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Abstract— In this paper, a real-time optimizing controller is
developed to steer a differentially flat nonlinear control system
to closed-loop trajectories that optimize a cost functional of
interest. An interior point optimization method with penalty
function is used to formulate a real-time optimization scheme.
The problem is posed as a real-time optimal trajectory gener-
ation problem in which the optimal trajectories are computed
using an adaptive extremum-seeking approach. A fed-batch
bioreactor simulation example is used to demonstrate the ap-
plication of the technique to a finite time dynamic optimization
problems that arise in batch process control.

I. INTRODUCTION

The design of optimal controller for batch processes has
been an area of active research of the last twenty years.
In most applications, the optimization task consists of two
distinct steps. First, a reference trajectory is generated. The
trajectory is generally computed by solving a dynamic op-
timization problem. Second, a suitable tracking controller is
designed to regulate the process about its nominal optimal
trajectory. The main drawback of this approach is that
the optimal trajectory, computed from a detailed process
model, cannot be formulated to incorporate uncertainties and
disturbances. Online optimization techniques have been pro-
posed to provide sequential real-time updates of the optimal
trajectory ([1],[2]). A leading approach employs a standard
real-time optimization approach. In real-time optimization,
process measurements are used to update process model
parameters in real-time. The updated model is then used
in the formulation of a dynamic optimization problem that
is solved sequentially. The resulting control system can be
used to update system trajectories at intervals that allow the
solution of the dynamic optimization problem. In a number
of applications, a cascade optimization structure consisting
of a high level real-time optimization layer and a low-level
tracking controller is used to provide regulation of the opti-
mal trajectory ([3],[4]). In [5], a feedback-based implemen-
tation was proposed to incorporate feedback components in a
cascade real-time optimization framework. In this approach,
process parameter variations are taken into account in the
formulation of the dynamic optimization problem. This inte-
gration provides some feedback compensation for the model
changes which can effectively improve the performance of
existing real-time optimization schemes. Despite significant
interest and some convincing results, the main caveat of
these techniques is the inherent delay associated with the
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solution of the dynamic optimization problem. It remains
very difficult to provide an optimization technique that can
perform in real-time.

One approach that has received considerable interest in the
literature is the use of differential flatness in the formulation
of dynamic optimization problems. Flat dynamical systems
[6] belong to a special class of systems that are charac-
terized by the existence of so-called flat outputs. The flat
output space provides a reduced-dimensional space where
the system trajectories can be defined freely in the absence
of differential constraints. The ability to assign trajectories
freely allows one to parameterize the process state variable
trajectories to transform the dynamic optimization problem
to a standard nonlinear optimization problem. Some results
have been published on control of flat systems (e.g., [7];
[8]) and a number of flatness based dynamic optimization
methods have been reported (e.g., [9]; [10]; [11]; [12]). One
of the advantages of flatness-based approaches is the elimi-
nation of the numerical integration of the dynamical model
and sensitivity equations in the computation of the optimal
solution. Therefore, such approaches are very attractive for
real-time applications ([11]).

In this paper, we develop a real-time optimization ap-
proach to solve dynamic-optimization problems arising in
batch process control. The approach proposed provides a
real-time optimization technique that can be used to simul-
taneously compute and implement optimal trajectories. The
optimization technique uses a Lyapunov-based optimization
method originally proposed in [13] for the solution of adap-
tive extremum-seeking control problems. In order to solve the
problem, we exploit the knowledge of the model structure to
parameterize the set of admissible trajectories to maximize
the prescribed cost functional over a finite dimensional set
of parameters.

The paper is organized as follows. In Section 2, we state
and formulate the dynamic optimization problem. The opti-
mization technique and the implementation of the controller
is discussed in Section 3. Simulation results are presented in
Section 4 which is followed by brief conclusions in Section
5.

