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Abstract—Many swarm robotics problems focus on the details
of robotic dynamics, while ignoring certain other practical
issues such as the boundedness of the exploration space, the
probability of unsuccessful communication or sensing between
agents, knowledge of a common coordinate system, or the initial
distribution of robots. A two-phase control is devised which,
under appropriate individual bounds, almost surely leads to
successful rendezvous. We examine a likely and practical initial
distribution, which leads to an exploration protocol wherein an
agent is obligated to stay within a certain range of its initial
position. Furthermore, the rate of convergence is primarily
limited to the velocity limitations of the agents. We solve
the aggregation and rendezvous problem with random initial
conditions in an arbitrary, unbounded 2D domain without an a
priori share coordinate system. We examine rates of successful
aggregation under certain initial distributions, and rates of
convergence under uncertain communication.

I. INTRODUCTION

The aggregation and rendezvous problems are basic hur-
dles in swarm robotics and distributed control [1]–[3]. In
aggregation, the goal is to develop a distributed control
that allows an arbitrary number of agents to act together to
achieve some task [4], [5]. For the rendezvous problem, the
goal is for the agents to converge to a common position.
We assume that the agents do not have a shared coordinate
system and operate in an unbounded two-dimensional do-
main. Also, we assume communication constraints between
the agents that are realistic for current technology. However,
the control developed here is high level and rather abstract;
we are not concerned with issues like obstacle avoidance,
and the agents are assumed to be point masses operating in
discrete time.

In contrast to our assumptions, rendezvous is relatively
simple with a shared coordinate system and no bounds on
communication. Each agent can broadcast its position to the
others; they calculate the average position and move to that
point. If communication is only local, averaging algorithms
may produce many clusters of agents instead of a single
swarm. Without shared coordinates, robots must first sense
the position of neighbors to develop a shared map. In this
paper, we explore a two stage control protocol, first utilizing
random motion that allows the agents to develop shared
coordinates. The agents then use local averaging to solve
the rendezvous problem under some realistic constraints.

Communication restrictions between agents depend on
mission specific parameters: the sensors of the robots, the
size of the domain, etc. We make the following assumptions
on the communication abilities of the agents and their ability
to infer others’ positions.

• No shared map: Agents must meet or sense each other
in order to share coordinates.

• Sensing radius: Each robot is equipped with a sensor,
such as a camera or laser range finder. Most commonly,
such sensors have a sweep of less than 360 degrees, and
exhibit sensing errors.

• Simultaneous communication: Each agent can main-
tain at most k simultaneous communications. For ex-
ample, standard Bluetooth technology allows k = 7
simultaneous communications. It’s important to note
that it is not necessary to keep the same k partners over
time.

• Probabilistic communication radius: Robots have a
limited energy source and may be examining an area
much larger than the power of the antennae can cover. In
general, the probability of a successful communication
decreases with distance. In what follows, we simplify
matters in one of two ways: by assuming a fixed proba-
bility pd of the failure of each communication attempt,
or by assuming that the probability of a successful
communication decays with distance.

We develop a control where agents first move randomly to
create a cache of comrades with common coordinates. Each
agent then selects some small number (bounded by k) of
individuals from its cache and moves to the average position
of those individuals. In Section II we give a random motion
paradigm that supplies the agents with common coordinates
and provides bounds on the time through simulations. In
Section III we discuss the global dynamics of the averaging
portion of the control. Section IV proposes future simulations
and experiments and offers some concluding remarks.

II. FINDING OTHER AGENTS IN THE FIELD

The agents in our system wish to aggregate, but there is
one major impediment: They do not have a shared coordinate
system. They must sense each other in the field before
communicating their positions to each other; it would be
meaningless otherwise. Upon sensing each other, each agent
records the sensed position of the newly met agent; in the
following communication step, the agents share their own
beliefs of their current and starting positions within their
own coordinate frame. In this way, the coordinate frames of
all agents become united. In fact, upon complete successful
aggregation, each agent has a complete map of the starting
points of the entire agent set relative to its own coordinate
frame.
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Let xi(t) ∈ R2 be the position of agent i at time t.
If there are N agents, the state space of the system is a
subset of R2×N . In applications, the state vector may include
additional coordinates, e.g. velocity or orientation; however,
without loss of generality, we treat aggregation as a purely
positional problem.

