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Abstract— This paper addresses the disturbance attenuation
problem by output feedback for multivariable linear systems
with delayed inputs. To solve this problem, a feedback compen-
sator is used, which is decomposed into an observer part, a state
predictive part, and a static feedback part. Then, the analysis of
the closed loop system is made on an equivalent linear system
without delay. Based on the geometric approach, we solve two
different disturbance attenuation problems, providing necessary
and sufficient conditions for their solvability.

I. INTRODUCTION

This work addresses the disturbance attenuation problem
by output feedback in linear multivariable systems with input
delay. Time–delays appear frequently in industrial processes,
economical, physiological and biological systems [14], and
their presence is a consequence of delays in the process
itself, or is caused by controllers (transport, communication,
processing, . . .).
Disturbance attenuation is a topic of recurrent interest.
Among different methods well developed in the literature
for solving this problem, geometric approach is an effective
tool. Various versions of this problem have been solved
[16], [19], [20], [21]. The solutions consist in necessary and
sufficient conditions in terms of certain subspaces associated
to the considered system. The computation of the subspaces
effectively permits to check the solvability and to construct
a solution controller.
For time-delays systems, necessary and sufficient conditions
are also established for static or dynamic output feedback.
The corresponding closed-loop systems have in general an
infinite number of poles. Consider a linear multivariable
system with delayed input

ẋ(t) = Ax(t) + Bu(t − h) + Ew(t),

where h ∈ IR+ is the delay. The problem is to make z = Gx,
with G of appropriate dimension, insensitive in closed–loop
to the disturbance w which is not available by measurement,
and where all the state is not measured.
Following Smith, Olbrot and Manitius [11], if all the state
is measured, a prediction xp(t) of the state vector x(t + h),
is given by

xp(t) = eAhx(t) +
∫ t

t−h

eA(t−τ)Bu(τ) dτ ,

which is available at time t. This prediction is established
without taking into account the disturbance, and assuming
that all the state is measured. We refer to [10] where the same
idea is used to solve the disturbance decoupling problem by
static state feedback, or the disturbance decoupled estimation
problem by output injection.
If all the state is not measured, an observer is used to estimate
the state at the current time, and then a prediction is based
on this estimation.
The motivation to using such control laws is their simplicity,
with a static gain feedback, and the induced properties of the
closed–loop system, as invariant factors [12].

In this paper, we are interested in solving problems of
disturbance attenuation by such a static output feedback
coupled with a prediction equation, for linear input delay
systems.
A decomposition of the closed–loop transfer function from
w to z allows us to reduce this problem to a disturbance
decoupling problem without delay. Geometric conditions are
also given to solve them.
Different versions of the disturbance attenuation problem by
output feedback are considered, namely the so-called exact
and almost disturbance decoupling.

The paper is organized as follows. In Section 2, we
formulate the problem under consideration. Section 3 is
devoted to the analysis of the closed–loop transfer matrix. A
time–decomposition of impulse response in closed–loop is
established in Section 4. Necessary and sufficient geometric
conditions are given in Section 5, to solve problems under
interest.

Notations. We denote AF = A + BF , AL = A + LC.
We define ΨM (s) = (sI −M)−1, for any square matrix M
with real entries. The Laplace transform of (·) is denoted by
(̂·)(s). A denotes the Wiener algebra [5]. Lp denotes the set
of the complex-valued measurable functions g(t) on the non-
negative real axis such that ‖g‖p

Lp
=

∫ ∞
0

|g(t)|p dt < ∞, for
1 ≤ p < ∞, and such that ‖g‖L∞ = ess supt∈IR+

|g(t)| <
∞.
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II. DISTURBANCE ATTENUATION PROBLEM

Consider a linear, time-invariant, input-delay system (Σ)⎧⎨⎩
ẋ(t) = Ax(t) + Bu(t − h) + Ew(t)
y(t) = Cx(t)
z(t) = Gx(t)