II. PROBLEM STATEMENT

In this paper, we consider a class of nonlinear control-
affine dynamical system of the form:

ẋ = f(x) +

P∑
i=1

gi(x)ui(t) (1)

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeC08.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 5842



where x ∈ R
n are the state variables and u(t) =

[u1(t), . . . , up(t)]
T ∈ R

p is the vector of p input variables,
f(x) : R

n → R
n and gi(x) : R

n → R
n, for i = 1, . . . , p,

are C∞ vector-valued function of the state variables x.
The control design objective is to steer the states of

the nonlinear system (1) to the trajectory that solves the
following dynamic optimization problem:

max
x(t),u(t)

J =

∫ T

0

q(x(t), u(t))dt (2)

subject to: ẋ = f(x) +

P∑
i=1

gi(x)ui(t)

w(x(t),u(t)) ≥ 0 (3)

x(0) = x0

x(T ) = xf

The variable T , assumed fixed, is taken as the length of
the horizon considered for the cost functional. It is assumed
that there exists a continuous control u(t) that can steer the
state variables of the control system from x0 to xf over the
interval t ∈ [0, T ].

The constraint set Ωc = {x ∈ R
n, u ∈ R

p|w(x, u) ≥ 0}
describes a convex subset of R

n × R
p. The constraint

functions w : R
n × R

p → R
c in (3) is a C∞ vector valued

function of the x and u taking value in R
c. It is assumed

that the trajectories x(τ) evolve on a compact subset Ω
of R

n, the input trajectories take value in R
p. The cost

functional J : Ω × R
p → R

+ is assumed to be a convex
and continuously differentiable function on Ω. The function
q(x, u) is assumed to be positive definite and sufficiently
smooth.

To solve this problem, we must consider some
parametrization of the trajectories of the system (1) over
the set Ω. In this paper, we focus on the situation where
the model (1) is differentially flat. The approach consists of
computing the optimal trajectories in the flat output space.
The corresponding trajectories, computed in real-time, are
implemented by using a suitable tracking controller. This
method leads to a two degree-of-freedom real-time optimiz-
ing controller. In the next two subsections, we provide a brief
introduction to the notion of flatness and the application of
flatness in dynamic optimization.

A. Flat Dynamical Systems

Differential flatness, a notion introduced in [6], refers to
the existence of so-called flat or linearizing outputs that
summarize the dynamics of a nonlinear system. It is closely
related to the general ability to linearize a dynamical sys-
tem by an appropriate choice of endogenous dynamic state
feedback transformations. Such feedback structures describe
a special class of static or dynamic pre-compensators formed
only of endogenous system variables, such as state variables,
inputs and a finite number of their time derivatives.

The system (1) is said to be differentially flat if there exists
variables y = [y1, ..., yp]

T given by an equation of the form:

y = h(x, u, u̇, ..., u(ρ)) (4)

where h is a C∞ vector-valued function. The variables y =
[y1, ..., yp]

T are referred to as the flat outputs.
The original system variables x(t) and u(t) are written as

functions of these flat outputs (y(t) ) and a finite number of
their derivatives:

x(t) = α(y(t),y(1)(t), ....y(k)(t)) ≡ α(ȳ(t)) (5)

u(t) = β(y(t),y(1)(t), ....y(k)(t)) ≡ β(ȳ(t))

The functions α()̇ and β()̇ are C∞ vector-valued functions.
Here y(i)(t) stands for the ith derivative of y(t) with respect
to t and k is the number of derivatives of y(t) required to
represent the system in the form given in (5). In addition,
ȳ(t) is a vector of derivatives of the flat output, that is,

ȳ(t) = [y(t),y(1)(t), ....y(k)(t)]T .

B. Dynamic Optimization using Flatness

Using flatness, the set of trajectories can be parameterized
by simply choosing a suitable parametrization for the flat
outputs. The resulting state and input trajectories can be
computed directly from (5). This strategy has been employed
in many studies (see, [14], [11], [15], [10], [16], [6] and
references therein). The choice of parametrization depends
entirely on the specific application. In general, we parame-
terize the highest derivative of the flat outputs, y(k)(t), as

y
(k)
j (t) =

N∑
i=1

θiΞij(t), 1 ≤ j ≤ p (6)

where θ = [θ1, . . . , θN ]T are the parameters to be assigned,
Ξij(t), 1 ≤ i ≤ N , 1 ≤ j ≤ p, are the basis functions.
The flat outputs and their first k− 1 derivatives are obtained
by integrating equation (6) successively. The flat outputs are
given by

yj(t) =

N∑
i=1

θi

∫
. . .

