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Abstract— A novel model predictive (MPC) approach for
individual pitch control of wind turbines is proposed in this
paper. A repetitive wind disturbance model is incorporated into
the MPC prediction. As a consequence, individual pitch feed-
forward control action is generated by the controller, taking
”future” wind disturbance into account. Information about the
estimated wind spatial distribution one blade experience can
be used in the prediction model to better control the next
passing blade. A simulation comparison between the proposed
controller and an industry-standard PID controller shows better
mitigation of drive-train, blade and tower loads.

I. INTRODUCTION

The viability of energy sources are closely connected to

the cost of energy (COE) generated. Historically, the natural

way to achieve better COE of wind energy sources is to

increase the size of wind turbines. A drawback of larger wind

turbine rotors is the significant differences in wind speeds

over the rotor plane, leading to unwanted asymmetrical

structural loads, which could in turn shorten the lifetime of

the different mechanical components. Active load mitigation

by the wind turbine controller is often used to prevent

the unwanted vibrations [1]. Most solutions adopted by the

wind industry revolve around collective or cyclic pitch using

classic control techniques. Individual pitch control has been

studied [2] and first field tests were recently reported [3] to

strength the viability of such control philosophy.

Modern controllers have also been researched throughout

the past decade, e.g. LQR, H∞, H2. More recently, model

predictive control (MPC) of wind turbines is an active

research topic showing promising simulation results [4], [5],

[6]. An uniform wind field equally distributed over the rotor

plane is usually considered for MPC design purposes. Wind

turbines are inherently exposed to non-uniform wind fields

composed of wind shear, tower shadow, and possible wake

contributions. Asymmetrical aerodynamic rotor loads are a

consequence of such periodic, repetitive wind disturbances

experienced by the blades. A controller may estimate and

use this peculiar disturbance pattern to better attenuate loads

and regulate power by controlling the blade pitch angles

individually. To the modest knowledge of the authors, none

of the MPC schemes found on the literature explore the

particular repetitive nature of the wind disturbances in order
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to better attenuate loads and regulate power by controlling

the blade pitch angles individually.

This paper proposes a MPC strategy for individual pitch

control of wind turbines. The assumption that wind distur-

bances experienced by the blades are quasi-static within a

one third rotor revolution is utilized by the MPC to predict

future trajectories of the plant. Information about the wind

spatial distribution one blade experience is shifted in time

and utilized to better control the next passing blade. A

repetitive wind disturbance model is incorporated into the

MPC predictor and thus feed-forward control action is gen-

erated taking ”future” disturbances into account. A filtering

scheme to estimate states and wind disturbances, based on

a Kalman filter and blade root strain gauge measurements,

is also proposed. A linearized wind turbine model suitable

for computing the predicted plant trajectories is developed,

including wind model, aerodynamics, kinematic models of

fore-aft tower and blade flap displacements, drive-train and

pitch system. Model parameters are tuned using system

identification to match the performance of the aeroelastic

code FAST. Simulation results with a non-linear wind tur-

bine model of the MPC strategy and an industry-standard

PID controller shows much superior mitigation of structural

vibrations and equivalent load damages by the proposed

controller.

II. WIND TURBINE MODEL

A wind turbine model suitable for computing the predicted

plant trajectories is briefly presented. More details on the

model derivation are given in [7].

Fig. 1. Overall block diagram of the wind turbine model.

A block diagram of the wind turbine model structure is

depicted on Fig. 1, where the main model variables are

presented: vmean is the mean wind at the hub height from

which a wind field Vfield over the rotor plane is constructed,

βref and β are vectors with reference and actual blade pitch

angles respectively, Ta is the aerodynamic torque produced

by the rotor, F root and F tip is the thrust force contribution

of the root part and the tip part of the blades, ldeflect,blade
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and ldeflect,tower are the blade and tower deflection lengths,

respectively, ωLSS and θδ are the angular velocity and

torsional angle of the low speed shaft, respectively.

