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Abstract— This paper presents a velocity tracking control
of a robotic driver that is used for driving industry test
cycles on roller dynamometers. As existing commercial robotic
drivers show a high complexity, use outdated mechanics and are
nevertheless quite expensive, a new robotic driver is developed.
The aim is to track a well defined velocity trajectory of a test
cycle with high accuracy in an arbitrary vehicle, whereby no
learning cycle for determining the specific vehicle behaviour is
allowed.

To meet all these conditions, at first a single-wheel model for
the longitudinal dynamics of a vehicle is proposed. Additionaly,
an approximation for the engine torque is given, enabling the
adaption of the resulting model by changing only few param-
eters. Based on this model, a flatness based velocity tracking
control for operating the acceleration pedal is introduced.

I. INTRODUCTION

During the development phase of new vehicles, many

different tests (e.g. climatic, acoustic or emission tests) have

to be passed. These tests are usually conducted by means

of vehicle dynamometers, composed of rollers on which the

test cycles are driven. These vehicle dynamometers simulate

the real driving resistance with the result that the measure-

ments are reproducable and can be compared to those of

other vehicles. Due to the temporarily very extreme test

environment (e.g. high/low temperatures), the development

of robotic drivers replacing human drivers was encouraged

soon.

Today’s commercially available robotic drivers consist of

driving mechanics placed on the driver’s seat [1]. These

mechanics are connected to an overlaid host system that

sends positioning commands to the actuators of the robotic

driver (i.e. spindle drives) and controls the vehicle in this way

along a desired velocity trajectory. Due to the signaling line,

the car door or at least the window has to be open, whereby

the measurement results of some tests (e.g. electromagnetic

compliance (EMC), acoustic, climatic tests) are affected

distinctly.

Therefore, a new robotic driver should be developed that

obtains the necessary test signals from cognitive abilities.

Without additional sensors, the robotic driver will be able to

determine the provided pedal force from the actuators (haptic

cognition), enabling to mimic human habits especially at gear

shifting operations. Moreover, the velocity of the vehicle as

well as the engine speed and some other important control
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Fig. 1. Sketch of the robotic driver used for driving a vehicle on a roller
dynamometer

signals will be determined with other cognitive abilities. Fur-

thermore, the control unit is placed in the vehicles passanger

cabin so that a fully autarkic mode of operation will possible.

The proposed robotic driver consists of five electromag-

netic linear motors (four for automatic transmission vehi-

cles), enabling a direct linear movement (see Fig. 1). Using

two actuators fixed at the gear lever for the rectangular

movement of changing the gear, and the other actuators for

pushing or releasing the brake pedal, the accelerator, and,

if applicable, the clutch pedal, all necessary elements for

driving a test cycle can be operated.

The position of each of these actuators is controlled

with PID controller. Showing approximatively a proportional

closed-loop behaviour without any delay, the dynamics of the

actuators will be disregarded in the following.

Apart from the mentioned fully autarkic mode of opera-

tion, different driving strategies will be realized, e.g. high

accurate driving and fuel-conserving driving, exploiting the

allowed tolerance limits of a test cycle.

The challenge of the control design is that the robotic

driver must be able to drive any arbitrary vehicle along a

desired velocity trajectory, without the need of manually

adapting any control parameters offline or driving a learning

cycle.

To track a desired velocity trajectory as accurate as pos-

sible, several overlaid controllers are necessary, namely a

multivariable control for driveaway, a control for decelerating
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the car by pushing the brake, and a control for accelerating

and maintaining the speed by operating the acceleration

pedal. Only the latter is proposed in this paper.

There have already been considered various velocity con-

trol approaches for robotic drivers. A controller based on

an H∞-design, as proposed in [2], requires several learning

cycles to determine the engine map, the clutch and braking

perfomance. [1] proposes a PID controller, though showing a

poor accuracy. Furthermore, as they do not use a model based

control design, the adaption to different vehicle types must

be done intuitively and stability cannot be ensured. As these

proposed control approaches do not meet the conditions of

universal application to any arbitrary vehicle without driving

learning cycles, a flatness based tracking control approach is

proposed in this contribution.

This paper is organized as follows. In Section II, a model

of a vehicle is introduced that can be adapted to any arbitrary

vehicle by changing few parameters. Based on this model,

a flatness based control is propesed in Section III, whereby

velocity tracking is enabled. First experimental results ana-

lyzing the control accuracy and the possibility of obtaining

repeatable measurements are shown in Section IV. Finally,

in addition to a conclusion drawn in Section V, a short

perspective to future work is given.