We suppose that each agent has some open, bounded,
simply connected sensing domain Di(t) ⊂ R2, and that
the shape of the Di is the same for each i and all times.
Since our agents are point masses, we assume without loss
of generality that i ∈ Di(t) for all i and t. We also suppose
the sensors are less than perfect; there is a failure probability
ps at each sensing opportunity. If xi(t) ∈ Dj(t) at time
t, agent j senses i’s presence with probability 1 − ps. If
xi(t) ∈ Dj(t) and xj(t) ∈ Di(t) at some time t, then
agents i and j exchange coordinate systems and add each
other’s communication address (e.g., IP address) to their
phone book with probability (1−ps)2. Also, since the agents
can remember all agents they have previously encountered,
two agents exchange not just their own coordinates upon
sensing, but also the entire contents of their address and
phone books.

At the abstract level, we need a protocol for agents to wan-
der about and find each other. However, if the environment is
unbounded and the agents move randomly (e.g., Brownian or
Lévy motion), it’s possible some of the agents will wander
away from the rest. To prevent that possibility, we give
the agents a wandering radius Wr. The agents’ motions are
restricted so that ‖xi(0) − xi(t)‖ < Wr for all i, which is
a simple control to implement since each agent has its own
relative coordinate system. Let Bi be the ball of radius Wr

centered at xi(0); this is agent i’s wandering domain. Also,
let D be the support of the initial distribution of agents, so
that xi(0) ∈ D ⊂ R2 for all i.

There is a natural graph theoretic exposition of the control.
For basic graph theory definitions, see [6] for a classical
treatment or [7]–[11] for an engineering viewpoint. We
consider two different networks. First, at each time t, there
is a sensing network Gt = (V,Et) where the agents are
the set of nodes and i is connected to j if and only if
xi(t) ∈ Dj(t) and xj(t) ∈ Di(t). Because distant agents may
communicate if they have met previously, the union of all
previous connections is key to aggregation. Then for a fixed
time T > 0, set G(T ) = (V,

⋃T
t Et). That is, i ∼ j in G(T ) if

i ∼ j in Gt for any t ≤ T . The idea of accumulating a set of
changing edges is present in [14] and [12]; however, in those
works the topology of the network does not explicitly depend
on the geometry of the state space. Here, the cumulative
sensing graph G(T ) depends on how the wandering domains
Bi overlap since two agents i and j can sense each other
only if the distance between Bi and Bj is small enough
(and certainly if Bi ∩Bj 6= ∅).

With this in mind, we next define the network GB where
the nodes are the sets Bi, and two wandering domains are
connected if Bi∩Bj 6= ∅. GB is sometimes called the nerve of
the cover

⋃
Bi. The following proposition essentially follows

from the definitions.
Proposition 1: Suppose the dynamics of the individual

agents are given by independent stationary ergodic stochastic
processes such that the support of the stationary distribution
of xi(t) is Bi. Then if the network of the wandering domains
GB is connected, for any ε > 0 there is a (random) finite time
τ such that the probability the cumulative sensing network
G(τ) is connected is 1− ε.

Proof: It suffices to show that two agents in intersecting
regions will sense each other in finite time. This is bound
to happen by the recurrence property of ergodicity. Given
any disc in the intersection of the regions, there is a finite
time where both agents will be in any disc. Make the disc
sufficiently small so that the agents must sense each other. If
ps > 0, the probability of sensing goes 1 as the two agents
recurrently meet in the disc.

The “almost surely” in the proposition is with respect to
the stationary measure. Also, the wandering domains do not
need to be discs, but we use discs below because the agents
have random initial orientations. In what follows, each agent
i picks a point uniformly at random from Bi and moves
there, and then repeats. These dynamics clearly meet the
hypotheses of the Proposition. In the next subsection, we
show by simulation that connection can be achieved in a
reasonable amount of time.

Once G(t) is connected, the agents have essentially solved
the aggregation problem. There is then a chain of contacts
between any two agents, and thus any two agents can
pass communications through that chain. Then every agent’s
address book will contain the phone number and coordinate
system of every other agent. One issue is to develop a
communication protocol so that the agents’ address books
are built up over time, and to minimize the adverse effects
of call drops. Another issue not addressed in this paper is
the required self-localization of each agent relative to its own
coordinate frame; there are many methods in the literature
addressing this practicality through odometry calibration and
estimation [15], SLAM methods [16], [17], or (perhaps most
relevant to this discussion) relative localization [18], [19].

