircraft
state is near v?X→H(0) a switch occurs (at t ' 0.83 s)
and the nonlinear controller is used in order to follow the
reference. Transition to level flight occurs when θ < 13◦ (at
t = 8.2 s) and the local regulator stabilizes the aircraft at the
equilibrium point. The tracking error lies within the level sets
Ω1(l1) and Ω2(l2) therefore there exists a robust transition
between the Transition and Level operating modes.
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Fig. 3: Transition from hover to level flight - forward velocity
u and downward velocity w.
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Fig. 4: Transition from hover to level flight - pitch angle θ
and pitch rate q.
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Fig. 5: Transition from hover to level flight - Elevator lift Le
and flap lift Lf (left axis) and thrust T (right side).

VI. CONCLUSIONS

This paper presented a solution for the problem of au-
tonomous transition between hover and level flight for a
model-scale fixed-wing Unmanned Air Vehicle (UAV). The
flight envelope was partitioned in different regions corre-
sponding to hover, transition, and level flight and a Hybrid
Automaton model for the overall system was then designed
where the operating modes correspond to the different flight
envelope regions.

Reference maneuvers were generated so as to provide
system robustness against exogenous disturbances and para-
metric uncertainty when performing single operating mode
and transition maneuvers. Controllers rendering the closed-
loop system Input-to-State Stable with restrictions were
designed for all three operating modes allowing for practical
tracking of the reference maneuvers with arbitrarily small
tracking errors. Simulation results attested the performance
and robustness of the proposed solution.

These achievements constitute a novel way to perform
controlled transition between hover and level flights for a
VTOL aircraft. Trajectory optimization may be performed in
order to reduce the control effort and the time for transition.
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