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Abstract— This paper presents a cascade control of the moto-
compressor of a Polymer Electrolyte Membrane Fuel Cell
(PEMFC). The control objective is to optimize the net power by
maintaining the oxygen excess ratio between 2 and 2.4. The pro-
posed control strategy is based on two cascaded super twisting
second order sliding mode controllers (Fig.1), which regulate
the moto-compressor supplying air to the cathode side of the
fuel cell. Simulation results show that the proposed controller
has a good transient performance under load variations and
parametric uncertainties.

I. INTRODUCTION
The main problem of a fuel cell is oxygen starvation when
the load changes rapidly. If the load increases, it needs more
power and the current of the fuel cell increases. The chemical
reactions need to be accelerated to provide the required
power to the load, using more oxygen. Hence precise control
of moto-compressor, which supplies air to the fuel cell, is
important in order to optimize the net output power. In the
last few years, many control strategies have been proposed
for control of the moto-compressor of the PEMFCs, notable
among them are linearizing at an operating point with a
feedforward and feedback control [1], neural networks [2],
model predictive control [3], [4] and sliding mode control
[5], [6], [7].
In this paper we have proposed a cascade control strategy us-
ing second order sliding mode control (SOSMC) for PEMFC,
using super twisting algorithm. The proposed control law
is based on the works of [8] and [9], which have been
developed to counteract the chattering phenomenon while
preserving the main advantages of standard sliding mode
control. The control objective is to maintain the oxygen
excess ratio λO2 = 2 because the highest net power Pnet is
achieved at an oxygen excess ratio between 2 and 2.4. The
proposed cascade controller contains two loops. The outer
loop performs a feedback-linearized SOSMC of the oxygen
excess ratio, generating the reference compressor air flow for
the inner loop. The inner loop controls the moto-compressor
(voltage) using a second SOSMC and feedback linearization
(FBL).Fig.1 In order to synthesize a good control law, a
comprehensive dynamic model is required. The most detailed
model that exists in the literature is the 9 state model
proposed by Pukrushpan [1].

x = [mO2 ,mH2 ,mN2 ,ωcp, psm,msm,mw,an,mw,ca, prm]
T

where mO2 , mH2 and mN2 are the mass of oxygen, hydrogen
and nitrogen, respectively, ωcp is the compressor speed,

psm and msm are the pressure and the mass of the supply
manifold, respectively, mw,an and mw,ca are the mass of
water in the anode and the cathode side, respectively and
prm is the pressure of the return manifold. The number of
states however, restricts its use in control applications, due
to the large number of calculations required. In our study,
we have considered reduced forms of Pukrushpan’s model.
Two reduced forms of the this model exist in contemporary
literature. The first form has been proposed in [10]. It reduces
the model to 4 states under the following five assumptions:
1) The water mass in the anode and the cathode side will be
constant, they are equal to the maximum vapor mass because
the gas is humidified at 100oC or saturated, in the cathode
and the anode side.
2) The control of the hydrogen is ensured by an electrovalve
which has faster dynamics than the dynamics of the air circuit
of the moto compressor. The anode pressure input is hence
regulated as a function of the cathode pressure input or the
compressor mass flow rate. The pressure of the anode side
will therefore be equal to the pressure of the cathode side.
3) The supply manifold mass will be proportional to the
manifold pressure, since the gas in the supply manifold
verifies the properties of the ideal gas.
4) The return manifold pressure is equal to the atmospheric
pressure as the pressure drop across the manifold is negligi-
ble because the volume of the return manifold is negligible.
5) All the gases are ideal so the masses of oxygen and
nitrogen gases can be replaced by their partial pressures.
The second reduced form, proposed in [11], reduces the
model to 3 states under two further assumptions:
1) The entire cathode pressure is considered as a state,
instead of considering nitrogen and oxygen pressures indi-
vidually. Moreover, the individual molar masses of oxygen,
nitrogen and water are assumed to have the same magnitude,
and are replaced by a single constant.
2) The cathode exit flow rate is assumed as critical flow or
choked flow.
Our controller has been designed around the 3-state model.
This paper has been divided as follows. The mathematical
model of the PEMFC dynamics has been described in Section
2. In section 3 we present the system measurement and
performance of the PEMFC. In section 4 the method of
second order sliding mode control has been detailed. Section
5 presents the control design of the controller proposed.
Section 6 presents the simulation results. Finally, conclusion
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are presented in section 7.