A. Simulations for aggregation time

In this section we wish to determine how long it will take
to connect the network G(t) with a realistic number of agents
deployed in a realistic initial domain D. We focus on a small
team of agents, 10 ≤ N ≤ 20 with initial positions drawn
from a two-dimensional normal distribution. For N → ∞,
the connectivity of GB is well understood [13], but very large
systems of robots are not feasible at this time.

We first need to determine constraints on the time un-
til connectivity in best conditions before considering less
ideal sensing. In the simulations, we assume perfect, omni-
directional sensing. That is, each agent has a sensing ra-
dius ρ, and two agents sense each other at time t if
‖xi(t) − xj(t)‖ < ρ. This represents a best case scenario
of the discussion above. Without loss of generality, set the
sensing radius of the agents to unity, ρ ≡ 1.
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Suppose the initial position of each agent is drawn from
a normal distribution with mean at the origin. The standard
deviation in the x-coordinate is five times the sensing radius,
and the standard deviation in the y-coordinate is the same
as the sensing radius. (The covariance between x and y
is 0). Such a distribution may be realistic in a scenario
where the agents are, say, ground robots deployed by an
aircraft in flight; a long, thin initial distribution makes sense.
Under these chosen “mission parameters”, the wandering
radius Wr of each agent is set to 14. This value was
chosen so that the wandering domain network (GB above)
is very likely to be connected. In simulations, the wandering
domain networks were not connected only 16 times out of
11,000 instantiations. Additional experiments were run for
Wr = 10, . . . , 20. Clearly, the larger the radius, the more
likely GB is to be connected, but also the longer it takes for
the cumulative sensing network to become connected because
each agent has to search a larger area.

With mission parameters defined, we implement a simple
agent dynamics. For each t > 0, xi(t) is chosen uniformly
at random from agent i’s wandering domain. The index t
does not represent time in the sense of a ticking clock,
but rather the number of actions the agents perform. These
dynamics are chosen because we want the agents to aggregate
as quickly as possible, but they can sense each other only
if they are near enough to one another; independent draws
from a uniform distribution mix the agents quickly. Also,
for two agents it is easy compute the mean and variance
of the sensing time.1 For more than two agents, there are
dependencies that make calculating the expected connection
time of G(t) difficult.

Each agent moves from xi(t) to xi(t+1) in our simulation
by utilizing a 2nd-order unicycle model, i.e., one that is
appropriate for control of a two-wheeled differential-drive
mobile robot. At each simulation step, the proximity to other
agents is evaluated. If one or more other agents is within the
defined sensing range ρ, the agents are said to have met.

Figure 1 shows simulation results for N = 10, 11, . . . , 20.
For the initial distribution given above and each value of N ,
we calculate the first time t when the cumulative sensing
network G(t) is connected. The times t are random, so
we run the simulation 1000 iterations for each value of N
with fresh initial conditions every iteration. The figure shows
the 50th, 75th, 90th and 99th percentiles of the simulated
aggregation times, as well as the worst case.

The y-axis in Figure 1 measures time in number of random
positions explored. We see little improvement in performance
as N increases from 10 to 20, and the times are very tightly
distributed about the median (bottom line). Very rarely,
the agents take longer to aggregate; see the crossed line
corresponding to the 99th percentile. This happens when
the wandering domains have very small overlap. The results
are promising: in 90 percent of the 1000 cases, only about

1The sensing time is a Bernoulli random variable with probability
proportional to the areas of overlap.

Fig. 1. Time until aggregation for N = 10 to 20 agents. The time is
random, so 1000 iterations are simulated for each value of N , and percentiles
are reported. The time units are number of positions explored.

10 positions are necessary for the communication graph to
become connected.

III. GLOBAL DYNAMICS OF AVERAGING PROTOCOL

We now move to the rendezvous problem with commu-
nication constraints. Once the agents have aggregated and
can share coordinates, they could broadcast their positions
and rendezvous at the mean. However, broadcasting does not
necessarily scale with the number of agents, whereas small-
scale directed messaging does [20]. If, for example, there
are dozens or hundreds of agents, each agent would have to
receive and process all of those broadcast messages, or there
would need to be a protocol to somehow synchronize the
messages. Alternatively, if each agent only sends directed
messages to a small number of other agents, results from
random graph theory confirm that the typical number of
incoming requests will be closely related to that small
number; thus most agents will have a tenable number of
requests to which to respond. As noted in the introduction we
assume for practicality reasons that at most k simultaneous
communications are possible.