∫
k

Ξij(t)

for 1 ≤ j ≤ k, or, in vector form,

y(t) = θT

∫
. . .

∫
k

Ξ(t)

where Ξ(t) is the N by p matrix of basis functions.
The vector of derivatives of the flat outputs, ȳ(t), is written

as

ȳ(t) = θT Φ(t)

where Φ(t) = [
∫

. . .
∫

k
Ξ(t),

∫
. . .

∫
k−1 Ξ(t), . . . ,Ξ(t)]. Us-

ing this parametrization, the cost function (2) is given by

J(θ) =
1

T

∫ t+T

t

q(α(θT Φ(τ)), β(θT Φ(τ)))dτ. (7)

The constraints are re-parameterized as follows:

w(α(θ(t)T Φ(t), β(θ(t)T Φ(t))) ≥ 0. (8)
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We can then restate the parameterized form of the dynamic
optimization problem as:

max
θ

J =
1

T

∫ t+T

t

q(α(θT Φ(τ)), β(θT Φ(τ)))dτ

subject to: (9)

w(α(θT Φ(τ)), β(θT Φ(τ))) ≥ 0

α(θT Φ(0)) = x0 (10)

α(θT Φ(T )) = xf (11)

III. EXTREMUM-SEEKING DYNAMIC OPTIMIZATION

The objective of the controller design methodology is to
steer the system to the parameterized optimal state and input
trajectories that solves the nonlinear optimization problem
(9). In the remainder, we consider the cost functional (7)
as a function of θ, J(θ). We propose to solve the opti-
mization problem (9) using an interior/exterior point method
to incorporate the constraints and the boundary conditions.
The constraints described by the vector valued inequality
8 are enforced by an interior point method using a log-
barrier function that is incorporated in the cost. The boundary
conditions (10)-(11) are incorporated using an exterior point
method by adding a penalty function to the cost. This leads
to a modified cost function given by

Jip =

Z T

0

 
q(α(θT Φ(τ )), β(θT Φ(τ )))

−

mX
i=1

µi log
“
wi(α(θT Φ(τ )), β(θT Φ(τ ))) − εi

”!
dτ

+M(α(θT Φ(0)) − x0)
2 + M(α(θT Φ(T )) − xf )2 (12)

where µi > 0, εi > 0 for i = 1, . . . , m and M > 0
are positive constants that are the tuning parameters for the
interior/exterior cost functions. In general, µi and εi are taken
as small as possible and M is taken as large as possible. We
first make the following assumption.

Assumption 3.1: The constraint set described by equation
(3), which is convex of the set Ω ⊂ R

n, remains convex over
a set Υ in the parameter space in its parameterized form (8).

Assumption 3.1 guarantees that the unconstrained opti-
mization of the modified cost Jip leads to the constrained
optimum of J(θ) as the tuning constants µi → 0 and
M → ∞. Although this assumption can be restrictive in
practice, most applications can be adequately solved using
the proposed technique through a suitable a priori analysis
of the problem. One technique, proposed in this paper, is
to solve the optimization problem using an update law that
constrains the parameters to remain in a convex set.