, (1)

where x ∈ IRn is the state, u ∈ IRm is the control, w ∈ IRd

is an unknown disturbance, h ∈ IR+ is the delay, y ∈ IRp

is the measure, and z ∈ IRc is the output to be controlled.
Matrices A ∈ IRn×n, B ∈ IRn×m, E ∈ IRn×d, C ∈ IRp×n

and G ∈ IRc×n have real entries. We will suppose that the
disturbance w is not available by measurement, and that the
pairs (A,B) and (C, A) of (1) are stabilizable and detectable
respectively [15].
The problem under interest is the synthesis of a control law
which guarantees an (optimal) attenuation of the disturbance
effect on the output z. For this aim, the compensator which
is used, is decomposed into two parts. The first one is an
observer-predictor. From the measured output y, the state at
time t is estimated, and a prediction based on this estimation
is done. The second one is a static feedback control law,
based on this state prediction. This kind of compensator
involves an output feedback distributed control law.
More precisely, considering the system (Σ) described in (1),
the estimate xo(t) of the state x(t) at time t ≥ 0 is given by

ẋo(t) = Axo(t) + Bu(t − h) − L(y(t) − Cxo(t)), (2)

where L ∈ IRn×p is such that AL = A + LC is stable.
The prediction xp(t) of x(t+h), based on the estimate xo(t),
and without taking into account the disturbance effect, is
described, as in [13], by

xp(t) = eAhxo(t) +
∫ t

t−h

eA(t−τ)Bu(τ) dτ . (3)

Then, the static feedback control law is build from the
prediction xp(t), i.e.

u(t) = xf (t) + v(t), (4)

where xf (t) = Fxp(t), with a feedback matrix F ∈ IRm×n

such that AF = A + BF is stable, and v is a new input for
the closed–loop system.
The observer-predictor compensator (Σc) is described by
(2)-(3), and the feedback compensator (Σf ) by (4). The
synthesis of a compensator (Σc)-(Σf ) to make the output to
be controlled z insensitive in closed loop to the disturbance
w is represented in Fig. 1. Denote Twz(s) the closed-loop
transfer matrix from the disturbance w and the controlled
output with the compensator (Σc)-(Σf ) described by (2)-(3)-
(4). The problem under interest is to find constant matrices
F and L such that

‖Twz‖1
�
= sup

w∈L1, w �=0

‖z‖L1

‖w‖L1

is minimal.

� �

�

�
�

�

�
©�

w z

v u y(Σ)

(Σc)(Σf )
xpxf

Fig. 1. Closed loop system in the disturbance attenuation problem.

III. CLOSED LOOP SYSTEM

This section is devoted to characterize the input–output
evolution in closed–loop from the disturbance and the con-
trolled output. We take also v = 0 in (4).

Lemma 3.1: Consider the input delay system described by
(1). With the compensator (Σc)-(Σf ) described by (2)-(3)-
(4), the closed loop transfer matrix from w and z is

Twz(s) = T1(s) + e−shT2(s), (5)

with

T1(s) = GΨA(s)(I − e−sheAh)E,
T2(s) = GΨAF (s) [I − BFΨΞ(s)] eAhE,

where Ξ = A + L̃C̃, and

L̃ = eAhL

C̃ = Ce−Ah
.

Proof . Denote

ϕ(t) =
∫ t

t−h

eA(t−θ)Ew(θ) dθ, (6)

and define

eo(t) = x(t) − xo(t), (7)

ep(t) = x(t) − xp(t − h), (8)

which are respectively the estimation error and the prediction
error.
By direct calculations, we obtain

ėo(t) = ALeo(t) + Ew(t), (9)

ep(t) = eAheo(t − h) + ϕ(t), (10)

where ϕ(t) is given in (6). Furthermore, in closed loop, the
state prediction xp(t) is governed by the differential equation

ẋp(t) = AF xp(t) − eAhLCeo(t). (11)

Since x(t) = ep(t) + xp(t − h), the state x(t) at time t can
be written into the form

x(t) = eAheo(t − h) + ϕ(t) + xp(t − h). (12)

By Laplace transform, we have

x̂(s) = ϕ̂(s) + e−sh(eAhêo(s) + x̂p(s)). (13)
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With ϕ̂(s) = (sI − A)−1(I − eAhe−sh)Eŵ(s), we obtain
directly in (5) that

T1(s)ŵ(s) = Gϕ̂(s).

