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Abstract—We present two observers that estimate the orien-
tation of a rigid body, which is subjected to linear accelerations
and rotational motion, using a global positioning system (GPS)
and a body-attached inertial measurement unit (IMU). Unlike
some other attitude estimation schemes (which assume that the
accelerometer measures the gravity vector, which is not realistic
when the rigid body is subject to large linear accelerations),
the proposed results belong to the special class of velocity-
aided attitude observers, which instead use the true accelerometer
measurements (i.e., the system’s apparent acceleration). The
linear velocity of the rigid body (obtained from the GPS) is used
to obviate the requirement of the linear acceleration (which is
assumed unavailable in the inertial frame). The new observers
can handle large accelerations of the rigid body which could
otherwise destroy the performance of other types of attitude
observers which assume that the accelerometer measures the
gravity vector.

I. INTRODUCTION

We address the problem of estimating the attitude, or
orientation, of a rigid-body which is subjected to linear and
rotational motion. Obtaining solutions for this problem is
advantageous for a growing number of fields which seek to
identify the relative orientation between a body-fixed frame
and a fixed inertial frame of reference. For example, some ap-
plications which use orientation measurements (or estimates)
to achieve their goals include human-motion-capture based
computer animation, inertial-navigation and mobile robotics
(wheeled, biped, airborne, satellite,etc.). This particular prob-
lem has been the focus of several research groups, who have
subsequently produced a number of interesting advancements
in this area.

In general, the relative attitude of a body-fixed frame with
respect to an inertial frame is estimated (or measured) by
using a set of known, inertial-referenced vectors, which are
subsequently measured in the body fixed frame. Based upon
these measurements there are a variety of methods which
have been proposed to solve this problem. One of these
methods uses the vector measurements to directly calculate or
reconstruct the relative orientation, without the use of a filter
or attitude observer. Examples of these types of algorithms
can be found in [1], [2], [3] and [4]. Another method, which
is known as complementary filtering, involves using one of
these reconstruction algorithms in addition to measurements of
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the rigid-body’s angular velocity (measured in the body-fixed
frame using a gyroscope) in order to improve the accuracy
of the estimates when the rigid body is subjected to rotational
motion. In fact, a simple and yet practical dynamic IMU-based
attitude estimation approach is based on linear complementary
filtering [5], where the vector measurements are fused with the
angular velocity measurement to recover the orientation of the
rigid body for small angular movements. This approach has
been extended later on to nonlinear complementary filtering
for the attitude estimation from vector measurements (for
example see [6], [7], [8] and [9]). A number of observers
have also been designed to use the vector measurements
directly, and therefore no longer require the use of one of these
reconstruction methods. Examples of these types of observers
can be found in [6], [8], [10] and [11].

A common characteristic of these attitude estimation
schemes is that they depend upon a set of vectors which are
known in the inertial frame of reference. However, there are a
limited number of sensors which can satisfy this requirement.
Two sensors which are most commonly used in this capacity
are the accelerometer and magnetometer, which due to ad-
vancements in sensor technology, such as Integrated Micro-
Electro-Mechanical systems (IMEMs), are small, inexpensive
and widely available. The magnetometer is used to provide a
body-referenced measurement of the known ambient magnetic
field, where in many cases the accelerometer is used to provide
a body-referenced measurement of the gravity vector. Unsur-
prisingly, the performance of observers which are designed by
assuming the accelerometer measures only the gravity vector
will likely suffer when the rigid body is subjected to significant
linear accelerations.

Fortunately, this challenge has motivated several research
groups to develop observers which acknowledge the fact that
the accelerometer measures the apparent acceleration (a term
which has been recently adopted in the literature to define
the inertial-referenced vector which includes the rigid-body
linear acceleration vector and the gravity vector). However,
the use of the accelerometer in this fashion is a challenging
problem since the apparent acceleration vector is not known
in the inertial frame, which violates one of the fundamental
requirements of the attitude estimation methods listed above.
To address this problem, a new type of observer has been
previously proposed which uses the inertial-referenced rigid-
body velocity (measured using a GPS). Examples of these
observers, which are commonly known as velocity-aided at-
titude observers, can be found in [12], [13] and [14]. In
[12] the authors are able to show convergence of the attitude
estimates locally around the trajectories of the system attitude.
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In [13] the authors demonstrate similar convergence while also
considering sensor imperfections. In [14] the authors show
that by making appropriate choices of the observer gains, the
attitude estimates are guaranteed to converge for almost all
initial conditions.