We wish to keep communications to a minimum in order
to minimize the detrimental effects of dropped calls. Suppose
each agent i nominates exactly two neighbors i1 and i2. In
this section we consider the global dynamics from the local
updating

xi(t+ 1) =
xi1(t) + xi2(t)

2
. (1)

So at each time step, agent i goes to the mean of its two
neighbors’ previous positions. In the limit as N →∞, these
dynamics are known to contract the unit disc, but the situation
is less clear for a fixed finite number of agents.
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A key practical concern is how the agents choose their
two neighbors. The mathematical ideal is for each agent to
choose from the others uniformly without replacement. If the
agents have aggregated as in the previous section, they have
access to the phone numbers of all the other agents and can
choose from them uniformly. Even in the ideal case, there
is no mathematical guarantee that the positions of the agents
will converge to a common value. However, for large N with
initial positions randomly distributed in a convex subset of
R2, there are several heuristic reasons to believe the dynamics
in (1) will cause the agents to converge. First, the dynamics
define a contraction, so the most distant agents are bound
to come closer together. Second, since each agent nominates
exactly two neighbors, random graph theory tells us that the
network of connections between agents will have a unique
giant component for large N . That is, the vast majority of
agents will be in the same communication class, so under
(1) the positions of these agents will converge to the same
value.

Finally, even if the communication network has many
separate communication classes, the initial conditions are
random, so the law of large numbers says that each com-
munication class will converge to a point near the mean
of the distribution. These observations fall well short of
rigorous proof, but they are played out in simulation. We
ran 1000 realizations of the dynamics with N = 10, . . . , 20
and initial conditions uniformly distributed in a rectangle of
size W = 100 on each side. These initial conditions are
more dispersed than the more realistic distribution described
in the previous section, so convergence should be less likely
and slower. After 25 time steps of the dynamics from (1) we
measured whether or not all the agents settled within a disc
of diameter 1. If not, we consider this a failure and record
the failure rates in the first row of Table I. For the sake of
space, we record just the even numbers of agents. The others
are similar.

TABLE I
NUMBER OF FAILURES IN 1000 SIM RUNS.

Number of agents 10 12 14 16 18 20

Case 1 29 32 25 36 21 16
Case 2 0 4 8 2 0 3

The second row shows the same measurement, but with a
twist on the dynamics. Each agent picks two agents randomly
and follows (1) for 10 time steps. Then each agent picks a
fresh pair of neighbors and follows (1) for 10 more time
steps. In the first case, agents in over 95 percent of the
simulations converge to within 1 unit of each other after
25 time steps. In the second case, agents in more than 99
percent of the simulations converge to within 1 unit of each
other after just 20 time steps. As in the previous section, time
is measured in calculations performed, and the convergence
is fast enough that it is practically limited only by the speed
of the robot.

Even when the agents do not converge to a single point

within 25 times steps (reported as a failure in the table),
they come together into several clusters that lie on a common
line in the plane. Even in the cases of “failure” the maximum
distance between the agents is less than 3. Also, for N = 250
or 500 we found that the dynamics converge to within a disc
of diameter 1 in every case out of 2000.

A. Probabilistic communication: Fixed probability

We now consider the case where successful communica-
tion during the rendezvous phase is not guaranteed. Intu-
itively, this should decrease the rate of convergence (and
perhaps the likelihood of success). To investigate this, we
modified the rendezvous simulation such that with probability
pd a communication attempt at a given time-step will be
unsuccessful. In this case, a “communication attempt” is the
request from one agent to one of its two nominated neighbors
for their current positions. An unsuccessful attempt means
that the requested information is not returned. If only one
such request is successful, the requesting agent will move to
the average of its current position and the responding agent’s
position. If neither request is successful, the requesting agent
does not move. (Note that the responding agents do not
take this communication into account in generating their own
moves.)