Furthermore, equations (9), (11), and (13) yield to

T2(s) = GeAhΨAL(s)E
−GΨAF

(s)eAhLCΨAL(s)E
= GΨAF

(s)
[
Ψ−1

AF
(s)eAh − eAhLC

]
ΨAL(s)E

= GΨAF
(s)

[
eAh − BF eAhΨAL(s)

]
E

= GΨAF
(s) [I − BFΨΞ(s)] eAhE,

where we introduce the notation Ξ = A + eAhLCe−Ah. �

This decomposition of the transfer function from the
disturbance and the controlled output is also presented
in [13], and it is shown that it allows to characterize all
stabilizing controllers of the delayed system (1). The reader
is also referred to [18], where the same idea is used, and
in [10], where the authors solved the problem of static
state distributed feedback law, and the dual case of output
injection.

Remark 3.2: In the decomposition (5), the second term
T2(s) can be factorized in two forms. In fact, we have

T2(s) = GΨAF (s) [I − BFΨΞ(s)] eAhE

= GΨAF (s)
[
eAh − BF eAhΨAL(s)

]
E

= GΨAF
(s)

[
eAhΨ−1

AL(s) − BF eAh
]
ΨAL(s)E

= G
[
eAh − ΨAF

(s)eAhLC
]
ΨAL(s)E

= GeAh [I − ΨΛ(s)LC] ΨAL(s)E,

with Λ = A + B̃F̃ , B̃ = e−AhB and F̃ = F eAh.

These two factorizations of T2(s) in (5) will be analyzed
in Section V. It is also fundamental to see that in (5),
the first part T1(s) is independent from any control action,
like feedback or injection, whereas the second part T2(s)
depends on the compensator structure. Then, the analysis of
the transfer matrix Twz(s) can be expressed in terms of a
system without delay.

Lemma 3.3: The transfer matrix T2(s) in (5) is the closed
loop transfer matrix of a system without delay (Σ′

2), with a
static output feedback compensator (Σ′

c,2).

Proof . By Lemma 3.1, we showed that in the closed loop
system under interest,

T2(s) = GΨAF
(s) [I − BFΨΞ(s)] eAhE.

Clearly, this closed loop transfer function is independent
from any delay. Furthermore, consider the system (Σ′

2)
described by⎧⎨⎩ ζ̇(t) = Aζ(t) + Bu(t) + eAhEw(t)

y2(t) = Ce−Ahζ(t)
z2(t) = Gζ(t)

, (14)

and the feedback compensator (Σ′
c,2){

˙̂
ζ(t) = Aζ̂(t) + Bu(t) + L̃(C̃ζ̂(t) − y2(t))
u(t) = F ζ̂(t)

, (15)

where L̃ = eAhL and C̃ = Ce−Ah. ζ̂ is an estimate of ζ,
so that (Σ′

c,2) is decomposed in an observer part and in a
static feedback part.
Then, it is easy to verify that the transfer function from w
and z2 in the closed loop (Σ′

2)-(Σ
′
c,2) coincides precisely

with T2(s), i.e. (14)-(15) is a state-space realization of
T2(s), which is minimal under minimality conditions of the
state-space realization of (Σ). �

From Lemma 3.3 and Remark 3.2, since

T2(s) = GeAh [I − ΨΛ(s)LC] ΨAL(s)E,

where Λ = A+e−AhBF eAh, another state-space realization
(Σ′′

2)-(Σ′′
c,2) of T2(s) can be described by

(Σ′′
2) :

⎧⎨⎩ ξ̇(t) = Aξ(t) + e−AhBu(t) + Ew(t)
y2(t) = Cξ(t)
z2(t) = GeAhξ(t)

, (16)

and (Σ′′
c,2) such that{
˙̂
ξ(t) = Aξ̂(t) + e−AhBu(t) + L(Cξ̂(t) − y2(t))
u(t) = F eAhξ̂(t)

.

(17)
These two realizations are obtained from (14)-(15) by a
change of basis, i.e. ζ(t) = eAhξ(t).
The problem of attenuating a disturbance on z by output
feedback is reduced to the analysis of an equivalent linear
system without delay (14), with the compensator (15), i.e.
we analyze a classical problem of disturbance attenuation by
output feedback on a linear time-invariant system without
delay. In the next section, we describe more precisely the
relation between the initial problem and the disturbance
decoupling problem by output feedback on (Σ′

2).