This paper, contributes a step further towards understanding
the mechanisms behinds velocity-aided attitude observers by
providing new constructive stability proofs. In fact, we propose
two new velocity-aided attitude observers guaranteeing almost
global results. The first observer, although different from the
observer of [14], provides similar almost global results. As
a consequence of this modification, the resulting stability
analysis of the observer has been significantly simplified. The
new stability analysis has proven to be quite advantageous,
since in [15] a new type of position controller for vertical
take-off and landing (VTOL) unmanned airborne vehicles
(UAVs) has been proposed based upon these results, which
otherwise may have been more difficult to achieve. The second
proposed observer is referred to as higher order observer (one
degree higher than the first proposed observer), which is also
shown to guarantee almost global stability results. Simulations
results are also provided to demonstrate the performance of the
proposed observers.

II. BACKGROUND

A. Attitude Representation

We make use of two forms of attitude parameterization,
namely the direct cosine (rotation) matrix and the unit-
quaternion, in order to model the relative orientation from
an inertial frame of reference (denoted as I) to a body-fixed
frame of reference (denoted as B) which is rigidly attached
to the system center-of-gravity (COG) in North-East-Down
coordinates. The unit-quaternion which defines the relative
orientation of I to B is defined as Q = (η, q), η ∈ R, q ∈ R3

where Q belongs to the set of unit-quaternion defined by

Q = (η, q) ∈ Q := {Q ∈ S3, ∥Q∥ = 1}, (1)

where S3 denotes a three-dimensional sphere 1. Consequently,
the quaternion scalar η and vector q must satisfy η2+qTq = 1.
We denote R as the rotation matrix which defines the relative
orientation of I to B, where R belongs to the special orthog-
onal group R ∈ SO(3) where

SO(3) := {R ∈ R3×3, det R = 1, RRT = RTR = I}. (2)

where I = I3×3 is the three-dimensional identity matrix. A
well known expression which relates the values of Q = (η, q)
and R is given by

R(η, q) = I + 2S(q)2 − 2ηS(q), (3)

where S(·) is the skew-symmetric matrix

S(u) =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 , (4)

1For more details on the unit-quaternion (in addition to other forms of
attitude representation) the reader is referred to [16], [17], and [18].

and u = [u1, u2, u3]
T. The set Q forms a group with

the quaternion product operation, denoted by ⊙, with the
quaternion inverse defined by Q−1 = (η,−q) and identity-
quaternion Q = (1, 03×1), where 03×1 ∈ R3 is a column
vector of zeros. Given Q,P ∈ Q where P = (p0, p) the
quaternion product is defined by

Q⊙ P =
(
p0η − qT p, ηp+ p0q + S(q)p

)
. (5)

B. System Model

Let r1 denote the ambient magnetic field vector (assumed
constant), and v denote the system velocity of the rigid-body,
which are both expressed in I. We consider the following
model for the system translational and rotational dynamics:

v̇ = ge3 + r2, (6)

Q̇ =
1

2
Q⊙ (0, ω) =

1

2

[
−qT

ηI3×3 + S(q)

]
ω, (7)

where g is the acceleration due to gravity, e3 = [0, 0, 1]T,
r2 = r2(t) is a time-varying unknown system input which is
commonly referred to as the apparent acceleration and ω is
the angular velocity of the rigid-body expressed in B. The
available system outputs are defined as y = [v, ω, b1, b2]

T

where b1 = Rr1 and b2 = Rr2 are the outputs of the
magnetometer and accelerometer sensors, respectively, which
give the coordinates of magnetic field vector and the apparent
acceleration in the body-fixed frame B. The system velocity
v and the angular velocity ω are measured using a GPS and
a gyroscope, respectively. Note that the attitude dynamics can
be equivalently expressed in terms of the rotation matrix using
Ṙ = −S(ω)R.