A. Wind Model

The wind model generates, from a scalar mean wind speed

at hub height, a time-varying matrix that contains the wind

speed for each point in the wind field,

Vfield(t, r, θ) = vmean(t) + Vws(t, r, θ) + Vts(t, r, θ)

+ Vwk(t, r, θ)
(1)

where Vfield is the total wind speed field, vmean is the

mean wind speed, Vws is the wind shear component, Vts

is the tower shadow component, and Vwk is the far wake

component of one preceding wind turbine. Notice the de-

pendence on the rotor radius r and rotor azimuth angle θ.

Wind shear and tower shadow components were modeled

as [8] and expressions for such will be omitted for brevity.

The simplified wake model is represented as a part of the

wind field (i.e. a circle) with a lower wind speed. The wake

is centered around a point (r0, ϕ) placed on the rim of the

wind field (Fig. 2(b)) and described mathematically as (2),

r2 − 2rr0cos(θ − ϕ) + r20 = a2 (2)

where r0 is the radial coordinate for the center of the wake,

ϕ is the angular coordinate of the center of the wake and a
is the radius of the wake.

(a) Root and tip segments (b) Wake placement.

Fig. 2. Some wind field definitions.

Stochastic variables are add to the wind components ex-

cept tower shadow, giving a closer to reality parameterization

of the wind speeds throughout the rotor plane. Wind shear

is based on the typical exponential law with coefficient αws

chosen to be modelled as a nomally distributed random vari-

able with mean and variance 0.194 and 0.137, respectively

[9]. The stochastic elements of the wake are the angular

coordinate of wake center with variance 0.01, and radius of

the wake with variance 0.3, both with zero mean. The wind

field for a particular time stamp is illustrated on Fig. 3.

The infinite-dimensional wind field is converted to six

equivalent winds signals that acts on two distinct parts of

the blades, namely tip and root sections (Fig. 2(b)), in order

Fig. 3. Wind field containing wake, tower shadow and wind shear effects,
for a particular time stamp.

to turn a linearized model viable,

vroot,bi =

rH∑
r=0

v(r, θbi), vtip,bi =

R∑
r=rH

v(r, θbi) (3)

where rH is the length from the hub to the hinge of the blade

(shown in the sequel), R is the length of the blade and θbi
is the azimuth angle of the ith blade.

B. Aerodymamic Model
The blade is modeled as two rigid parts (root and tip)

connected with a hinge. The relevant forces and torques are

depicted on Fig. 4(a): the low speed shaft torque TLSS ; the

axial and tangential forces for both root and tip part of the

blade, Froot,a, Froot,t and Ftip,a, Ftip,t respectively.
Aerodynamic forces and torques are computed by Blade

Element Theory. The total force acting on the entire blade

is the sum of forces acting on the blade elements. The blade

geometry is approximated by three subparts as shown in Fig.

4(b) and is able to flap around the rH position. The axial

forces produced by the root (Froota) and tip (Ftipa) are given

by,

[
Froota

F
′
tipa

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

2

( irW∑
i=0

V 2
eff (ri, θ)fbl1(ri) Δr

+

irH∑
i=irW

V 2
eff (ri, θ)fbl2(ri) Δr

)

ρ

2

( iR∑
i=irH

V
′ 2
eff (ri, θ)fbl2(ri) Δr

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· (CL(α)sin(ψ) + CD(α)cos(ψ))

(4)

The airfoil local angle of attack α, local inflow angle ψ
and local inflow velocities Veff and V

′
eff are given by,

α =tan−1

(
Vfield − ẋt − ẋb

ωLSS r

)
− (β + βtwist)

ψ =tan−1

(
Vfield − ẋt − ẋb

ωLSS r

)

Veff =

√
(Vfield − ẋt − ẋb)

2
+ (ωLSS r)

2
, ∀ri ≤ rH

V
′
eff =

√
(cos(θhg) (Vfield − ẋt − ẋb))2 + (ωLSSr)2,

∀ri > rH

(5)
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where CL(α) is the airfoil lift force coefficient, CD(α) is

the airfoil drag force coefficient, ρ is the air density, Δr
is the length of the blade element, fbl1(ri) is the function

that describes first interval and fbl2(ri) the second and third

interval areas of the blade. Projecting F
′
tipa

on the axial axis

and summing the forces for all three blade intervals results

in the total thrust force generated by one blade,

Fx = Froota + cos(θhinge) F
′
tipa

. (6)

(a) Hinged blade with relevant forces and torques.