IV. INTERPRETATION IN THE TIME-DOMAIN

The decomposition of the input–output transfer function
described in Section III has an easy interpretation in the time
domain. This section is devoted to describe it.
Consider a generalized function f(t) ∈ A, of the form

f(t) =

⎧⎨⎩ 0 , t < 0

fa(t) +
∞∑

i=0

fiδ(t − ti) , t ≥ 0 , (18)

where fa ∈ L1, i.e. ‖fa‖L1 =
∫ ∞
0

|fa(t)|dt < ∞, fi ∈ IR
for i ∈ IN, 0 = t0 < t1 < · · ·, δ(t) stands for the Dirac
delta function, and

∑∞
i=0 |fi| < ∞. The set A is closed

under addition, multiplication, and convolution, and is a
commutative Banach algebra, with unit δ(t), for the norm
defined by

‖f‖A = ‖fa‖L1 +
∞∑

i=0

|fi|.
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Similarly, the set Â of Laplace transforms of elements of A
is a commutative Banach algebra, with unit 1, for the induced
topology [5], [9].
We consider the class of causal linear systems described by
a convolution

y(t) =
∫ t

0

f(t − τ)u(τ) dτ
.= (f ∗ u)(t), (19)

or equivalently ŷ(s) = f̂(s)û(s), where the kernel f and the
input u are assumed Laplace transformable, in the sense of
distributions. One says that (19) is BIBO stable if f ∈ A, or
equivalently if f̂ ∈ Â, i.e. ‖f‖A < ∞. The BIBO stability
is also equivalent to an input-output stability: every bounded
input u ∈ L∞ produces a bounded output y ∈ L∞.

Consider the closed loop transfer matrix Twz(s) from the
disturbance w to the output z. The closed loop system is
described by a convolution, as in (19). Then, denoting by
γ(t) the impulse response of the closed loop transfer matrix
Twz(s), we have Twz(s) = γ̂(s).
For 1 ≤ p ≤ ∞, the Lp-induced norm of the Lp-norm of
Twz(s), denoted by ‖Twz‖p, is defined by [9]

‖Twz‖p = sup
w∈Lp,w �=0

‖γ ∗ w‖Lp

‖w‖Lp

.

It is well known that the following equality holds

‖Twz‖1 = ‖Twz‖∞ = ‖γ‖A,

which is well defined if and only if the closed loop system
is BIBO stable [9].
For all 1 < p < ∞, an upper bound of ‖Twz‖p is also given
by

‖Twz‖p ≤ ‖γ‖A, 1 < p < ∞.

By the decomposition of the input-output transfer matrix
Twz(s) established in Lemma 3.1, we have the following
result.

Lemma 4.1: Let Twz(s) = γ̂(s) be the closed–loop trans-
fer matrix from w to z. Then,

γ(t) = γ1(t) + γ2(t), (20)

where γ1 and γ2 are generalized functions with non over-
lapping supports, and are respectively the impulse response
of T1(s), with bounded support [0, h], and the impulse
response of e−shT2(s) given in (5), with support contained
in [h,∞[. Moreover, if the matrices AF and AL are stable,
then ‖γ‖A < ∞, and

‖γ‖A = ‖γ1‖A + ‖γ2‖A. (21)

Proof . In (5), the transfer matrix T1(s) defined by

GΨA(s)(I − e−sheAh)E,

admits a finite impulse response γ1(t) given by

γ1(t) =
{

GeAtE , t ∈ [0, h]
0 , t > h

, (22)

which lies in Lc×d
p , for all 1 ≤ p ≤ ∞. In particular,

γ1 ∈ A.
The impulse response γ2(t) of e−shT2(s) has a support
included in [h,∞[. Under the assumption that the matrices
AF and AL are stable, it is clear that γ2 ∈ A. Since γ1 and
γ2 have non overlapping supports, the norm decomposition
(20) directly follows. �

It is worth noting that γ1 does not depend on the
control law applied in closed loop. One can evaluate ‖γ1‖A
from the knowledge of A,E, G, by direct integration of
(22).
This norm gives a lower bound for the closed loop transfer
between the disturbance w and the output z

‖Twz‖1 ≥ ‖γ1‖A.