III. PROBLEM FORMULATION

Let Q̂ = (η̂, q̂), η̂ ∈ R, q̂ ∈ R3, Q̂ ∈ Q denote a unit
quaternion which is an estimate of the system attitude Q, and
let R̂ = R (η̂, q̂) denote the rotation matrix that corresponds to
Q̂, as defined by (3). Our primary objective in this paper is to
develop a suitable estimation law for ˙̂

Q such that the attitude
estimate converges to the actual system position, or Q̂ → Q.
To preserve the unit-quaternion properties of the estimate Q̂
we consider observers which are based on the dynamics of the
unit quaternion and rotation matrix, for example

˙̂
Q =

1

2

[
−q̂T

η̂I3×3 + S(q̂)

]
β,

˙̂
R = −S(β)R̂, (8)

where β ∈ R3 is an observer law which is later designed using
the system outputs y = [v, ω, b1, b2]

T in addition to the value
of the known magnetic field vector r1. One characteristic of
this problem that complicates the design and analysis of the
observers, is that the system apparent acceleration r2 is not
known in the inertial frame. However, this challenge can be
somewhat simplified by placing some realistic constraints on
the value of r2, which are stated in the following assumptions.

Assumption 1: There exists positive constants c1 and c2
such that ∥r2∥ ≤ c1 and ∥ṙ2∥ ≤ c2.
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Assumption 2: Given two positive constants, γ1 and γ2,
there exists a positive constant cw(γ1, γ2) such that cw <
λmin(W ) where

W = −γ1S(r1)2 − γ2S(r2)
2. (9)

The second assumption is satisfied if the system apparent
acceleration r2 is non-vanishing and is not collinear to the
magnetic field vector r1. This follows from the fact that the
eigenvalues of the negative semi-definite matrix S(ri)2, ri ∈
R3, are given by λ(S(ri)

2) = (−∥ri∥,−∥ri∥, 0), where the
null-space of S(ri)2 is collinear to the vector ri. Therefore, if
both r1 and r2 are non-zero and are not-collinear, then W =
WT is positive definite. In the case where r2 = 0, the system
velocity dynamics become v̇ = ge3 (which corresponds to the
rigid body being in a free-fall state) which is not likely under
normal circumstances.

In addition to the restrictions on the apparent acceleration
r2, we place the following additional constraints on the system
angular and linear velocity signals (observer inputs).

Assumption 3: There exists a positive constants c3 and
c4 such that the system angular velocity ω and system linear
velocity v are bounded such that ∥ω∥ < c3 and ∥v∥ < c4.

Although the third assumption is not needed to show con-
vergence of the attitude estimates to the actual system attitude,
we include this requirement in order to ensure boundedness
of all signals involved with the attitude observers (internal
stability).

To characterize the attitude error we use the quaternion Q̃ =
(η̃, q̃) ∈ Q and the rotation matrix R̃ = R (η̃, q̃) ∈ SO(3)
where

Q̃ = Q⊙ Q̂−1, R̃ = R̂TR. (10)

In light of (7) and (8) the attitude error is governed by the
following dynamic equations

˙̃Q =
1

2

[
−q̃T

η̃I + S(q̃)

]
ω̃, (11)

˙̃R = −S(ω̃)R̃, (12)
ω̃ = R̂T (ω − β) . (13)

Given this representation for the attitude error, the primary
objective of Q̂ → Q is equivalent to q̃ → 0 and η̃ → ±1.
Note that there are two (physically identical) equilibria that
correspond to the two desired values of η̃. This is due to
the fact that the map from the unit-quaternion space to the
real-space is non-injective (two-to-one map). For more details
regarding this well known topological obstruction the reader
is referred to [19] and [20]. Based upon this formulation we
now define the observers in the following two sections.

IV. OBSERVER 1

We define the adaptive state v̂ ∈ R3, and the error function
ṽ = v− v̂, which is subsequently used to define the following

observer

˙̂
Q =

1

2

[
−q̂T

η̂I + S(q̂)

]
(ω + σ) , (14)

σ = −γ1S(R̂r1)b1 − γ2k1S(R̂ṽ)b2, (15)

˙̂v = k1ṽ + ge3 + R̂Tb2 +
1

k1
R̂TS (σ) b2, (16)

where k1, γ1, γ2 > 0, R̂ = R(η̂, q̂) is defined using (3) and
S(·) is the skew-symmetric matrix defined by (4). Using the
definition of the attitude error as defined by (10), we propose
the following theorem:

Theorem 1: Consider the system (6)-(7), coupled with the
observer given by (14)-(16) where Assumptions 1-3 are sat-
isfied. Then for all initial conditions η̃(t0) ̸= 0, there exists
a constant κ1 > 0 such that for all k1 > κ1, there exists a
constant ρ, 0 < ρ < |η̃(t0)|, such that |η̃(t)| ≥ ρ for all t ≥ t0,
all of the observer signals are bounded and the signals ṽ and
q̃ converge exponentially to zero.