(b) Approximated geometry and discretization by blade elements.

Fig. 4. Aerodynamic definitions.

For the aerodynamic torque, tangential forces acting on

the blade element must be multiplied with the distance to the

shaft center, resulting in the following description of torque

produced by the tip and root segments,

[
Troot

Ttip

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

2

( irW∑
r=0

V 2
eff (ri, θ)fbl1(ri) Δr

+

irH∑
r=irW

V 2
eff (ri, θ)fbl2(ri) Δr

)

ρ

2

( iR∑
r=irH

V
′ 2
eff (ri, θ) Δr lh,i

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· (CL(α)sin(ψ)− CD(α)cos(ψ))

(7)

where

θhinge = sin−1

(
ldeflect,blade,i

ltip

)
lt,i = cos(θhinge) ltipi

lh,i = lroot + lt,i

(8)

and ldeflect,blade,i comes from the kinematic model presented

next. The total torque produced by a blade is then

Ta = Ttip + Troot. (9)

C. Kinematics

The fore-aft tower and flap blade deflections are modeled

as multiple connected mass-spring-damper systems. The

model consists of three masses for the blade tips, parallel

connected to the tower/blade root system. Equations of

motion for the i-th blade and tower are

ẍbi =
Ftip,bi

mbi

+
Kbi

mbi

xt −
Kbi

mbi

xbi +
Bbi

mbi

ẋt −
Bbi

mbi

ẋbi

ẍt =

3∑
i=1

(
Kbi

mbi

xbi +
Bbi

mbi

(̇x)bi +
Ftip,bi

mt
+

Froot,bi

mt

)

− 1

mt

(
(Kb1 +Kb2 +Kb3 +Kt)xt

+ (Bb1 +Bb2 +Bb3 +Bt) ẋt

)
.

(10)

It shall be noted that the mass mt consists both of the tower

mass and the root masses of the three blades. The output

deflections are defined as,

ldeflect,blade,i =xbi − xt (11)

ldeflect,tower =xt (12)

Drive-train is modeled as a inertial two-mass system with

an ideal planetary gear and torsional spring referenced to the

low speed shaft,

Jrω̇LSS(t) =Ta(t)−Kdtθδ(t)− (Bdt +Br) ωLSS(t)

+
Bdt

Ng
ωHSS(t)

Jgω̇HSS(t) =
Kdt

Ng
θδ(t) +

Bdt

Ng
ωLSS(t)− Tg(t)

−
(
Bdt

N2
g

+Bg

)
ωHSS(t)

θ̇δ(t) =ωLSS(t)−
1

Ng
ωHSS(t)

(13)

where ωHSS is the angular velocity on the high speed shaft,

Jr and Jg are rotor and generator inertias, Kdt and Bdt are

drive-train stiffness and damping coefficients, and Ng is the

gearbox ratio.

