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Abstract— This paper deals with the estimation of a gramian-
based interaction measure from logged process data, and
thereby removing the need of creating parametric models prior
to the selection of the significant input-output interconnections.
Moreover, the resulting confidence regions of the estimates can
be used to perform a robust control structure selection.

The considered interaction measure is the Participation
Matrix. Based on previous results, a new unbiased statistic is
proposed, and confidence bounds for the estimate are derived.

Examples and a case study are used to illustrate how the
method can be applied.

I. INTRODUCTION

A critical step in the design of control systems in multi-

variable processes is the choice of the structure of the con-

troller. Current methods for control structure design include

the so called Interaction Measures (IMs), which date back to

1966 when the Relative Gain Array (RGA) was introduced

[1]. The IMs help the designer to select a subset of the most

significant input-output channels, which will form a reduced

model on which the control design will be based. The IM

considered in this paper is the Participation Matrix (PM) [2].

The IMs require prior process modeling, which is usually

a time consuming task. The complexity of the process

modeling increases as the number of process variables in-

creases. When modeling a complex process, the designer

usually models only the input-output channels which he/she

considers significant. When IMs are applied to such model,

the analysis may be biased by the judgment of the designer,

since potential input-output interconnections may have been

neglected. However, it is not optimal to model the full inter-

connection matrix since the significant input-output channels

often form a sparse subset, and therefore most of the created

models are neglected thereafter. Estimating any of the IMs

from process data would give useful information on how to

select the control structure, and the modeling effort can be

focused only on those interconnections which were found to

be significant.

Besides the clear advantages of estimating IMs from input-

output logged data, only a limited amount of work has been

published in this field, i.e. the methods described in [3] and

[4] to estimate the RGA and the PM respectively.

Clearly, the estimation of process parameters is affected

by process uncertainty. Thus, the validity of the decisions

based on control structure methods can not be assessed by
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only analyzing the nominal process parameters. Recently,

the effect of model uncertainties on control structure design

methods has received increasingly attention, i.e. the different

studies on the sensitivity of the RGA to model uncertainties

published in [5] and [6], or the work on the sensitivity on

the PM also to model uncertainties in [7] and [8].

The objective of this paper is creating a method for

estimating an indicator of the significance of the input-

output channels and obtaining confidence bounds on the

estimation. The clear benefit of this approach is to be able

to take a robust decision on control structure selection from

a simple experiment.

The IM here considered is the PM, which uses a gramian-

based indicator to quantify the significance of the input-

output channels. The work in this paper is based on previous

results in [4], where the mentioned indicator is estimated

from an estimation of the impulse response of each of the

input-output channels. Matching each of the input/output

channels with a FIR filter provides non-parametric models

which are easy and fast to create. The PM then provides

the required information for control structure selection, or

in the case of requiring more sophisticated models, the PM

will pinpoint the input-output channels on which the designer

should focus during the modeling task.

The preliminaries on the PM and its estimation are given

in Section II. Section III shows that the statistic used in [4]

provides a biased estimation (but asymptotically unbiased),

and therefore the first step in the work is to derive an

unbiased estimator, as described in Section IV. The second

step is to create confidence bounds on the estimation by

finding the distribution of the estimator, as described in

Section V. These confidence bounds on the estimation will

be used to perform a robust control structure selection. In

Section VI, the method is applied to a bark boiler and several

numerical considerations are given. Finally, the conclusions

are given in Section VII. For further details on the conducted

research the reader can refer to [9].

II. PRELIMINARIES

A. Controllability and observability gramians

Given a sampled system represented by the quadruple

(A,B,C,0) in state-space representation, the controllability (P)

and observability (Q) gramians are obtained by solving the

following discrete-time Lyapunov equations [10]:

APAT − P +BBT = 0 ; ATQA−Q+ CTC = 0

P quantifies how hard it is to control the system states

from the inputs, and Q quantifies how hard it is to observe
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the process states from the outputs.

Since P and Q depend on the state space realization,

the product PQ is formed. PQ is a matrix with non-

negative eigenvalues which are independent of the state space

realization, and the sum of its eigenvalues equals its trace.

The trace of PQ quantifies the combined abilities of the

inputs and outputs to control and observe the process state,

or in another words, it quantifies the connection of the input

and output spaces via the state space.

B. Participation Matrix (PM)

For a system with n inputs and m outputs, the PM was

introduced as [2]:

φij =
tr(PjQi)

m,n
∑

i=1
j=1

tr(PjQi)

(1)

where tr(PjQi) is the trace of the product of the control-

lability and observability gramians of the (i, j) input-output

channel.