Proof: The first step in the proof is to study the dynamics
of the attitude error (in terms of the quaternion scalar η̃). To
this end let us define the following error signal:

r̃2 = k1ṽ − (I − R̃)r2. (17)

Using the definition of the attitude error, in addition to the
definition of ω̃ from (13) as well as (8) and (14), one can
find ω̃ = −R̂Tσ. Therefore, using (15) and the definition of
the error signal defined by (17), the derivative of the attitude
error in terms of the quaternion scalar η̃ is given by ˙̃η =
− 1

2 q̃
T(S(r1)R̃r1+γ2S(r2)R̃r2+γ2S(r̃2)R̃r2) where we used

the fact that S(R̂u) = R̂S(u)R̂T, and S(u)u = 0, where
u ∈ R3. Due to the definition of the rotation matrix (3), in
addition to the properties S(u)2 = uuT − uTuI and S(u)v =
−S(v)u, u, v ∈ R3, one can further show that q̃TS(ri)R̃ri =
2η̃q̃TS(ri)

2q̃ where ri ∈ R3. Therefore, the derivative of η̃ is
found to be

˙̃η = η̃q̃TWq̃ + γ2q̃
TS(R̃r2)r̃2/2, (18)

where W is the matrix defined by (9). We now focus our
attention to study the dynamics of the error signals ṽ and r̃2.
In light of (6) and (16), the derivative of ṽ is given by

˙̃v = −r̃2 − k−1
1 R̂TS(σ)b2. (19)

Using this result, in addition to (12), the derivative of r̃2 is
subsequently found to be

˙̃r2 = −k1r̃2 − (I − R̃)ṙ2. (20)

We now consider the following Lyapunov function candidate:

V =
γ

2
r̃T2 r̃2 + γq q̃

Tq̃ =
γ

2
r̃T2 r̃2 + γq(1− η̃2), (21)

where γ, γq > 0. Using the expressions (18)-(20) the derivative
of V is found to be

V̇ = −γk1r̃T2 r̃2 − 2γq η̃
2q̃TWq̃

−γ2γq η̃q̃TS(R̃r2)r̃2 − γr̃T2 (I − R̃)ṙ2 (22)
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To determine the upper bound for the derivative of V , in light
of Assumption 1, we first use Young’s inequality to find

γ2γq η̃q̃
TS(R̃r2)r̃2 ≤ ϵ1γ2γqc

2
1

2
r̃T2 r̃2 +

γ2γq
2ϵ1

η̃2q̃Tq̃

(23)
γr̃T2 (I − R̃)ṙ2 = 2γr̃T2 (S(q̃)− η̃I)S(ṙ2)q̃

≤ ϵ2γc
2
2r̃

T
2 r̃2 +

γ

ϵ2
q̃Tq̃. (24)

where we used the fact that ∥S(q̃)− η̃I∥ ≤ 1. Consequently,
we find the following bound for the derivative of V

V̇ ≤ −γ
(
k1 − ϵ1γ2γqc

2
1/(2γ)− ϵ2c

2
2

)
r̃T2 r̃2,

−η̃2q̃Tq̃
(
2γqcw − γ2γq/(2ϵ1)− γ/(ϵ2η̃

2)
)
. (25)

In the case where η̃ = 0 we cannot make any claims on
stability since (25) may be positive. Therefore, we are forced
to exclude the initial condition η̃(t0) = 0. We then define a
desired minimum bound for the quaternion scalar, which we
denote as ρ. The choice of ρ must therefore satisfy

0 < ρ < |η̃(t0)| ≤ 1. (26)

We subsequently choose a value for the gain γ as follows

γ = γ̄(∥r̃2(t0)∥2 + δ)−1, (27)

where we also place the additional constraints δ > 0 and

0 < γ̄ < 2γq
(
η̃(t0)

2 − ρ2
)
. (28)

If we consider the result (25) we can conclude that there exists
constants ϵ̄1 and ϵ̄2 such that for all ϵ1 > ϵ̄1 and ϵ2 > ϵ̄2 the
following inequality is satisfied

2γqcw > γ2γq/(2ϵ1) + γ/(ϵ2ρ
2). (29)

Furthermore, there exists a gain κ1(ϵ1, ϵ2) such that for all
k1 > κ1 the following inequality is also satisfied

k1 > ϵ1γ2γqc
2
1/(2γ) + ϵ2c

2
2. (30)