D. Linearization

The main aspects of the model linearization over a mean

wind speed are briefly outlined. The blade twist, which is

not uniform throughout the length of the blade, is averaged

over the root (βtwist,root) and tip (βtwist,tip). The location

where the tip and root wind speeds are applied on the

blade span is based on the assumption that the total torque

produced by the blade can be divided in two parts, one

generated by the tip and another by the root. Therefore,

the sum of wind speeds over the root/tip, when applied

at only one point on the blade span, should generate ap-

proximately the same total torque and thrust. CL and CD

curves are linearly approximated over the operating point. A

linear approximation is justified because, when pitch control

regulates generated power at rated, wind turbines operates

most of the time on the linear region of CL and CD curves.
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The twist angle of the blades and the two span distances

where the tip and root wind speeds are applied to the blade

are utilized as a tuning parameters to fit the aerodynamic

model to the response of the aeroelastic code FAST [10]

subroutine AeroDyn. The model parameters were adjusted

to resemble the 1.5MW reference wind turbine included in

FAST [10]. Aerodynamic parameters were taken directly

from respective data tables. Parameters for the kinematic

model were obtained by grey-box system identification in

a prediction error method scheme. The data utilized for

identification were time-series simulations on FAST with

step wind inputs. More details on the identification procedure

are given in [7]. The resulting linear state-space system

describing the wind turbine dynamics over a mean wind

speed is given by,

ẋ(t) =Ax(t) +Bsu(t) +Bdd(t) (14)

where x(t) is the state vector, u(t) is the controlled inputs

that includes generator torque and individual pitch angle

signals, d(t) is the unmeasured disturbance inputs composed

of the tip and root wind speed signals for each blade

x(t) =[xb,1, ẋb,1, xb,2, ẋb,2, xb,3, ẋb,3, xt, ẋt, ωLSS ,

ωHSS , θδ, β1, β2, β3]
T

u(t) =[Tg, β1,ref , β2,ref , β3,ref ]
T

d(t) =[vin,t,1, vin,t,2, vin,t,3, vin,r,1, vin,r,2, vin,r,3]
T .
(15)

The mean wind speed varies during wind turbine oper-

ation, thus a successive model linearization MPC scheme

should be adopted in practice. This issue is not covered in

the present paper.

III. REPETITIVE CONTROL STRATEGY

The proposed repetitive control strategy is composed of

a model predictive controller (MPC) with constraints, a

repetitive wind disturbance model, and a state/disturbance

estimator, depicted on Fig. 5. The unmeasurable states and

wind disturbances are estimated in a Kalman Filter scheme

by the Plant and Wind Estimator. The Memory & Time
Shifter stores and shifts forward on time the wind informa-

tion estimated for a preceding blade in order to generate an

estimate of the wind disturbances the next passing blade will

experience. Together with the estimated states, is the basis

for the predictor. The optimizer then calculates the optimal

open-loop control signal u(k) given the expected trajectories

of the plant and wind disturbances.

The subcomponents of the proposed strategy are now

explained in more details.

A. Plant & Wind Estimator

Full state information and measured disturbances are re-

quired by the adopted MPC controller, thus estimates of un-

measurable states and wind disturbances are needed. Forces

acting on the root and tip elements of the blade are estimated

by a Kalman filter and later converted into wind speed signals

by a linear coherence relation between states, forces, and

wind disturbances. This particular estimation structure was

Fig. 5. Repetitive MPC control strategy for a wind turbine.

chosen to take advantage of strain gauge measurements of

the combined force acting on a blade root, to improve the

estimation. Thus, the system model used in the Kalman filter

does not contain the linearized aerodynamic model, only the

kinematic models with forces appearing explicitly into the

formulation.

The force acting on each root and tip element can be

estimated by the usage of the state error between plant and

the Kalman filter. The Kalman filter has been augmented

with six force states and one torque state modeled as first

order low pass filters with cut-off frequency f0. After a zero

order hold discretization, the model used on the predict step

of the Kalman filter is

x̂−(k) = Φ x̂+(k − 1) + Π u(k − 1)

ẑ = H x̂−(k)
(16)

where x̂− and x̂+ are a priori and a posteriori estimate of the

states, respectively, ẑ is the estimate of the measured states.

System matrices are,

H =

[
Cklm 0
0 I

]
, Φ =

[
As Bs

0 f0I

]
, Π =

[
Bs

0

]
(17)

where Cklm selects blade and tower velocities xb,i, xt, shaft

speeds ωLSS , ωHSS and blade pitch angles βi.