A. Real-Time Optimization Technique

The basic approach is to formulate the optimization of
J(θ) using a Lyapunov based approach. Given that the
functional is convex with respect to θ over a prescribed
region Υ, we can rely on the first order conditions for
optimality given by,

∇θJip(θ
∗) = 0 (13)

where ∇θJip(θ
∗) is the gradient of Jip with respect to θ

evaluated at the minimizer θ∗. As in [13], we propose the
following Lyapunov function,

V =
1

2
‖∇θJip(θ)‖

2 (14)

Note that the gradient of Jip is now a function of a time-
varying set of parameters θ(t) given by the expression

∇θJip(θ)T = ∇θJ(θ)T

+

Z T

0

mX
i=1

µi

(wi(α(ȳ), β(ȳ)) − εi)

 
∂wi

∂x

∂α

∂θ
+

∂wi

∂u

∂β

∂θ

!
dτ (15)

+M(α(θT Φ(0)) − x0)
∂α

∂θ
(0, θ) + M(α(θT Φ(T )) − xf )

∂α

∂θ
(T, θ)

where

∇θJ(θ)T =

∫ T

0

(
∂q

∂x

∂α

∂θ
(τ, θ) +

∂q

∂u

∂β

∂θ
(τ, θ)

)
dτ (16)

∂α

∂θ
(t, θ) =

∂α

∂ȳ(t)

∂ȳ(t)

∂θ
,

∂β

∂θ
(t, θ) =

∂β

∂ȳ(t)

∂ȳ(t)

∂θ
(17)

and
∂ȳ(t)

∂θ
=

[
φ(t), . . . , φ(t)(k)

]
.

The time derivative of V is

V̇ = ∇θJip(θ(t))(∇θ
2Jip(θ(t))θ̇)

where ∇θ
2Jip(θ(t)) is the Hessian of Jip evaluated at θ(t)

given by

∇
2

θJip(θ)T = ∇
2

θJ(θ)T +

Z T

0

 
mX

i=1

−
µi

(wi(α(ȳ)) − εi)2
∂wi

∂x

∂α

∂θ

+
µi

(wi(α(ȳ)) − εi)

∂αT

∂θ

∂2wi

∂x∂xT

∂α

∂θ
+

µi

(ri(α(ȳ)) − εi)

∂ri

∂x

∂2α

∂θ∂θT

!
dτ

+M(α(θT Φ(0)) − x0)
∂2α

∂θ∂θT
(0, θ) + M

∂αT

∂θ
(0, θ)

∂α

∂θ
(0, θ)

+M(α(θT Φ(T )) − xf )
∂2α

∂θ∂θT
(T, θ) + M

∂αT

∂θ
(T, θ)

∂α

∂θ
(T, θ) (18)

with

∇θ
2
J(θ(t)) =

Z T

0

 
∂q

∂x

∂2α

∂θ∂θT
+

∂αT

∂θ

∂2q

∂x∂xT

∂α

∂θ
+

∂q

∂u

∂2β

∂θ∂θT

+
∂βT

∂θ

∂2q

∂u∂uT

∂β

∂θ
+ 2

∂βT

∂θ

∂2q

∂u∂xT

∂α

∂θ

!
dτ. (19)

As a result, we obtain the following expression for the
derivative of V

V̇ = ∇θJip(θ(t))
(
∇θ

2Jip(θ(t))θ̇
)

. (20)

We propose the following parameter update law:

θ̇ = −kΓ−1∇θJip(θ(t))
T (21)

where Γ =
(
∇θ

2Jip(θ(t)) − ρI
)

and ρ =
∥∥∇θ

2Jip(θ(t))
∥∥

F
is the Frobenius norm of the Hessian matrix. Clearly, the
matrix Γ is by construction negative definite such that

J̇ip = −∇θJip(θ(t))Γ
−1∇θJip(θ(t))

T ≥ 0. (22)
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The cost functional is constrained to increase as long as the
gradient is nonzero. Note that, the rate of change of the
Lyapunov function V becomes

V̇ = −k∇θJip(θ(t))∇θ
2Jip(θ(t))Γ

−1∇θJip(θ(t))
T .

The correction of the Hessian renders the rate of change of
V indefinite. In order to avoid divergence of the scheme, the
value of the parameters is constrained to the convex set

ΩW =
{
θ ∈ R

N | ‖θ‖ ≤ wm

}
for some wm > 0 through the use of a projection algorithm.
This algorithm is given by

θ̇ = =

⎧⎪⎨
⎪⎩

Ψ, if ‖θ‖ < wm

or (‖θ‖ = wm and ∇P(θ)Ψ ≤ 0)

Ψ − Ψγ∇P(θ)∇P(θ)T

‖∇P(θ)‖2
γ

, otherwise

where Ψ = −kΓ−1∇θJ(θ(t))T and P(θ) = θT θ−wm ≤ 0,
θ is the vector of parameter estimates, γ is a positive definite
symmetric matrix and wm is chosen such that ‖θ‖ ≤ wm.