Fig. 1. Proposed cascaded control structure

II. DYNAMIC MODEL

In this section we present the nonlinear dynamic model of the
fuel cell system proposed in [11]. This model has 3 states,
which are:

x = [pca,ωcp, psm]
T

where pca is the cathode pressure in Pascal (Pa), ωcp is the
compressor speed in radian per second (rad/s) and psm is the
supply manifold pressure in Pascal (Pa).
According to the ideal gas law and the mass conservation
rule:

d pca

dt
=

Tf c

Vca

(
R

Ma
Wca,in−

R
κ

Wca,out −
R

MO2

Wca,reacted

)
(1)

where R is the universal gas constant, Ma and MO2 are
the molar masses of air and oxygen respectively, κ is the
constant mentioned in the assumption 1 by [11]. Vca is the
cathode volume, Wca,in is the inlet cathode mass flow rate,
Wca,out is the outlet cathode mass flow rate and Wca,reacted is
the reacted mass flow rate in the cathode. Wca,in is expressed
as follows:

Wca,in =
1

1+ωatm
Win

with ωatm =
Mv

Ma

φatm psat(Tatm)

patm−φatm psat(Tatm)
Win = kca,in(psm− pca)

(2)

where Mv is the molar mass of vapor, φatm is the relative
humidity at ambient conditions (preset to the average value
0.5), psat(Tatm) is the saturation pressure at the ambiance
temperature, patm is the atmospheric pressure and kca,in is the
cathode inlet orifice constant. Wca,out is expressed as follows:

Wca,out =
pca− psat(Tf c)

pca
Wout (3)

As Wout is assumed to be choked flow [11] (
patm

pca
≤(

2
γ +1

) γ

γ−1 ), we obtain

Wout =
CDAT pca√

RTf c
γ

1
2
(

2
γ +1

) γ +1
2(γ−1) (4)

where γ is the specific heat ratio of air, CD is the discharge
constant of the nozzle and AT is the opening area of the
nozzle. The saturation pressure is calculated as a function of
the fuel cell temperature Tf c, and it is presented as follows:

log10(psat(Tf c)) = (−1.69∗10−10T 4
f c +3.85∗10−7T 3

f c (5)

−3.39∗10−4T 2
f c +0.143Tf c−20.92)∗103

Oxygen is the only gas which reacts on the cathode side.
Electrochemistry principles are used to calculate the rate of
oxygen consumption. The mass flow rate of oxygen reacted
in the cathode Wca,reacted is expressed as follows:

Wca,reacted = MO2

nIst

4F
(6)

where, n is the number of cells in the stack, F is the faraday
number and Ist is the stack current.
The angular speed ωcp verifies the following differential
equation:

dωcp

dt
=

1
Jcp

(τcm− τcp) (7)

where, Jcp is the compressor motor inertia. τcm and τcp
denote the compressor motor torque and the load torque
required to drive the compressor respectively.

τcm =
ktηcm

Rcm
(vcm− kvωcp)

τcp =
CpTatm

ηcpωcp

( psm

patm

)γ−1
γ −1

Wcp

(8)

where Rcm, kt and kv are motor constants, ηcp is the compres-
sor efficiency, ηcm is the motor mechanical efficiency, Cp is
the specific heat capacity of air, vcm is the compressor motor
voltage and Wcp is the compressor mass flow rate (expressed
in equation (15)).
The air pressure in the supply manifold is given by the
following differential equation:

d psm

dt
=

RTcp

MaVsm
(Wcp−Win) (9)

where, Vsm is the supply manifold volume and Tcp is the
temperature leaving the compressor.

Tcp = Tatm +
Tatm

ηcp

( psm

patm

)γ−1
γ −1

 (10)

The model can be written as follows:

ẋ = f (x)+guu+gξ ξ

x =

 x1 := pca
x2 := ωcp
x3 := psm

 ; u := vcm ; ξ := Ist (11)

Where the control input u is the compressor motor voltage,
the input ξ is the stack current and is considered as measur-
able disturbance to the system.
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III. SYSTEM MEASUREMENT AND PERFORMANCE

A. System measurement

The system measurement or output is defined by:

y =

 Vst
psm
Wcp

 (12)

where Vst , psm and Wcp are the stack voltage, the supply
manifold pressure and the compressor air flow, respectively.
The stack voltage (13) is the sum of the voltages of elemen-
tary cells, connected in series.