The used normalization implies that all the elements in the

PM add up to 1, and the element φij quantifies the relative

contribution of the (i, j) input-output channel in the process.

When the PM is used for control structure design, a subset

of the most significant input-output channels is selected. A

total contribution of the selected channels higher than 0.7 is

expected to derive in a satisfactory performance.

The normalization in the computation of the PM involves

that a change in the value tr(PjQi) for an unique input-

output channel may influence all the elements in the PM. To

avoid this dependency, an index array containing the values

tr(PjQi) will be analyzed, and denoted by φ̃:

φ̃ij = tr(PjQi)

In this index array, as in its normalized version, the largest

elements identify the most significant input-output channels.

Besides, given a multivariable discrete time system G, the

value tr(PjQi) can be computed as [4] :

φ̃ij =

Nij
∑

k=0

k(hij(k))
2 (2)

where hij(k) is the true impulse response of the channel
(i, j) such that:

yi(τ ·Ts) =
n∑

j=1

Nij∑

k=0

hij(k) ·uj(τ ·Ts −k ·Ts), for τ = 1, 2, . . .

being Ts the sampling time, and Nij the number of

coefficients of the true impulse response of the channel (i, j)
until it settles to 0.

III. BIASED ESTIMATION OF THE I/O CHANNEL

SIGNIFICANCE

The method for the estimation of the PM introduced by
[4], uses Equation (2) to estimate tr(PjQi) from an estima-
tion of the impulse response of each input-output channel
obtained using linear regression to match FIR filters of

selected orders. For selected orders of the FIR filters Nmax
ij

larger than the length Nij of the true impulse response, the
true response of the output yi is given by:

yi(τ ·Ts) =
n∑

j=1

Nmax
ij∑

k=0

hij(k)·uj(τ ·Ts−k ·Ts), for τ = 1, 2, . . .

with hij(k) = 0, ∀k > Nij .

When the process inputs of a linear system are excited with

uncorrelated gaussian noise, and in the presence of additive

uncorrelated gaussian noise at the output, the estimated im-

pulse response ĥij(k) can be obtained using linear regression

as described in the Appendix.

The following statistic was used in [4] to estimate φ̃ij

[φ̃ij ]B =

Nmax
ij
∑

k=0

k(ĥij(k))
2 (3)

Proposition 1: The statistic in Equation (3) provides a

biased estimator for the indicator tr(PjQi). However, the

estimator is asymptotically unbiased.

Proof: The estimators for the impulse response can be

expressed as ĥij(k) = hij(k) + νij(k), where νij(jk) ∼
N(0, σ2

ij(k)), and being σ2
ij(k) the variance of ĥij(k).

The expected value of the estimator is:

E
(

[φ̃ij ]B

)

= E





Nmax
ij
∑

k=0

k
(

hij(k) + νij(k)
)2





=

Nmax
ij
∑

k=0

k(hij(k))
2 +

Nmax
ij
∑

k=0

2kE (hij(k)νij(k))

+

Nmax
ij
∑

k=0

kE
(

ν2ij(k)
)

= φ̃ij +

Nmax
ij
∑

k=0

k · σ2
ij(k)

(4)

And therefore is a biased estimator of φ̃ij . However,

σ2
ij(k) tend to zero when the number of logged samples

tends to infinity. Therefore, the estimator is asymptotically

unbiased, and it will converge to the true value of φ̃ij for an

infinite number of data samples.

IV. UNBIASED ESTIMATION OF THE I/O CHANNEL

SIGNIFICANCE

An unbiased statistic for φ̃ij is now introduced for linear

systems with uncorrelated gaussian noise both as excitation

and additive output noise.

Proposition 2: The statistic

[φ̃ij ]UB =

Nmax
ij
∑

k=0

k(ĥij(k))
2 −

Nmax
ij
∑

k=0

k · σ2
ij(k) (5)

provides an unbiased estimator of φ̃ij .

Proof: It follows from Equation (4).

The variances of the estimators σ2
ij(k) are the diagonal

elements of the covariance matrices of the linear regressions.

This covariance matrices can be determined knowing the

variance of the output disturbance noise, which can be unbi-

asedly estimated in case of being unknown (see Appendix).
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Fig. 1. Estimation of tr(PjQi) for the system in Equation (6) sampled

at a rate of 0.1 sec. Biased estimator [φ̃ij ]B (solid), unbiased estimator

[φ̃ij ]UB (dashed), and nominal values (solid horizontal line).

Example 1

The following process has been used in [4] to estimate the

PM from the statistic [φ̃ij ]B in Equation (3).