In the following, we shall be interested in the case where the
lower bounds are reached, i.e.

inf
F,L

‖Twz‖1 = ‖γ1‖A, (23)

In this case, note that ‖γ1‖A also provides an upper bound
of ‖Twz‖p for the other values of p, and one has

inf
F,L

‖Twz‖p ≤ ‖γ1‖A, 1 ≤ p ≤ ∞.

V. GEOMETRIC CHARACTERIZATIONS

In this section, necessary and sufficient geometric con-
ditions are given to solve various problems of disturbance
attenuation by output feedback for the time-delay system (1),
taking into account the stability of the closed-loop system or
not.
For the case of linear systems without delays, conditions
to solve this problem are given in the literature, the reader
is referred to [16], [17], [19], [20], and references therein.
In the geometric approach, controlled or (A,B) invariant
subspaces, and conditioned or (C,A) invariant subspaces
play a fundamental role. They describe the possibility under
external actions (feedback or injection) to stay into a given
subspace [22], [3].

Definition 5.1: A subspace V of X is called (A,B)–
invariant if

AV ⊂ V + Im B.
Definition 5.2: A subspace S of X is called (C, A)–

invariant if
A(S ∩ Ker C) ⊂ S.

All properties of these subspaces and their computations can
be found in references given above.

The subspaces V∗
A,B,Ker G, R∗

A,B,Ker G, and S∗
C,A,Im B ,

which are respectively the maximal (A,B)–invariant sub-
space contained in Ker G, the maximal controllability sub-
space contained in Ker G, and the smallest (C, A)–invariant
subspace containing Im B, play a fundamental role in geo-
metric approach.
Any invariant subspace is associated to a spectrum, and
the subspace is called stabilizing if the associated spectrum
is stable. In the sequel, V∗

g,A,B,Ker G and S∗
g,A,B,Ker G re-

spectively denote the maximal stabilizing (A,B)-invariant
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subspace contained in Ker G, and the smallest stabilizing
(C, A)-invariant subspace containing Im B.
As seen in Section IV, the problem of attenuating the effect
of the disturbance is reduced to the analysis of an equivalent
linear system without delay, and this theory can be applied
on this new system.

Consider the disturbance attenuation problem described in
Section I. By Lemma 3.1, the transfer in closed–loop from
w to z is given by (5), where T2(s) is a transfer function
of a linear system without delay. Since T1(s) is independent
from any control action, the problem comes down to finding
a static feedback F and an output injection L such that T2(s)
is the zero transfer matrix. Note that in this section, we based
our approach on the state-space representation of the transfer
T2(s) as in the proof of Lemma 3.1. Note also that it can
be done considering the state-space representation given in
Remark 3.2.
Applying the classical results of the geometric approach
leads to the following.

Theorem 5.3: Solvability conditions of the attenuation
problem of (1) can be done in the following way.

(i) There exists an output injection L and an estimate
feedback F such that the closed loop system (1)-(2)-
(3)-(4) is so that T2(s) = 0 in (5) if and only if

S∗
Ce−Ah,A,Im(eAhE) ⊂ V∗

A,B,Ker G. (24)

(ii) There exists an output injection L and an estimate
feedback F such that the closed loop system (1)-(2)-
(3)-(4) is internally stable and so that T2(s) = 0 if and
only if

S∗
g,Ce−Ah,A,Im(eAhE) ⊂ V∗

g,A,B,Ker G. (25)

Proof . This theorem is a direct consequence of Lemmas
3.1 and 3.3. In fact, in closed loop, the first part T1(s) is
independent from any control action, so that this part can
not be reduced by output injection or estimate feedback.
Indeed, the transfer function T2(s) is the closed loop transfer
function of a linear system without delay (Σ′

2) with the
compensator (Σ′

c,2) described in (14) and (15) respectively.
Then, the problem is to minimize the disturbance effect
on z2(t) = Gζ(t), i.e. we want to ensure the disturbance
decoupling by output feedback on (Σ′

2) to obtain ẑ2(s)
ŵ(s) = 0.

Conditions (i) and (ii) are then a direct consequence of the
classical works [16], [20]. �

Theorem 5.3 gives necessary and sufficient conditions for
an exact disturbance decoupling problem with static output
feedback on (Σ′

2), with eventually internal stability. On (Σ),
and under conditions of Theorem 5.3, we obtain

min
F,L

‖Tzw‖1 = ‖T1‖1 = ‖γ1‖L1 .