B. Memory & Time Shifter

The Memory & Time Shifter stores the estimates of the

present wind speeds, shifts in time and sorts them to be

adequately used by the MPC disturbance model. Figure 6

illustrates the subcomponents of the memory process. Their

functionality and design criteria are described below.

Fig. 6. Subcomponents of the Memory & Time Shifter Block.

Ring Buffer: The size of the ring buffer is designed to

the worst case scenario, corresponding to a full rotation at

the slowest rotational speed. It is assumed that the rotational

speed of the low speed shaft will not decrease below a
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minimum value on the operating range of interest. This yields

a buffer size of

kbuffer =
2π

ωLSS,min

1

Ts
(18)

where ωLSS,min is the worst case velocity of the low speed

shaft.

Time Shifter: It determines the time shift needed to

synchronize the stored buffer data with the present position

of each blade. The value of kshift is calculated based on the

velocity of the low speed shaft.

kshift =
2π bs

3

ωLSSTs
(19)

where bs is the blade delay index. In order to secure causality,

the blade delay index bs is adjusted runtime in order to ensure

that

kshift > Hp.

Output Sorter: Before the horizon of wind speeds can

be passed to the MPC the wind state vector dm(k) must be

rearranged. This is done according to the blade delay index

such that the buffered wind corresponds to the actual blade.

C. Model Predictive Control with Contraints

The model predictive controller and its governing equa-

tions are outlined here, heavily inspired on [11]. A Model

Predictive Controller (MPC) is a model-based controller

that, based on the current input and state values, uses an

internal dynamic model of the plant to predict future system

responses and compute an optimal finite-horizon open-loop

control signal. Future responses are predicted over the hori-

zon (Hp) and are dependent on the assumed input trajectory

û(k + i|k) applied over (i = 0, 1, . . . , Hp − 1). The MPC

manipulates the output ŷ(k + i|k) towards some reference

trajectory r(k+ i|k) by calculating an optimal finite-horizon

open-loop input trajectory u(k+i|k) over the control horizon

Hu The predicted input is assumed constant beyond Hu.

Only the first sample from the predicted input is applied

on the plant. A new input trajectory is computed at each

k, implying that the horizon Hp stays constant but shifted

k + 1, giving the next control signal plant input, setting

u(k + 1) = û(k + 1|k + 1).
A feed-forward control action may be incorporated into

the MPC if measured disturbances are included into the pre-

diction model. In the proposed repetitive scheme, present and

”future” values of wind disturbances, given by the Memory &
Time Shifter block, are utilized in the known disturbance part

of the prediction model (stacked as Dm matrix shown ahead).

The standard formulation of a quadratic MPC problem with

measured disturbances, zero-offset tracking and linear matrix

inequalities constraints is,

Minimize ΔU(k)THΔU(k)− GΔU(k) (20a)

Subject to⎡
⎣ F
ΓΘ
W

⎤
⎦ΔU(k) ≤

⎡
⎣ −F1u(k − 1)− f
−Γ [Ψx̂(k) + Υu(k − 1) + ΞDm(k)]− g

−w

⎤
⎦

where

H = ΘTQΘ+R , G = 2ΘTQE(k) (21)

The optimal assumed input trajectory resulted from the

optimization problem is defined as,

ΔU(k) =

⎡
⎢⎣

Δû(k|k)
...

Δû(k +Hu − 1|k)

⎤
⎥⎦ .

The terms in (21) are now detailed. The difference between

the future target trajectory and the free system response, if

no input changes were made, known as the ”tracking error”,

is given by,

E(k) = T (k + 1)−Ψx(k)− ΞDm(k)−Υu(k − 1). (22)

T (k+1) is the horizon of references over Hp. Q, R are the

expansion of the weight matrices Q and R over Hp and Hu,

respectively,

T (k + 1) =

⎡
⎢⎣

r̂(k + 1|r)
...

r̂(k +Hp|k)

⎤
⎥⎦

Q =

⎡
⎢⎢⎢⎣
Q(1) 0 . . . 0
0 Q(2) . . . 0
...