We ran three sets of simulations of 100 runs each for values
of pd = {0.1, 0.5, 0.9} and N = 20, and the results are
shown in Figure 2. The y-axis of the figure is the maximum
separation between any two agents. The plotted results give
the median distances at the given time-step for each of the
three values of pd. Additionally, for the pd = 0.9 case, the
25th and 75th percentile values are shown.

Astoundingly, even with a failure rate of pd = 0.5 (that is,
one out of two communication attempts is unsuccessful), the
median max-distance is effectively zero before the 30th time-
step. Compare this to the case of the previous subsection,
i.e., perfect communication, where we mark the rendezvous
successful if the max distance is ≤ 1 at completion of the
25th time-step. As expected, the rendezvous requires more
time under decreased probability of successful communica-
tion; unexpectedly, the effect seems to be quite mild. Even for
the case of pd = 0.9, the rendezvous is successful. The rate
is clearly much slower in this case, but successful rendezvous
can still be expected. These results illustrate a lower bound
for the time required for rendezvous under very ineffective
communication.

B. Probabilistic communication: Range-dependence

We continue this investigation by making a more realistic
assumption regarding the communication: the probability of
successful communication decreases with increased range.
We know well that the power level of radio frequency signals
drops off as the square of the distance, so we might similarly
expect that digital signals are less likely to be successfully
received at greater distances.

With this motivation, we define the probability of success-
ful communication as a function of the distance d between
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Fig. 2. Convergence rates subjected to various probabilities of successful
communication.

any two agents attempting to communicate. For simplicity,
we choose the sigmoid function shown in (2), where Cr is
the communication radius and a is a shaping parameter that
defines the sharpness of the dropoff.

pd(d) = 1− 1

1 + ea/2−d∗a/Cr
(2)

Choosing W = 100 (as previously), Cr = 0.75W and a = 5,
we have pd(0) = 0.924 and pd(

√
2W ) = 0.000979 (where√

2W is the max separation any two agents could experience
in this scenario).

We repeated the simulations for convergence using this
function for communication probability. In 10,000 iterations,
only two instantiations failed to converge within 100 time
steps. The results of these simulations are given in Fig. 3
with the crossed points indicating the median max-separation
between any two agents, and the dotted lines indicating the
10th and 90th percentiles. From the figure, it is clear that
the convergence rates under this assumed function maintain
the convergence rates at roughly those of the case where
all communication is subjected to a 50% probability of
failure (regardless of distance). Furthermore the results are
very promising in the very tight distribution of convergence
rate. It is likely that the shape of this convergence is highly
dependent on the shape of the communication function (2),
specifically on the sharpness of the cutoff.

IV. DISCUSSION AND FUTURE DIRECTIONS

We have considered distributed controls that are functions
only of an agent’s position. Real robots move in continuous
time and continuous space, have limitations on their ability to
dead-reckon their own positions, and have limitations in their
ability to consistently and accurately measure the positions
of other agents. In the future we seek to further refine our
simulations to address these issues in more realistic and
practical terms.

Fig. 3. Convergence rates subjected to the probability of successful
communication defined as a function of distance.

A serious challenge is to rendezvous a relatively small
number of agents in a perhaps vast environment. We have
given a two stage process where agents first find a shared
coordinate systems and are able to communicate with each
other. Then, each agent moves directly between two other
agents in order to rendezvous at a common point. We choose
only two others in order to limit dropped communications
due to technology and protocol constraints.

We have been silent on how the agents know when to
switch from one dynamics protocol to the other. One way is
to suppose the agents know how many other agents there
are, so each one has an address book with N − 1 slots.
When an agent’s address book becomes full, it votes to switch
from the random dynamics of Section II to the deterministic
dynamics of Section III. Once the vote is unanimous, the
switch is made. This, however, adds requirements to the
communication protocol.

A simple alternative method of deciding when to switch
to the rendezvous protocol is to capitalize on the results of
Section II. Specifically, we see that, for 10 or more agents
utilizing this protocol, arbitrarily setting the time-to-switch
to, say, t = 100 means that with high confidence the address
books of all agents will be full. As the number of agents
increases within the same distribution (i.e., the initial density
increases) the number of time-steps additionally decreases.
Clearly then, and especially within the mindset of swarming
robotics wherein exactness is of less importance than gen-
eralized robustness, a time could be chosen within which
some minimum number of agents (with a perhaps larger set
of deployed agents) aggregate and rendezvous with a dictated
likelihood appropriate for the given mission.
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