Note that the gain k1 approaches infinity as ρ → |η̃(t0)|,
therefore it is reasonable to take ρ a sufficient distance away
from the initial condition. As a result of the choices on the
gains, a sufficient condition for V̇ ≤ 0 is |η̃(t)| ≥ ρ. We now
wish to show that |η̃(t)| ≥ ρ for all t > t0. To this effect
we first recall that |η̃(t0)| > ρ. Suppose there exists a time t1
such that for all t0 ≤ t < t1, |η̃(t)| ≥ ρ, and |η̃(t1)| < ρ. Due
to the choice of the gain γ from (27) the expression of the
Lyapunov function can be written as

V(t) =
γ̄

2

∥r̃2(t)∥2

∥r̃2(t0)∥2 + δ
+ γq

(
1− η̃(t)2

)
. (31)

Therefore, in light of the choice of γ̄ given by (28) it can
easily be seen that

V(t0) < γq
(
1− ρ2

)
. (32)

Since |η̃(t1)| < ρ then we can also conclude

V(t1) > γq
(
1− η̃(t1)

2
)
> γq

(
1− ρ2

)
. (33)

Therefore, we have shown that V(t1) > V(t0), which is a
contradiction since V̇ ≤ 0 for t0 ≤ t < t1. Therefore, we
conclude that |η̃(t)| ≥ ρ for all t ≥ t0, and

V̇ ≤ −δr r̃T2 r̃2 − δq q̃
Tq̃, (34)

where δr = γ(k1 − ϵ1γ2γqc
2
1/(2γ) − ϵ2c

2
2) and δq =

ρ2(2γqcw − γ2γq/(2ϵ1)− γ/(ϵ2ρ
2)) . Therefore, since δr and

δq are positive (due to the choices of the gains), V̇ ≤ 0
which implies that r̃2 is bounded. Since r2 is bounded (due
to Assumption 1), it follows from the definition of r̃2 that
the error function ṽ is bounded, and therefore the signal σ is
bounded. In light of Assumption 3, it follows that the adaptive
state v̂ and the observer input β = ω + σ are bounded. Due
to the definition of the Lyapunov function, we can further see
that V̇ ≤ −ϵvV, where ϵv = min(δr, δq)/max(γ/2, γq) which
implies that the states r̃2 and q̃ converge exponentially to zero.

V. OBSERVER 2

For the second observer we define two adaptive estimates,
denoted by v̂, ψ ∈ R3, and the error function ṽ = v − v̂. We
consider the following observer:

˙̂
Q =

1

2

[
−q̂T

η̂I + S(q̂)

]
(ω + σ) , (35)

σ = −γ1S(R̂r1)b1 − γ2S(R̂r̂2)b2, (36)
r̂2 = k2ψ + k3ṽ, (37)

ψ̇ = −k4ψ +
1

k2
R̂TS(b2)σ − k5ṽ, (38)

˙̂v = k1ṽ + ge3 + R̂Tb2 + k6ψ, (39)

where k1, k3, γ1, γ2 > 0, R̂ = R(η̂, q̂) as defined by (3) and
S(·) is the skew-symmetric matrix defined by (4). Using the
expressions for the attitude error defined by (10) we now state
the following theorem.

Theorem 2: Consider the system (6)-(7), coupled with the
observer given by (35)-(39) where Assumptions 1-3 are satis-
fied, and we choose the following values for the gains k5 and
k6

k5 =
k3(k3 − k1)

k2
+
k4 − k3
k2k3γr

, k6 =
k2(k3 − k4)

k3
, (40)

where γr > 0. Then for all initial conditions η̃(t0) ̸= 0, there
exists gains κ1(η̃(t0)) > k3 − k4 > 0 and κ3(η̃(t0)) > 0
such that for all k1 > κ1 and k3 > κ3, there exists a constant
ρ, 0 < ρ < |η̃(t0)|, such that |η̃(t)| ≥ ρ for all t ≥ t0, all
the signals are bounded, and the signals ṽ and q̃ converge
exponentially to zero.