...
. . .

...

0 0 . . . Q(Hp)

⎤
⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎣
R(0) 0 . . . 0
0 R(1) . . . 0
...

...
. . .

...

0 0 . . . R(Hu)

⎤
⎥⎥⎥⎦

(23)

The known input disturbance throughout the prediction

horizon is stacked as Dm. The Ξ matrix defines the coupling

of Dm to the dynamics of the prediction over Hp,

Dm =

⎡
⎢⎢⎢⎣

dm(k)

d̂m(k + 1|k)
...

d̂m(k +Hp − 1|k)

⎤
⎥⎥⎥⎦

Ξ =

⎡
⎢⎢⎢⎣

Bd 0 . . . 0
ABd Bd . . . 0

...
...

. . .
...

AHp−1Bd AHp−2Bd . . . Bd

⎤
⎥⎥⎥⎦ .

The matrix Ψ incorporates the present state value and

Υ and Θ couples the controlled inputs into the prediction

model,

Ψ =

⎡
⎢⎢⎢⎣

A
A2

...

AHp

⎤
⎥⎥⎥⎦ , Υ =

⎡
⎢⎢⎢⎣

Bs

ABs +Bs

...∑Hp−1
i=0 AiBs

⎤
⎥⎥⎥⎦
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Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bs 0 . . . 0
ABs +Bs Bs . . . 0

... ABs +Bs
. . . 0

...
...

. . .
...∑Hu−1

i=0 AiBs

∑Hu−2
i=0 AiBs . . . Bs∑Hu

i=0 A
iBs

∑Hu−1
i=0 AiBs . . . ABs +Bs

...
...

...
...∑Hp−1

i=0 AiBs

∑Hp−1
i=0 AiBs . . .

∑Hp−Hu

i=0 AiBs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now the LMI constraint (20b) are detailed to clarify

the missing parts of the formulation. Constraints can be

attributed to predicted control input increments, control input

and states,

E

[
ΔU(k)

1

]
≤ 0, F

[
U(k)
1

]
≤ 0, G

[
X (k)
1

]
≤ 0. (24)

where ΔU(k) =
[
û(k|k)T . . . û(k +Hu − 1|k)T

]T
is de-

fined analogously to U(k). As F has the form F =[
F1F2 . . . FHu , f

]
and defining Fi =

∑Hu

j=1 Fj , F =[
F1 . . . FHu

]
the constraint matrix F can be rewritten

as the linear inequality,

FΔU(k) ≤ −F1u(k − 1)− f (25)

that appears as the first inequality in (20b). The constraints on

the predicted states X (k) can be put as the second inequality

by letting G =
[
Γ g

]
where g is the last column of

G. At last, the constrains on ΔU can be reformulated as

WΔU(k) ≤ w giving rise to the third inequality in (20b).

D. MPC Implementation

The tuning parameters of the MPC controller are the

control and prediction horizons Hu and Hp, along with the

constraint matrices E, F and G. This section discusses the

choice of horizons and constraints. The Q and R weighting

matrices will not be described as some trial and error is

involved in their tuning.

The choice of prediction horizon is influenced by the time

distance between two blades, in samples, at the nominal rotor

speed, as the disturbance information from one blades is

passed Hp samples to the next. At the expected maximum

rotor speed of ωmax and a 2π/3 distance between blades,

the number of samples between two adjacent blades gives

the prediction horizon,

Hp =
2π/3

ωmaxTs
. (26)

For the wind turbine example ωmax = 2.32 rad/s with Hp ≈
90. The control signal of the final value of Hu must stabilize

the model over the prediction horizon Hp. Choosing a small

Hu may result in fluctuating control signals, opposite to a

larger one that results in a smoother actuation. By empirical

tests Hu = 10 has been chosen.