G(s) =





2.231
s+ 2.231

0.1189
s+ 3.567

0.5579
s+ 2.231

2.448s+ 2.567
s2 + 5.192s+ 5.797



 (6)

A sampling rate of 0.1 sec was selected. The continuous-

time system was excited with a discrete signal and hold by

a ‘zoh’. The sampling rate of the system has an important

impact in the value of the PM of a linear system [11], and

the nominal value of φ̃ij is that of the discretized system.

Discrete uncorrelated gaussian noise sequences were used

for both the excitation and the output additive noise with

variances of 4 and 0.04 respectively. The variance of the

measurement noise was assumed to be unknown.

The chosen length of the FIR filters was 35 coefficients.

Independent experiments with different numbers of logged

data samples logged were performed. For the selected length

of the FIR filters, at least 179 simulated samples are needed

for the degrees of freedom of the residual error in the

MISO regressions to be larger than the number of estimated

parameters.

From Fig. 1 it can be observed that for more than 179
samples, the new estimator [φ̃ij ]UB converges to the true

value, whilst the estimator [φ̃ij ]B needs more samples to

converge. When more samples are taken, the variance of both

estimators is reduced.

Previous simulation work in this process using [φ̃ij ]B
is described in [4], where an error in the estimation was

observed in the channels with poor S/N. In this example, we

identify a bias term contributing to this discrepancy, which

can be subtracted to obtain an unbiased estimation.

V. CONFIDENCE BOUNDS ON THE ESTIMATION OF THE

I/O CHANNEL SIGNIFICANCE

In this section we derive the distribution of the unbiased

estimator [φ̃ij ]UB introduced in the previous section and

apply it to generate confidence bounds on the estimation.

Proposition 3: The estimator in Equation (5) is distributed

as a linear combination of noncentral chi-square random

variables with one degree of freedom of the form:

[φ̃ij ]UB =

Nmax
ij
∑

k=0

k · σ2
ij(k) ·Hij(k)−

Nmax
ij
∑

k=0

k · σ2
ij(k)

Hij(k) ∼ χ2
1

(

µ2
ij(k)

σ2
ij(k)

)

(7)

where µ2
ij(k) and σ2

ij(k) are the means and variances of the

estimators ĥij(k) of the impulse response.

Proof: The independence of ĥij has been ensured

by using an uncorrelated excitation signal. The coefficients

of the estimated impulse response ĥij are independently

normally distributed random variables with mean µij(k) and

variance σ2
ij(k). The parameters µij(k) are the coefficients

estimated in the linear regressions and σ2
ij(k) are the di-

agonal elements of the covariance matrices from the linear

regressions (see Appendix).

Introducing the random variables h̃ij(k) = ĥij(k)/σij(k)
in Equation (5) we obtain:

[φ̃ij ]UB =

Nmax
ij
∑

k=0

k · σ2
ij(k) · (h̃ij(k))

2 −

Nmax
ij
∑

k=0

k · σ2
ij(k)

h̃ij(k) ∼ N

(

µij(k)

σij(k)
, 1

)

(8)

400 600 800 1000 1200 1400

0.02

0.04

0.06

0.08

0.1

Number of samples

V
a
lu

e

Channel (2,1)

400 600 800 1000 1200 1400

0.1

0.12

0.14

0.16

0.18

Number of samples

V
a
lu

e

Channel (2,2)

400 600 800 1000 1200 1400

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Number of samples

V
a
lu

e

Channel (1,1)

400 600 800 1000 1200 1400

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of samples

V
a
lu

e

Channel (1,2)

Fig. 2. Estimation of tr(PjQi) for the system in Equation (6) sampled

at a rate of 0.1 sec. Biased estimator [φ̃ij ]B (solid), unbiased estimator

[φ̃ij ]UB (dashed), 99% confidence region (shaded area) and nominal value
(horizontal solid line).
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Fig. 3. Sketch of a bark boiler with air system.

The square of a normally distributed variable with mean µ
and unit variance, follows a non-central chi-square distribu-

tion χ2
1(λ) with one degree of freedom, and noncentrality

parameter λ = µ2. Therefore, the variables Hij(k) = h̃2
ij(k)

are distributed as Hij(k) ∼ χ2
1

(

µ2

ij(k)

σ2

ij
(k)

)

. Substituting h̃2
ij by

Hij(k) in Equation (8) we get Equation (7).