Vst = nVf c (13)

The fuel cell voltage (14) is defined as a function of
the current density, saturation pressure, partial pressures of
oxygen and hydrogen, fuel cell temperature and membrane
humidity [12][1].

Vf c = E−Vactivation−Vohmic−Vconcentration (14)

The voltage E is called the reversible open circuit voltage or
the ”Nernst” voltage of a hydrogen fuel cell. The activation
loss Vactivation is due to the chemical reactions and the elec-
tron movement between the anode and the cathode. Ohmic
losses Vohmic occur due to two main causes, the resistance
of the polymer membrane to the transfer of protons, and the
resistance of both the electrodes and the collector plate to
the transfer of electrons. The concentration loss Vconcentration
or concentration over-voltage results from the concentration
drop of the reactants as they are consumed in the reaction
[13].
The air flow at the output of the compressor is a function
of the angular speed of the moto-compressor and the supply
manifold pressure. It can be written as follows [7]:

Wcp = k15

1− e
k16

( psm

patm

)k17
−1

ω−2
cp −k18

ωcp (15)

where the constants k15, k16, k17 and k18 are defined in
appendix [A].

B. System performance

The system performance is defined by:

z =
[

Pnet
λO2

]
(16)

Where Pnet and λO2 are the net power and the oxygen
excess ratio, respectively. The net power Pnet of the fuel cell
system is the difference between the power produced by the
stack and the compressor motor power. For certain stack
currents, stack voltage increases with increasing air flow
rate to the stack because the cathode oxygen partial pressure
increases. The excess amount of air flow provided to the
stack is normally indicated by the term oxygen excess ratio
λO2 , defined as the ratio of oxygen supplied and oxygen
used in the cathode.

The two performance parameters are calculated as follows:

Pnet = Pst −Pcm

λO2 =
WO2,in

WO2,react

(17)

where
Pst = Vst Ist

Pcm =
vcm

Rcm
(vcm− kvωcp)

WO2,in = xO2,ca,inWca,in
WO2,react = Wca,reacted

(18)

with xO2,ca,in =
yO2,ca,inMO2

yO2,ca,inMO2 +(1− yO2,ca,in)MN2

where yO2,ca,in is the oxygen mole fraction and MN2 is the
nitrogen molar mass.

IV. SECOND ORDER SLIDING MODE

Consider a single-input nonlinear system

ẋ = f (x)+g(x)u
y = s(x) (19)

with x ∈ X ⊂ Rn the state variable and u ∈ U ⊂ R the
input, such that X = {x ∈Rn | |xi| ≤ xiMAX , 1≤ i≤ n} and
U = {x ∈ R | |u| ≤ uMAX}. f and g are smooth uncertain
functions.
Suppose that the control objective is to force a defined output
function (called sliding variable) s(x) to zero. The relative
degree of the system is assumed to be constant and known.
We suppose that the control explicitly appears in the 1st time
derivative of s

ṡ =
∂

∂x
[s][ f (x)+g(x)u] (20)

There exist positive constant values C, Km and KM so that,
∀u ∈U and ∀x ∈X ,

0 < Km <
∂

∂u
ṡ < KM,

∣∣∣∣ ∂

∂x
ṡ
∣∣∣∣≤C (21)

Consider local coordinates [ζ1 ζ2]
T = [s ṡ]T . Then, on the

basis of the previous definitions and conditions, the second
order sliding mode problem becomes the finite time stabiliza-
tion problem of the following uncertain second order system
[9], [14] {

ζ̇1 = ζ2

ζ̇2 = a(x)+b(x)v
(22)

where ζ2 may be unmeasurable. Referring to the previous
notation, v = u is the control input. There are several al-
gorithms which ensure the finite time stabilization of the
system (22) towards the origin [9], [15]. Among them, the
so-called ”Super Twisting algorithm” relies on inserting an
integrator into the controller loop, such that control becomes
a continuous time function. This algorithm is defined by the
following control law [9], [15]

u = u1 +u2
u̇1 = −βssign(s)

u2 = −αs|s|
1
2 sign(s)

αs > 0 ; βs > 0

(23)
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with the following sufficient conditions which ensure the
finite time convergence to the sliding manifold.