Proof: We begin the proof by studying the derivative of
the attitude error in terms of the quaternion scalar η̃. This
requires we first define the following error signal

r̃2 = k2ψ + k3ṽ + (R̃− I)r2 (41)

Similar to the previous observer, in light of (8), (13) and (35)
the expression for ω̃ is given by ω̃ = −R̂Tσ. Therefore, using
(11) and (36) the derivative of η̃ is found to be

˙̃η = η̃q̃TWq̃ +
γ2
2
q̃TS(R̃r2)r̃2 (42)
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At this point we wish to study the derivatives of the error
functions ṽ and r̃2. In light of (6) and (39) in addition to the
definition of the error signal r̃2 defined by (41), the derivative
of ṽ is given by

˙̃v = α1ṽ + α2r̃2 + α3(R̃− I)r2 (43)

where α1 = −k1+k3k6/k2, α2 = −k6/k2 and α3 = k6/k2−
1. Using this result, in addition to (12), (13) and (38), we find
the derivative of r̃2 to be

˙̃r2 = α4r̃2 + α5ṽ + α6(R̃− I)r2 + (R̃− I)ṙ2 (44)

where α4 = −k4 − k3k6/k2, α5 = k3k4 + k23k6/k2 − k2k5 −
k1k3 and α6 = k4 − k3 + k3k6/k2. Note that in light of
the choices of k5 and k6 from (40), the coefficients αi are
subsequently found to be

α1 = −k1 + k3 − k4
α2 = −k6/k2 = k4/k3 − 1
α3 = (k3 − k4)/k3 − 1 = −k4/k3
α4 = −k4 + k4 − k3 = −k3
α5 = k3k4 + k3(k3 − k4)− (k3(k3 − k1)

+(k4 − k3)/(k3γr))− k1k3
= 1/γr(1− k4/k3)

α6 = k4 − k3 + k3k6/k2 = 0

(45)

Consequently, one can see that α2 + γrα5 = 0 and α6 = 0.
Now, let us consider the following Lyapunov function candi-
date:

V =
γ

2
(ṽTṽ + γr r̃

T
2 r̃2) + γq(1− η̃2) (46)

where γ, γr > 0. In light of the expressions for the derivatives
of ṽ, r̃2 and η̃ from (43), (44) and (42), respectively, in addition
to the fact that α2 + γrα5 = 0 and α6 = 0, the derivative of
V is given by

V̇ = γα1ṽ
Tṽ + γγrα4r̃

T
2 r̃2 + γα3ṽ

T(R̃− I)r2
−2γqη̃

2q̃TWq̃ − γ2γq η̃q̃
TS(R̃r2)r̃2

(47)

In order to find an upper bound for the derivative of V , in light
of Assumption 1 and the expressions for the coefficients of αi

given by (45), we use Young’s inequality to find the bounds
of the following cross terms:

γα3ṽ
T(Re − I)r2 ≤ ϵ1

γc21k
2
4

k23
ṽTṽ +

γ

ϵ1
q̃Tq̃ (48)

γγr r̃
T
2 (R̃− I)ṙ2 ≤ ϵ2γγrc

2
2r̃

T
2 r̃2 +

γγr
ϵ2

q̃Tq̃ (49)

γ2γq η̃q̃
TS(R̃r2)r̃2 ≤ ϵ3

γqc
2
1γ

2
2

2
r̃T2 r̃2 +

γq
2ϵ3

η̃2q̃Tq̃

(50)

Therefore, the derivative of V is bounded by

V̇ ≤ −γ
(
k1 + k4 − k3 − ϵ1

c21k
2
4

k23

)
ṽTṽ

−γγr
(
k3 − ϵ2c

2
2 − ϵ3

γqc
2
1γ

2
2

2γγr

)
r̃T2 r̃2

−γq
(
2cw − 1

2ϵ3
− γ

γq η̃2

(
1

ϵ1
+
γr
ϵ2

))
η̃2q̃Tq̃

(51)

Similar to the previous observer, we need to show that η̃ ̸= 0.
Therefore, we choose a desired minimum bound for the value

of |η̃(t)|, which we denote as ρ, which must satisfy 0 < ρ <
|η̃(t0)| ≤ 1. We also choose the following value for γ:

γ = γ̄(∥r̃2(t0)∥2 + δ)−1 (52)

where δ > 0 and γ̄ < 2γq(η̃(t0)
2 − ρ2). Subsequently, we

specify the following values for the remaining gains. The gain
k4 is arbitrarily chosen 2, and γr is chosen such that γr > 0.
There exist strictly positive constants ϵ̄i, i = 1, 2, 3 such that
for ϵi > ϵ̄i we have 2cw > 1/(2ϵ3)+γ(1/ϵ1+γr/ϵ2)/(γqρ