To apply this proposition, the Cumulative Distribution

Functions (CDFs) of linear combinations of independent

non-central chi-square random variables have to be com-

puted. An algorithm for this was proposed in [12]. The

author distributes the implemented algorithm in FORTRAN

and C++ versions. In the work described in this paper, the

algorithm was ported to Matlab code.

Example 2

The system in Equation (6) was excited as described in

Example 1. The obtained data was used to create asymmetric

99% confidence bounds (0.1% from the left, 0.9% from the

right) on the estimation of [φ̃ij ]UB , and the result is depicted

in Fig. 2.

This example shows how for a short number of logged

samples, the uncertainty in the estimation is too large, and

the only robust conclusion that we can take is that the input-

output channel with higher significance is the channel (1, 1).
The uncertainty is reduced as the number of logged samples

increases, and it becomes clear that the most important input-

output channels are the diagonal ones, being able to take the

robust decision of using a decentralized controller.

VI. CASE STUDY: BARK BOILER

A bark boiler is used in the pulp and paper industry

to burn rest products from debarking of wood in order

to produce steam. If there is an over production of steam

which is not used within the production processes, electrical

power is produced from remaining steam. Nowadays, these

boilers are operated with hard environmental constraints

on the composition of the flue gases, resulting in trade-

off between optimal steam production at low cost while

producing minimal exhaust gases like CO, CO2 and NOx.
In this case study, the air control system of a bark boiler

at SCA Obbola, Sweden is analyzed. A simple sketch of

the boiler is given in Fig. 3. There, the primary, secondary

and tertiary air ducts are indicated. The tertiary air is tapped

from the primary air after the first heater using an extra fan

to achieve a desired flow. Subsequently, the air flow is split

in an upper an lower part to be supplied in the exhaust gas

duct. A good control performance of the air system is a

prerequisite to achieve a stable operation of the bark boiler.

A. Process models

In order to acquire measurement data, experiments were

performed at the bark boiler around a specified working

point. Thereafter, the logged data was used to estimate

models using the prediction error method for approximating

parameters of first and second order processes models with

time delays. These models were derived as multiple-input

single-output models for each output.
The resulting process model for the complete air system

is given as a 4× 4 transfer function matrix:

G =













0.301e−0.838s

1.120s+1
−0.025e−0.527s

0.2283s+1
1.199e−27.8s

280.2s+1
0.076

2.542s+1
(0.258s+0.708)e−28.6s

48.2s2+280.4s+1
(0.016s+0.045)e−0.814s

0.438s2+2.714s+1
−0.035e−28.5s

602.3s2+282.3s+1
−0.002e−0.704s

5.465s2+4.692s+1
−0.014e−30s

68.69s+1
−0.004e−0.178s

0.2633s+1
0.004e−0.615s

16.31s+1
0.611

145.2s+1
(0.282s+0.022)e−4.48

11.97s2+14.57s+1
(−0.009s+0.002)e−0.814s

s+0.007
−0.003e−2.45

61.96s+1
−0.5476
2.689s+1












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Fig. 4. Estimated tr(PjQi) for the air system of the bark boiler with respect to the number of logged samples for a single experiment with a sampling
rate of 3 sec. Biased estimation (solid), unbiased estimation (dashed), 99.5% confidence region (shaded area) and nominal value (horizontal solid line).

B. Estimating tr(PjQi) for the bark boiler

The linear process models were simulated in order to

obtain an estimate for tr(PjQi). The variances of the input

excitation and the output noise were 16 and 0.01 respectively.

The variance of the measurement noise was assumed to

be unknown. A sampling rate of 3 sec was considered

appropriate to capture the process dynamics.

It has been observed from the step response that the

settling time of the fastest channel is around 20 sec whilst

the slowest channel shows a setting time around 1500 sec.

For convenience to the final user of the algorithm, it was

of desire to choose the same length of the FIR filter used to

match the impulse response for each of the channels. The se-

lected length of the filter was 500 coefficients, which allows

to capture the impulse response of the slowest channels.

This means that for the fastest channels, a large part of

the coefficients of the estimated impulse response which

should be 0 are estimated as different to 0 due to the noise.