Constraints were applied to control inputs and their rates

of change, and states, according to (20b). The generator

torque and pitch angles were constrained to ±20 % and

±26 deg from their operating point values, respectively. Pitch

rate limit were set to ±10 deg/s. State constraints help to

enforce system stability and also guarantees that structural

limits are not surpassed. Constraints were set on the three

blade absolute positions to avoid the blade hitting the tower.

The blades are allowed to move at 6 m/s velocities. Tower

position and tower velocity limits are set to ±0.5 m and

±0.05 m/s respectively. The low speed shaft constraints are

set to ±1 rad/s to allow variable speed operation, and the

high speed shaft to a factor of 100 larger due to the gear

ratio.

IV. SIMULATION RESULTS

The proposed repetitive MPC controller is evaluated by

non-linear simulation of a 1.5MW wind turbine. MPC

performance is compared to a reference controller similar

to the controller of the aeroelastic code FAST. One PID

controller regulates rotational speed (ωHSS) while another

PID adds damping to the tower fore-aft motion by measuring

the nacelle acceleration (ẍtower). Tuned through successive

simulations to match the performance of the FAST controller,

the PID gains are KP = −0.2, KI = −0.8, KD = 0 for the

speed feedback and KP = 0.1, KI = 2, KD = 0.2 for the

tower acceleration feedback.

The effectiveness of the proposed controller is illustrated

by time series and FFT spectrum plots, as well as equivalent

damage load of blades, tower, and low speed shaft obtained

through a standard rainflow counting algorithm. The wind

used during all tests is a 200 sec time series of the stochastic

wind field described in the modeling section. A slow sinu-

soidal signal has been added to the mean wind in order to

ensure a mean wind deviation between 13 to 17 m/s.
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(a) Blade tip.
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Fig. 7. Comparison of real and estimated forces and winds.
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Figures 7(a) and 7(b) show forces and wind estimates

of tip and root, respectively. The estimated tip wind has a

very good agreement with the exact wind, although lower

amplitudes can be noticed. The slightly negative offset and

larger amplitude changes of the root force estimate can be

explained by the influence of the strain gauge measuring the

net axial force of the blade. Because the estimated forces

generate inputs to the kinematic model, the estimated tip

force is corrected by the blade velocity measurements. An

error in the estimated tip velocity and position results in

an distorted estimate of the tip force. The tip force error is

corrected by the net axial force given by the strain gauge,

causing an opposite sign error in the root force.
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(a) Low speed shaft angular velocity.
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(b) Tower deflection and velocity.
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(c) Blade deflection and velocity.
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Fig. 8. Time series results.

The times series plot of the blades pitch angle (Fig. 8(d))

clearly shows that the repetitive MPC controller generates

an individual pitch like control signal. Time series of the

low shaft angular velocity are depicted in Fig. 8(a). Tower

deflections and velocities are depicted in Fig. 8(b). By

realizing that smaller amplitudes occur on both signals, it

is clear that a greater tower damping is proportioned by the

MPC controller. Blade velocity is significantly slower in the

MPC case as can be seen in Fig. 8(c). Blade deflections have

similar amplitudes as the PID case.
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Fig. 9. FFT results.

Attenuation of tower vibrations in a wide frequency range

can be noticed from the FFT plot of tower velocity (Fig.

9(a)). The 1P frequency (0.34 Hz) has some small residual

power. A FFT-analysis of the blade velocity shows that the

repetitive MPC strategy with estimated wind disturbance

mitigates blade vibrations in a wide frequency spectrum (Fig.

9(b)). The vibrations caused by 1P effects at 0.34 Hz are

reduced significantly. This is also the case for the 4P content

(1.36 Hz). The 4P frequency mainly originates from the wake

dynamics of the wind field [12].
Equivalent loads were calculated for the MPC and PID

controllers using a rainflow counting algorithm based on

the standard [13]. When compared to the PID reference

controller, low speed shaft decreased by a factor 6.8, blades

stress decreased by a factor 3.3, and tower stress decreased

by a factor 6.5.
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