The relevant properties of the projection operator, (23),
are given in [17]. The purpose of the projection algorithm
is to prevent the divergence of the optimization scheme.
Although this can be achieved, it remains to check whether
the maximization of the cost J can still proceed when a
projection algorithm is employed.

By the properties of the projection algorithm, the pa-
rameters are guaranteed to remain in the convex set ΩW .
Furthermore, it is also guaranteed that the rate of change of
Jip, subject to the projection algorithm (23), given by

J̇ip(t) = ∇θJip(θ(t))Proj {θ, Ψ} (23)

is such that

J̇ip(t) ≥ 0

∀θ ∈ ΩW . Thus, the projection algorithm plays the role
of a trust-region algorithm which limits the domain of the
trajectories prescribed by equation (21) while ensuring the
progress of the optimization algorithm. The restricted update
law ensures that a local maximum of J can always be
achieved over a convex set in the parameter space.

Note that by the smoothness of the cost J with respect to
the decision variables θ, it is guaranteed that there exists an
upper bound in the magnitude of the gradient and Hessian
of J over the convex set ΩW .

The purpose of the optimization strategy is to generate
in real-time a trajectory of the nonlinear system (1) that
approximates the optimal trajectory of the cost functional
Jip. The approximate optimal trajectory provides a reference
trajectory that must be implemented by the control system.

B. Implementation

In this section, we propose a tracking controller that drives
the state variables of the system to track the approximate
optimal trajectory generated in real-time. Using flatness, it
is straightforward to implement a tracking controller that
provides asymptotic trajectory tracking.

Any flat system can be transformed via a dynamic feed-
back transformation to a Brunovsky form given by

żi1 = zi2, . . . , żiνi−1 = ziνi
,

żiνi
= αi(z11, . . . , z1ν1 , . . . , zp1, . . . , zpνp

)

or

żi = Aizi + Biαi(z11, . . . , z1ν1 , . . . , zp1, . . . , zpνp
)

where zi = [zi1, . . . , ziνi
]
T ,

Ai =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦ , Bi =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...
1

⎤
⎥⎥⎥⎥⎥⎦ ,

for i = 1, . . . , p where νi are the Kronecker indices of the
Brunovsky form and the flat outputs are represented by yi =
z1i for i = 1, . . . , p. The dynamics of the flat system can be
summarized as follows

ż = Az + Bv (24)

where A = BlockDiag [A1, A2, . . . , Ap], B =
BlockDiag [B1, B2, . . . , Bp], z =

[
zT
1 , zT

2 , . . . , zT
p

]
,

v = [α1, α2, . . . , αp]). The functions αi are understood
to be smooth nonlinear time-varying functions of the flat
outputs zi1 ,(i = 1, . . . , p), u and their derivatives.

Following the dynamic optimization strategy highlighted
above, the parameters θ(t) (evaluated at time t) encode the
reference trajectory for the highest derivative of the flat
outputs written as

ξ(ν) =
[
ξ
(ν1)
1 , ξ

(ν2)
2 , . . . , ξ(νp)

p

]T

= θ(t)T φ(t) (25)

where φ(t) is an N by p matrix of basis functions chosen to
parameterize the system dynamics. The lower order deriva-
tives are obtained by successively integrating the elements
of (25) over the interval [0, T ].