It should be clear that, in general (see Section IV)

inf
F,L

‖Tzw‖1 ≥ ‖T1‖1,

where the equality is reached under the conditions of Theo-
rem 5.3. We can get further conditions using the concept of
almost invariance and the associated subspaces.
Consider the problem of almost disturbance decoupling by
output feedback, that is to obtain in closed loop for (14), an
impulse response γ2(t) of the transfer matrix from w to z2

such that
∀ε > 0,∃F s.t. ‖γ2‖L1 ≤ ε,

i.e. ∀ε > 0, ‖z2‖L1 ≤ ε‖w‖L1 in closed loop. Then, applying
the results of [21], [19], [17], to the system (Σ′

2) without
delay associated to our system with input delay, we obtain
the following.

Theorem 5.4: Solvability conditions of the attenuation
problem of (1) can be done in the following way.

(i) There exists an output injection L and an estimate
feedback F such that the closed-loop system (1)-(2)-
(3)-(4) is so that

inf
F,L

‖Tzw‖1 = ‖T1‖1,

if and only if

Im(eAhE) ⊂ V∗
A,B,Ker G + S∗

G,A,Im B

V∗
A,e−AhE,Ker(Ce−Ah) ∩ S∗

Ce−Ah,A,Im(eAhE) ⊂ Ker(G)
(26)

In that case, for every ε > 0, there exists a pair (F, L)
such that ‖T2‖p < ε, for all 1 ≤ p ≤ ∞.

(ii) There exists an output injection L and an estimate
feedback F such that the closed-loop system (1)-(2)-
(3)-(4) is stable and so that

inf
F,L

‖Tzw‖1 = ‖T1‖1 ,

if and only if

Im(eAhE) ⊂ V∗
b,g

S∗
b,g ⊂ Ker(G)

S∗
b,g ⊂ V∗

b,g

, (27)

where

V∗
b,g = V∗

g,A,B,Ker G + S∗
G,A,Im B ,

S∗
b,g = V∗

A,e−AhE,Ker(Ce−Ah) ∩ S∗
g,Ce−Ah,A,Im(eAhE)

In that case, for every ε > 0, there exists a pair (F, L)
such that ‖T2‖p < ε with T2(s) stable, for all 1 ≤ p ≤
∞.

Proof . The result immediately comes from (14) and [21]
for the case (i) , and from [19] for the case (ii). �

Note that conditions (24), (25), (26), and (27) can be re-
formulated on the equivalent system without delay (Σ′′

2). In
fact, by (16)-(17), condition (i) of theorem 5.3 is equivalent
to find a pair (F, L) such that

S∗
C,A,Im E ⊂ V∗

A,e−AhB,Ker(GeAh).
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With the same idea, condition (26) is equivalent to

Im E ⊂ V∗
A,e−AhB,Ker(GeAh) + S∗

Ge−Ah,A,Im(e−AhB)

V∗
A,E,Ker C ∩ S∗

C,A,Im E ⊂ Ker(GeAh)
.

All these conditions are numerically computable, and easy to
verify. In fact, algorithms (ISA) and (COSA) are described
in [22] and [21], i.e. for any given subspaces K, B, L, and D
of X , such that K = Ker M and D = Ker N , where M,N
are linear maps from IRn to IRp,

(ISA) :
{ V0 = K

Vi+1 = K ∩ A−1(Vi + B) ,

(COSA) :
{ S0 = 0

Si+1 = L + A(Si ∩ D) ,

converge in finite steps to V∗
A,B,Ker M and S∗

N,A,L respec-
tively, subspaces which are uniquely determined. Then, all
conditions of Theorem 5.3 and 5.4 are numerically com-
putable.

VI. CONCLUSION

This paper addresses the disturbance attenuation problem
by output feedback in linear multivariable systems with a
delayed input. To solve this problem, a static predictive
control law is used, that allow to work in closed–loop on
an equivalent linear system without delay.
Then, geometric conditions are provided to solve various
formulations of the disturbance decoupling.
Furthermore, it is shown that any retroaction will act on
the system only after a determined time, which corresponds
evidently to the initial delay.
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