βs >
C
Km

, α
2
s ≥

4CKM(βs +C)

K3
m(βs−C)

(24)

V. CONTROL DESIGN

The dynamical equations of the simplified model can be
presented as follows :

ẋ1 = k1x3− (k1 + k2)x1 + k3− k4ξ

ẋ2 = −k5x2−
k6

x2

[(
x3

k7

)k8

−1

]
Wcp + k9u

ẋ3 = k10

[
1+ k11

[(
x3

k7

)k8

−1

]]
[Wcp− k12(x3− x1)]

(25)

x =

 x1
x2
x3

 ; u = vcm ; ξ = Ist (26)

where the constants k1, k2 ... and k12 are defined in appendix
[A].
Second order sliding mode control (2-SMC) technique [8],
[16] is used to design a cascade-based architecture, repre-
sented by the block diagram in Fig.1. This control method
is known to be robust against disturbances and parametric
uncertainties. The control objective is to maintain the oxygen
excess ratio on 2. The controller system is decomposed into
2 parts the outer loop and the inner loop. The outer loop,
”2-SMC oxygen excess ratio controller”, contains the Super
Twisting algorithm, with the oxygen excess ratio error as
input. The output of the controller Wcp,re f is the reference
compressor air flow. This serves as the reference for the inner
loop, ”compressor air flow controller” which produces the
compressor motor voltage vcm to be applied to the PEMFC.
The detailed scheme of the controller is presented in the
Fig.2. Two sliding manifolds have been chosen to force λO2
and Wcp towards the equilibrium points λO2,re f and Wcp,re f
respectively, the manifolds are defined for the outer and inner
loops.

Fig. 2. Detailed diagram of the proposed control system

A. Outer loop
The manifold of the outer loop is defined as:

s1 = λO2 −λO2,re f

s1 =
k13

k14Ist
(x3− x1)−λO2,re f

(27)

Consider the first time derivative of s1

ṡ1 = λ̇O2 − λ̇O2,re f

ṡ1 =
k13

k14Ist
(k10

[
1+ k11

[(
x3

k7

)k8

−1

]]
[Wcp,re f − k12(x3− x1)]− (k1x3− (k1 + k2)x1
+k3− k4Ist))

(28)
where the constants k13 and k14 are defined in appendix [A].
Using feedback linearization technique,

Wcp,re f = γ1(t,x)−1(v1−φ1(t,x)) (29)

with

φ1(t,x) =
k13

k14Ist
(k10

[
1+ k11

[(
x3

k7

)k8

−1

]]
∗(−k12(x3− x1)− (k1x3− (k1 + k2)x1
+k3− k4Ist))

γ1(t,x) =
k13k10

k14Ist

[
1+ k11

[(
x3

k7

)k8

−1

]] (30)

where v1 leads to one integrator ṡ1 = v1 and is designed to
stabilize this new system:

v1 = v11 + v12
v̇11 = −β1sign(s1)

v12 = −α1|s1|
1
2 sign(s1)

α1 = 3 ; β1 = 0.5

(31)

α1 and β1 respect the conditions given in equation (24).

B. Inner loop

The manifold of the inner loop is defined as:

s2 = Wcp−Wcp,re f (32)

Consider the first time derivative of s2

ṡ2 = Ẇcp−Ẇcp,re f

ṡ2 = φ2(t,x)+ γ2(t,x)vcm−Ẇcp,re f
(33)

with

φ2(t,x) =
∂ s
∂x2

ẋ2 +
∂ s
∂x3

ẋ3

γ2(t,x) =
∂ s

∂vcm

(34)

Using feedback linearization technique,

vcm = γ2(t,x)−1(v2−φ2(t,x)+Ẇcp,re f ) (35)

where v2 leads to one integrator ṡ2 = v2 and is designed to
stabilize this new system:

v2 = v21 + v22
v̇21 = −β2sign(s2)

v22 = −α2|s2|
1
2 sign(s2)