II. MODEL OF A VEHICLE

A. Longitudinal Dynamics

Deriving a model that describes the longitudinal dynamics

of a vehicle has been frequently treated; a detailed example

is given in [3]. The most proposed models use many vehicle

specific parameters that need to be identified in order to map

the dynamics of the vehicle as exactly as possible.

Due to the small number of available measurement signals,

most parameters cannot be identified, and usually, they are

not known either. As the robotic driver must be universally

applicable to any arbitrary vehicle, a model is needed that is

as accurate as possible and even can be adapted to the actual

vehicle by using a minimum of vehicle specific parameters.

The resulting model should describe the most important

dynamics of a vehicle, only using parameters that are well

know (e.g. engine peak power, vehicle mass) or can be

identified easily (e.g. gear ratio).

To achieve this compromise between simplicity and accu-

racy, several idealizations and simplifying assumptions have

to be made. Assuming that the clutch is engaged, all axles are

perfectly rigid, and that there is no slip between wheels and

road, the longitudinal dynamics of a vehicle can be described

as a single-wheel model [4].

This single-wheel model consists of one single inertia

Itot rotating with the engine speed ωe and containing all

rotating components of the drivetrain Irot and the vehicle

inertia, whereby the intertias and torques at the load side of

the gearbox are lumped with the inertias and torques of the

engine-side of the gearbox:

Itot = Irot (itot)+
mvr2

dyn

i2tot

, (1)

Te (ωe,xacc)

TLoad

Itot

de

ωe TLoss

Fig. 2. Structure of resulting single-wheel model

where mv denotes the vehicle mass, rdyn is the dynamic

wheel radius and itot is the total gear transmission ratio of

the drivetrain.

Acceleration of this inertia is realized by the engine torque

Te, which depends on the position of the acceleration pedal

xacc and the actual engine speed. The viscous damping de of

the engine, the load torque Tload resulting at the engine-side

of the gearbox, and the torque Tloss containing the losses

of the drivetrain work against the accelerating engine torque

(see Fig. 2):

Itotω̇e = Te (xacc,ωe)−deωe −Tloss −
1

itot

Tload . (2)

Furthermore, the vehicle will drive only on a dynamome-

ter, therefore the grade resistance can be ignored and the

resulting load torque only consists of the air drag Fa and the

rolling resistance Fr:

Tload = rdyn · (Fa +Fr) = rdyn ·

(

1

2
ρcdAv2 + crrmvg

)

, (3)

where ρ denotes the density of air, cd is the aerodynamic

drag coefficient, A is the cross-sectional area, crr is the rolling

resistance coefficient and v is the velocity of the vehicle,

which can be expressed as a function of engine speed:

v =
rdyn

itot

·ωe :=
1

γ
·ωe. (4)

As the resistance forces are simulated by the roller dy-

namometer, the parameters used in (3), except rdyn, can be

considered as known. For de, rdyn, itot , and Irot , values of a

common mid-range car given in the literatur are used (e.g.

[5], [6]). Considering several performance charts of different

engines and determining the mean value of the losses in the

drivetrain, Tloss will be assumed to be 20% of the engine

torque at peak power.

B. Engine Map

In order to obtain a complete model of a vehicle that

relates the position of the acceleration pedal to the longi-

tudinal dynamics, it is necessary to find a relation between

the engine torque and the position of the acceleration pedal.

There are several models for combustion engines proposed in

literature (e.g. [5], [7]), which have been derived by applying

the thermodynamic laws and considering the engine design.
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TABLE I

COEFFICIENTS OF THE POLYNOMIAL MODEL FOR THE FULL-LOAD

CURVE OF DIFFERENT ENGINE TYPES PROPOSED IN [8].

engine type C1 C2 C3

spark ignition Pmax
ωP,max

Pmax

ω2
P,max

−
Pmax

ω3
P,max

indirect injection diesel 0.6 Pmax
ωP,max

1.4 Pmax

ω2
P,max

−
Pmax

ω3
P,max

direct injection diesel 0.87 Pmax
ωP,max

1.13 Pmax

ω2
P,max

−
Pmax

ω3
P,max

As these models rely on too many propietary parameters

and inaccessible test signals, they are inapplicable for our

application.

Using the empirical fact that the variation of the engine

torque is much larger at the beginning of the acceleration

pedal travel than at the end, the following approximation

will be used instead:

Te (xacc,ωe) = TFL (ωe) ·

√

xacc

xacc,max

, (5)

where xacc,max denotes the end of the acceleration pedal travel

and TFL (ωe) is the engine torque at xacc,max.