This effect increases the variance of the estimated value of

tr(PjQi) (and the bias if the biased estimator is used).
First attempts to create confidence bounds on the es-

timation gave incoherent results due to numerical errors.
The main source of these errors was found to be the
algorithm for computing the CDF of the linear combination
of the non-central chi-square random variables. The author
of the function reports possible inaccurate results when a
few random variables with few degrees of freedom are
dominating in the linear combination. This is clearly the
case when the length of the FIR filters have been selected

too large and then many of the estimated coefficients are
distributed around 0. For dealing with this limitation, the
coefficients of the impulse responses were separated in a set
including the significant coefficients, and a set including the
not significant coefficients. Only the significant coefficients
are then passed to the function for computing the CDF. We
therefore decompose [φ̃ij ]UB as:

[φ̃ij ]UB =
∑

k∈ksig

k · σ
2

ij(k) ·Hij(k)

︸ ︷︷ ︸

S1a

+
∑

k∈kunsig

k · (ĥij(k))
2

︸ ︷︷ ︸

S1b

−

Nmax
ij∑

k=0

k · σ
2

ij(k)

︸ ︷︷ ︸

S2

; Hij(k) ∼ χ
2

1

(
µ2

ij(k)

σ2

ij(k)

)

with

ksig = {k : hij(k) is a significant coefficient}

kunsig = {k : hij(k) is not a significant coefficient}

For computing the confidence bounds on the estimation of

φ̃ij , it is then advised to first compute the confidence bounds

on S1a and then add the quantities S1b and S2.
The classification of the hij(k) coefficients, has been done

by applying statistical t-tests with the following hypothesis:

Ho : ĥij(k) comes from a normal distribution with 0 mean.

H1 : ĥij(k) comes from a normal distribution with mean different

than 0.
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For a P-value of the test lower than 0.05, the null hypothesis

was rejected and the coefficients were considered significant.

The confidence intervals were selected to be at 99.5%
(0.01% from the left and 0.04% from the right), and the

result is depicted in Fig. 4.

C. Analysis of results on the bark boiler

In Fig. 4, it can be seen that the unbiased estimate of

tr(PQ) is converging rapidly to the nominal value and that

it stays within the confidence region. Whereas the biased

estimator yields large deviations for most channels of the

process, besides (u1, y2).
From inspection of nominal values the following control

scheme could be suggested:

• Use u1 primarily to control the tertiary air flow y2.

• Use u2 to control the lower tertiary air flow y3.

• Use u4 to control the upper tertiary air flow y4
• Do not use u3 for control purposes.

Additionally, it can be seen that there is an affect from u1

to y1, which should be dealt with by either a feedforward

control or by integrating into the control loop for y2 using a

cascade.

VII. CONCLUSIONS

The benefit of estimating IMs from process data is to

be able to identify a subset of the most important input-

output interconnections of a multivariable system. This sub-

set will form a reduced system on which future modeling

efforts will be placed and control design will be based.

However, the uncertainty in this estimation can lead to

an erroneous selection, and being able to create confidence

bounds on the estimation will allow to take robust decisions

on the control structure to be selected.

The results in this paper start from an estimator for a

gramian-based IM which was previously introduced in [4].

The estimator is proved to be biased (but asymptotically

unbiased). The bias is positive, and becomes significant

in the channels with poor S/N. This channels may then

be erroneously considered as significant. This bias can be

subtracted in order to create an unbiased estimation.

The probability distribution of the unbiased estimator is

found, allowing to create the sought confidence intervals in

the estimation. These intervals can be used to perform a

robust decision on the control structure to be used.

Two examples have been used to illustrate the usefulness

of the method, and some numerical issues are discussed in

order to facilitate the implementation.

APPENDIX

ESTIMATION OF THE IMPULSE RESPONSE

This appendix describes some statistical properties of the

estimation by linear regression of the impulse response of

a linear system under gaussian noise excitation and in the

presence of additive gaussian noise at the output [13].

Denote by Ns the number of logged samples of the output

y. Collect the input (u) and output histories in vectors of the

form:

Ui(kTs) =























u1(kTs)
u1(kTs−Ts)
u1(kTs−2Ts)

...
u1(kTs−Nmax

i1 Ts)

u2(kTs)
u2(kTs−Ts)

...
un(kTs−Nmax

in Ts)























;

Φi =







Ui(Ts)
T

Ui(2Ts)
T

...
Ui(NsTs)

T







Yi =







yi(Ts)
yi(2Ts)

...
yi(NsTs)







The impulse response of the output yi is then estimated as:

Ĥi = (ΦT
i Φi)

−1
Φ

T
i Yi ; Cov(Ĥi) = σ2

yi
(ΦT

i Φi)
−1

where

Ĥi = (ĥi1(1), . . . , ĥi1(N
max
i1 ), ĥi2(1), . . . , ĥin(N

max
in ))T

and σ2
yi

is the noise variance at the output yi. If this variance

is unknown, it can be estimated using the following unbiased

statistic:

σ̂2
yi

=
1

Ns − di
(Yi −ΦiĤi)

2

where di is the dimension of Φi.
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