α2 = 3 ; β2 = 2

(36)
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α2 and β2 respect the conditions given in equation (24). In
addition to the controller, a real time robust exact differen-
tiator has been added [17] to obtain an exact derivative of
Wcp,re f . The differentiator has the form:{

ż0 =−γ2L
1
2 |z0− s| 12 sign(z0− s)+ z1

ż1 =−γ1Lsign(z1− ż0)
(37)

Where z0 and z1 are the real time estimations of Wcp,re f
and Ẇcp,re f , respectively. The parameters of the differentiator
γi are to be chosen empirically, in advance. γ1 = 1.1, γ2 =
1.5 have been suggested in [17]. L is the only differentiator
parameter to be tuned, and it has to satisfy only one condition
|Ẅcp,re f | ≤ L.

VI. MODEL VALIDATION AND SIMULATION RESULTS

The proposed control method has been simulated in the
Matlab-Simulink environment. The stack current applied
to the system has been chosen following [11]. It consists
of rapid variations between 100 and 250 Amperes. The
associated stack voltage varies between 225 and 260 Volts.
The stack current and the stack voltage are presented in
the Fig.3. The control objective of the cascade controller
using second order sliding mode control is to stabilize the
oxygen excess ratio on 2. During a positive current step
transition (for example at t = 6s), the oxygen excess ratio
drops as shown in Fig.4, and this causes a drop in the
stack voltage as shown in Fig.3. We can remark that the
controller ensures a rapid convergence of the oxygen excess
ratio with an acceptable control input or compressor motor
voltage as shown in the Fig.5. The compressor voltage varies
between 0 and 200 Volts. Also, we avoid a λO2 < 1 during
the load variations as it can cause irreversible damage to
the PEMFC. The net power obtained from this controller is
presented in the Fig.6. It can be seen that it varies between
20 and 50 kiloWatts. The compressor speed and the air
flow are plotted in the Fig.7. Finally, the cathode pressure
which varies between 1 and 2.4 bar and the supply manifold
pressure which varies between 1.4 and 2.6 bar are plotted in
Fig.8. Moreover, some parameters have been considered as
uncertain (cited in Table.I). Fig.9 shows that the controller is
robust under parametric uncertainties, the red line depicts the
system trajectory in presence of uncertainties, while the blue
dashed line shows the behavior of the undisturbed system.
Fig.10 shows the difference in control curves between undis-
turbed system and uncertainties system. It can be concluded
from these results that the proposed controller maintains its
performance under load variations and uncertainties.

VII. CONCLUSION

In this paper, a nonlinear cascade control has been designed
to regulate the oxygen excess ratio in a PEMFC, using
super twisting second order sliding mode control. The control
objective is to stabilize the oxygen excess ratio in order to get
the highest net power. The PEMFC has been modeled using
a reduced state model, subject to parametric uncertainty
and load variations. The Simulations results obtained using
Matlab-Simulink have shown that the cascade controller is

robust and has a good performance under load variations and
uncertainties.

Fig. 3. Stack current and stack voltage under load variation

Fig. 4. Oxygen excess ratio

Fig. 5. Compressor motor voltage

Fig. 6. Net power

Fig. 7. Compressor speed and Compressor air flow
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Fig. 8. Supply manifold and cathode pressures

Fig. 9. Oxygen excess ratio under uncertainties variations

Fig. 10. Compressor motor voltage under uncertainties variations

A. Appendix

k1 =
RTf ckca,in

VcaMa(1+ωatm)

k2 =
RTf c

Vcaκ

CDAT√
RTf c

γ

1
2
(

2
γ +1

) γ +1
2(γ−1)

k15 =
φmaxρaπd2

c KUcδ

4
√

θ

k13 = kca,in
xO2,ca,in

1+ωatm

k3 = k2 psat ; k4 =
RTf cn
Vca4F

; k5 =
ηcmktkv

JcpRcm

k6 =
CpTatm

Jcpηcp
; k7 = patm ; k8 =

γ−1
γ

k9 =
ηcmkt

JcpRcm
; k10 =

RTatm

MaVsm
; k11 =

1
ηcp

k12 = kca,in ; k14 =
nMO2

4F
; KUc =

dc

2
√

θ

k16 =
2βCpTatm

ΦmaxK2
Uc

; k17 =
γ−1

γ
; k18 = β
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