C. Full-load Curve

Because of the assumption (5) made for the engine map, it

is necessary to find an approximation for the rotation speed

dependent torque TFL (ωe) that is also known as the full-load

curve of the engine. This approximation is to be independent

of proprietary parameters and may only rely on the known

stated engine peak power Pmax, the associated engine speed

ωP,max, and the corresponding engine torque TP,max =
Pmax

ωP,max
.

In [8], a polynomial model is proposed that meets these

requirements:

TFL (ωe) =
3

∑
i=1

Ciω
i−1

, (6)

where the coefficients are given in Table I. As this model is

quite inaccurate especially at low engine speeds (see Fig. 3),

a new approximation will be proposed.

At first, the engine speed range is split up into three parts:

the first from ω1000 =
π
30

1000 rad
s

to ω1500 =
π
30

1500 rad
s

, the

second from ω1500 to the engine speed at peak torque ωT,max,

and the third from ωT,max to ωP,max. Then, the full-load

curve can be approximated in every range as a second order

polynomial:

TFL (ωe) = ξ1 (ωe) ·ω
2
e +ξ2 (ωe) ·ωe +ξ3 (ωe) , (7)

where the coefficients ξi (ωe) , i = 1, . . . ,3 generally differ

in each engine speed range. To determine the coefficents

of these polynomials, the resulting torque curve must go

through the torque at peak power TP,max, the peak torque Tmax

at ωT,max and the full-load torques T1500 and T1000 at ω1500

and ω1000. The unknown values for Tmax, T1500, T1000 and

ωM,max can be calculated from TP,max and ωP,max by means

of the ratios given in Table II. Considering several full-load

TABLE II

RATIOS TO DETERMINE THE CHARACTERISTIC POINTS OF A FULL-LOAD

CURVE

engine type
TP,max

T1000

TP,max

T1500

TP,max

Tmax

ωP,max

ωT,max

spark ignition 1.273 1.095 0.881 1.706
diesel 1.503 0.882 0.785 2.016
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Fig. 3. Full-load curves of a spark ignition engine (top) and a direct
injection diesel engine (bottom): approximation 1 by (7) proposed in this
paper, approximation 2 by (6) according to [8]

curves of different engines, in a first approximation these

ratios are assumed to be constant, distinguishing between

spark ignition and diesel engines. Thus, the values given in

Table II are determined by averaging.

To avoid that the system of equations for determining

the coefficients of the polynomial (7) is under-determined,

differentiability at the boundaries between the speed ranges

must be ensured.

The results of this new approximation in comparison

with approximation proposed in [8] are illustrated for two

different cars exemplary in Fig. 3. It can be seen that the

shapes of the new approximation and the measured curves

correspond quite well, but due to the inconsistency between

stated and measured engine peak power, an offset exists.
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III. FLATNESS BASED VELOCITY TRACKING

CONTROL

A. Differential Flatness

The terminology differential flatness was introduced in [9]

and enabled a new way to design a tracking controller for a

nonlinear flat system

ẋ = f(x,u, t) , x(t0) = x0 (8)

with the states x ∈ R
n and the input u ∈ R. The system is

differentially flat, if it has a flat (possibly fictive) output y f

that meets the following conditions:

• The flat output must be a function of the states:

y f = Φ(x) . (9)

• Both, the states and the input must be a function of the

flat output and its time derivatives:

x = ψx

(

y f , ẏ f , . . . ,y
(n−1)
f

)

, (10)

u = ψu

(

y f , ẏ f , . . . ,y
(n)
f

)

. (11)

Equations (10) and (11) are called differential state and

differential input parameterizations, respectively. Note that

these parameterizations describe the inverse system of (8) for

the flat output, so that the non-linearities of the system can

be linearized exactly. Hence, all dynamics of a flat system

can be described by the flat output and its time derivatives,

too.

Defining the engine speed ωe as a state and the relative

position of the acceleration pedal xacc
xacc,max

as the input, the

velocity v of the vehicle is a flat output of the system

using (2)-(5) and (7) for the dynamics of the vehicle. This

yields to the parameterization of the state

ψx = γ · v (12)

and the parameterization of the input

ψu =

[

Itotγ v̇+deγv+
rdyn

itot

(

1
2
ρcdAv2 + crrmvg

)

ξ1(γv)γ2v2 +ξ2(γv)γv+ξ3(γv)

]2

. (13)