2).
Based on the values of ϵ1 and ϵ2, we then choose k3 > κ3 and
k1 > κ1 where κ3 := ϵ2c

2
2+ ϵ3γqc

2
1γ

2
2/(2γγr). and κ1(ϵ1) :=

k3−k4+ ϵ1c21k24/k23. As a result of these choices for gains, it
is clear that V̇(t0) ≤ 0. Furthermore, using similar arguments
to the proof of the previous observer, we can show that if
there exists a time t1 such that |η̃(t1)| < ρ, then V (t1) >
V (t0) which is not possible since V̇ (t) ≤ 0 for t0 ≤ t < t1.
Therefore,

V̇ ≤ −δr r̃T2 r̃2 − δv ṽ
Tṽ − δq q̃

Tq̃,
δr = γγr

(
k3 − ϵ2c

2
2 − ϵ3γqc

2
1γ

2
2/(2γγr)

)
,

δv = γ
(
k1 + k4 − k3 − ϵ1c

2
1k

2
4/k

2
3

)
,

δq = γqρ
2
(
2cw − 1/(2ϵ3)− γ/(γqρ

2) (1/ϵ1 + γr/ϵ2)
)
,

where δr, δv and δq are positive constants due to the choices
of the observer gains. This implies that ṽ and r̃2 are bounded.
Since ṽ is bounded and v is bounded due to Assumption
3, then v̂ is bounded. The bound of the signal ψ follows
from the fact that r̃2 and r2 are bounded. Therefore, the
signal σ is bounded, and the observer input β = ω + σ is
bounded due to the bound of ω. Also, in light of the definition
of the Lyapunov function we obtain V̇ ≤ −ϵvV, ϵv =
min(δv, δr, δq)/max(γ/2, γγr/2, γq) which implies that V
and therefore r̃2, ṽ and q̃ converge exponentially to zero.

VI. SIMULATIONS

Simulations were performed to test the performance of the
two proposed attitude observers. For both simulations the
trajectory of the rigid-body position was specified as p(t) =
(4 sin(0.5t+ 0.5), 3 sin(1.25t+ 0.5), sin(0.5t+ 0.5)), from
which the rigid-body velocity v and apparent acceleration r2
were obtained. The angular velocity of the rigid body was cho-
sen as ω = (sin(0.1t), 0.2 sin(0.2t+ π), 0.1 sin(0.3t+ π/3)).
The inertial-referenced ambient magnetic field vector was
chosen as r1 = [0.18, 0, 0.54]TG. Figure 1 shows the signal
r2 as a result of the chosen position trajectory, which clearly
demonstrates large deviations from the non-accelerating
condition r2 = [0, 0,−g]. Figure 2 gives the simulation
results for the first observer, and Figure 3 give the results for
the second observer.

The following initial conditions were used for both simula-
tions: v̂(t0) = [0, 1, 0]T, η̂(t0) = 1, q̂ = [0, 0, 0]T, η(t0) = 0
and q(t0) = [1, 0, 0]T. This choice corresponds to a value of
the attitude error η̃ = 0 and q̃ = [1, 0, 0]T, which is the worst

2Although the gain k4 can be chosen to take any value, from a practical
standpoint this gain should be chosen to be positive since this introduces a
leakage term in the dynamics of ψ, and can improve the performance of the
observer in the presence of noise and other disturbances. For more information
on this leakage term, in addition to other practical tools in the area of adaptive
control, the reader is referred to [21].
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case scenario where the stability of the proposed observers is
not guaranteed according to our proof. This initial conditions
have been selected on purpose to show that the proposed
observers did not fail even in this extreme case.

The following gains were used for observer 1: k1 = γ1 =
γ2 = 1. For the second observer the following gains were
used: k1 = 10, γ1 = γ2 = 5, k2 = k3 = 2 and k4 = 1. The
gains k5 and k6 were chosen to satisfy (40).
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VII. CONCLUSION

Two observers have been proposed which use an ac-
celerometer, magnetometer, gyroscope and GPS to estimate

the orientation of a rigid body, subjected to relatively large
linear accelerations. In the earlier dynamic IMU-based attitude
estimation versions, accelerometers are assumed to measure
only the gravity vector, which can lead to poor performance
in the case where the rigid body is subject to significant linear
accelerations. The proposed observers, although different from
the observer of [14], provides similar almost global results. A
new stability analysis approach, that looks promising for future
developments in this field, has been adopted.
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