B. Flatness based Feedforward Control

If a given system (8) meets the condition of flatness, the

design of an open-loop control is straightforward. Substitut-

ing in the parameterizations (10) and (11) the flat output and

its time derivatives by a sufficiently smooth desired trajectory

y f ,d(t)∈ Cn provides the control ud(t) and the corresponding

state trajectory xd(t) [9]:

ud = ψu

(

y f ,d , ẏ f ,d , . . . ,y
(n)
f ,d

)

=

[

Itotγ v̇d +deγvd +
rdyn

itot

(

1
2
ρcdAv2

d + crrmvg
)

ξ1(γvd)γ2v2
d +ξ2(γvd)γvd +ξ3(γvd)

]2

, (14)

xd = ψx

(

y f ,d , ẏ f ,d , . . . ,y
(n−1)
f ,d

)

= γ · vd , (15)

where the set Cn contains all differentiable functions f whose

derivatives ḟ , f̈ , . . . , f (n) exist and are continuous.

As the velocity trajectories of many emission test cycles

are not differentiable, the desired velocity trajectories have

to be smoothed. The highest time derivative of the velocity

occuring in the control trajectory (14) is the acceleration v̇d ,

thus a first-order lag element is used as a lowpass filter to

obtain a smooth velocity trajectory.

Note that the feedforward control (14) only steers the

system along the desired output trajectory if the model of

the system maps the dynamics accurately enough, no distur-

bances influence the plant, and if the real inital condition and

the initial condition resulting from the paramterization (15)

are consistent:

x(t0) = ψx

(

y f ,d (t0) , ẏ f ,d (t0) , . . . ,y
(n−1)
f ,d (t0)

)

,

⇔ v(t0) = vd (t0) (16)

C. Flatness based Tracking Control

Because of the simplifying assumptions and approxima-

tions made in Section II, the flatness based feedforward

control (14) is insufficiently accurate, resulting in a distinct

divergence between desired and actual velocity trajectory.

Thus, a tracking control based on state feedback is designed

that stabilizes the tracking of the desired trajectory ([10],

[11]).

For this pupose, the nonlinear flat system (8) is linearized

by applying a state dependent input transformation.

Inserting the new input

û = y
(n)
f (17)

and the new state

z = [z1,z2, . . . ,zn]
T =

[

y f , ẏ f , . . . ,y
(n−1)
f

]T

(18)

into (11) yields to the following parameterization of the

input:

u = ψu (z1,z2, . . . ,zn, û) . (19)

By means of this linearizing input transformation, the non-

linear system can be described as a chain of integrators of

the length n, with the new input û and the output y f , i.e. the

Brunovský normal form:

żi = zi+1, i = 1, . . . ,n−1, (20)

żn = û. (21)

In order to design a tracking control for this linear chain of

integrators, the tracking error is defined as follows:

e = y f − y f ,d = z1 − z1,d . (22)

To force a desired transient behaviour of the tracking error,

the differential equation

e(n)+ pn−1e(n−1)+ . . .+ p0e = 0 (23)

is considered. The dynamic coefficients pi in (23) are de-

termined by equating the coefficients of the characteristical
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polynomial of the tracking error with the coefficients of the

desired dynamic defined by the eigenvalues λd,i:

λ n + pn−1λ n−1 + . . .+ p0
!
=

n

∏
j=0

(

λ −λ j,d

)

. (24)

Using (20)-(22) in (23) yields to

û = żn,d +
n−1

∑
i=1

pi

(

zi+1 − zi+1,d

)

. (25)

This expression for the new input û takes the desired transient

behaviour of the tracking error into account. Inserting (25) in

the parameterization for the input (19), yields the feedback

law

u = ψu (z,zd) = ψu

(

z1,z2, . . . ,zn,z1,d ,z2,d , . . . ,zn,d

)

. (26)

Due to parameter uncertainties, inaccuracies of the model

or disturbances, it is common to add an integral summand

to (25):

û = żn,d +
n−1

∑
i=1

pi

(

zi+1 − zi+1,d

)

+ p−1

∫

(

z1 − z1,d

)

dt. (27)

Then, the extended characteristic polynomial has to be con-

sidered to determine the dynamic coefficients pi:

λ n+1 + pn−1λ n + . . .+ p0λ + p−1
!
=

n+1

∏
j=0

(

λ −λ j,d

)

. (28)

Using again the velocity v of the vehicle as flat output of the

system derived in Section II, the feedback law (26) provides

u =

[

Itotγ û+deγv+
rdyn

itot

(

1
2
ρcdAv2 + crrmvg

)

ξ1(γv)γ2v2 +ξ2(γv)γv+ξ3(γv)

]2

(29)

with the new input

û = v̇d + p0 (v− vd)+ p−1

∫

(v− vd)dt. (30)

IV. EXPERIMENTAL RESULTS

Driving first test cycles on the roller dynamometer with

the robotic driver and the velocity tracking control proposed

in Section III-C, two important properties were analyzed.

On the one hand, the accuracy and the robustness of the

controller was determined, and, on the other hand, the

repeatability of measurement results was investigated.

A. Control Accuracy and Robustness

For determining the accuracy and the robustness of the

proposed controller, different test cycles (e.g. ECE Urban

Driving Cycles (UDC), Extra Urban Driving Cycle (EUDC),

Federal Test Procedure (FTP-75), (see [12], [13]) were driven

with different vehicles. The feedback law (29) was adapted

for the different cars by using the few stated parameters from

Section II (e.g. engine peak power with associated engine

speed, vehicle mass), whereby the dynamic parameters pi in

(30) remained constant.

The achieved results were always quite similar with re-

spect to the control accuracy, so that the robustness of the

velocity control proposed in Section III-C is given. Fig. 4

TABLE III

RESULTS OF THE REPEATABILITY TEST: RELATED ENERGY, EMITTED

CARBON DIOXIDE AND COVERED DISTANCE WITH CORRESPONDING

COEFFICENTS OF VARIATIONS

cycle no. energy [kJ] emitted CO2 [g] distance [m]

1 3788.39 2482 12353.6
2 3789.03 2477 12354.5
3 3788.04 2473 12354.4
4 3789.03 2481 12357.0
5 3787.34 2482 12356.7

CV 0.019% 0.159% 0.012%

illustrates exemplary measurements of a part of the UDC,

driven with a diesel engined vehicle (97kW@4400rpm). The

reference and the actual velocity trajectory are depicted

as well as the corresponding deviation with the allowed

tolerance limits of ±2 km
h

and the relative position of the

acceleration pedal.

The largest deviations occur during the moments when the

tracking controller is not active, i.e. driveaway followed by

the short distance driven in the first gear, shifting up or down

a gear and decelerating the vehicle by applying the brake.

When the clutch is engaged again after changing the gear,

the proposed control for the acceleration pedal is reactivated.

At these moments, the asymtotic stable behaviour of the

tracking error and the good velocity tracking behaviour can

be seen. Due to the loss of speed during shifting up a gear,

the position of the acceleration pedal increases strongly to

accelerate the vehicle fast to get back onto the reference

trajectory. This behaviour ensures on this way a good control

accuracy.

B. Repeatable Driving

Examining, if using the robotic driver can produce repeat-

able measurements, the same test cycle was driven five times

with the same vehicle under similar conditions. This fifteen

minutes lasting cycle was composed of the UDC, the EUDC

and the first 300 seconds of the FTP-75. For each of the

five driven cycles, the released energy from the vehicle to

the roller dynamometer, the emitted carbon dioxide (CO2),

and the distance covered by the vehicle have been measured.

The results of the three measurands with the corresponding

coefficents of variation are given in Table III. Note that the

the coefficents of variation average out only few per mille.

Comparing these results against those of an experienced

human test driver whose coefficents of variation for emitted

CO2 is about three percent, the possibility of repeatable

driving with the robotic driver can clearly be considered as

possible.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper, a nonlinear model for arbitrary vehicles

with combustion engines was proposed. The torque of the

combustion engine has been approximated as a function of
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the engine speed and the relative position of the acceleration

pedal, only knowing the maximal engine power and the

related engine speed.

Moderate complexity allows to adjust the model to dif-

ferent vehicles by changing only few parameters, which are

known in advance or can be identified during the test cycle.

For all the simplifications made, the model of the powertrain

takes into account the most important dynamics of a vehicle

and is a good basis for the proposed flatness based velocity

tracking controller of the acceleration pedal.

First tests did not only show a good accuracy and a

satisfying tracking behaviour of the control, but also a good

robustness against uncertanties of parameters, and simplifica-

tions of the model. Furthermore, the possibility of repeatable

driving using the robotic driver could be proved.

B. Future Works

One important next step is to identify the unknown vehicle

parameters (e.g. ratio, dynamic wheel radius, inertias) from

the measured signals to obtain a more accurate model. But

as the approximated engine torque involves the largest model

inaccuracies, an online adaption of this approximation will

be indispensable. With the adapted engine map and the

identified parameters a better feedforward behaviour of the

controller should be achieved.

Based on this controller, a fuel-conserving driving stategy

exploitating the allowed tolerance limits can be developed.
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