Given the reference trajectories for the flat outputs,
ξ1(t), . . . , ξp(t) and their derivatives, we define the tracking
errors

ei1 = zi1 − ξi(t), . . . , eiνi
= ziνi

− ξ
(νi−1)
i (t)

for i = 1, . . . , p. The tracking error dynamics are given by

ėi1 = zi2 − ξ
(2)
i (t), . . . , (26)

ėiνi
= αi(z11, . . . , z1ν1 , . . . , zp1, . . . , zpνp

) − ξ
(νi)
i

where i = 1, . . . , p. Let the highest order of differentiation
of the input variable ui be given by ρi. The p derivatives are
summarized in vector form as

u(ρ) =
[
u

(ρ1)
1 , . . . u(ρp)

p

]T

.

By the flatness (and hence the controllability) property,
the vector-valued function α = [α1, . . . , αp]

T is such that
rank

[
∂α

∂u
(ρ)

]
= p. Following a standard argument, it is possi-

ble to develop a tracking controller that provides asymptotic
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tracking. For the class of control-affine nonlinear systems,
the function α takes the form

α = F (x, u(t), . . . , u(ρ−1)) + G(x, u(t), . . . , u(ρ−1))uρ

By assumption, we have that the matrix
G(x, u(t), ..., u(ρ−1)) is nonsingular over the set Ω. A
suitable tracking controller is then given by

uρ = −[G(x, u(t), . . . , u(ρ−1))]−1

×

(
F (x, u(t), . . . , u(ρ−1)) − Ke +

⎡
⎢⎣

ξ
(ν1)
1
...

ξ
νp
p

⎤
⎥⎦

)
(27)

The matrix K ∈ �p×n is chosen such that the matrix A−BK
is Hurwitz . The implementation of the tracking controller
(27) leads to the closed-loop error dynamics

ė = (A − BK)e (28)

which guarantees that the origin of the error dynamics is
globally asymptotically stable. Since by construction the
tracking dynamics are bounded, it follows that the trajectories
of the state variables and the input variables are bounded
and converge to the reference trajectory generated by the
real-time optimization system.

IV. DYNAMIC OPTIMIZATION OF A FED-BATCH

BIOREACTOR

In this example, adapted from [5], a bioreactor is used to
produce large quantities of a drug P . The dynamics of the
bioreactor are given by:

ẋ1 =
αmx1x2

x2 + Klx1
− Dx1 (29)

ẋ2 = −
1

Yxs

αmx1x2

x2 + Klx1
−

1

Yp

θmx1x2

Kp + x2 + x2
2/KI

−Mxx1 − Dx2 + Du1

where x1(g/l) is the biomass concentration, x2(g/l) is
the substrate concentration, u1(g/l) is the inlet substrate
concentration and D(hr−1) is the dilution rate. We assume
that the dilution rate remains fixed at 0.040 (hr−1). The
values of the model parameters are listed in Table IV.

Parameter Value Parameter Value
αm 0.11 (hr−1) Kl 1
Yxs 0.47 Yp 1.2
Kp 0.0001 (g/l) KI 0.l (g/l)
Mx 0.029 (hr−1) θm 0.004 (hr−1)

Table IV
Model Parameters for the Bioreactor

The dynamic optimization problem is given as follows:

min
u

−

∫ tf

0

θmx1x2

Kp + x2 + x2
2/KI

dt

s.t. eq.(29), ∀t ∈ [0, 1],

x1(0) = 1 (g/l), x2(0) = 0.2 (g/l),

0 ≤ x1(t) ≤ 40(g/l)

0 ≤ x2(t) ≤ 0.5(g/l) ∀t ∈ [0, 1]

0 ≤ u1(t) ≤ 400(g/l) .

If one uses the inlet substrate concentration, u1, as the
input, this system is differential flat with the biomass con-
centration, y = x1 as a flat output. Differentiating y twice
with respect to t provides the required parametrization of the
state and input trajectories.

A sixth order polynomial is used to approximate the
system’s trajectories. The real-time optimization gain k is
set 0.1. Six log barrier functions with µ = 1 and ε1 = 0.001
are required to enforce the constraints 0 ≤ x1(t) ≤ 40,
0 ≤ x2(t) ≤ 0.5 and 0 ≤ u1(t) ≥ 400. The penalty function
parameter is to M = 1000. The parameter estimates are
initialized at θ̂(0) = [1, 0, 0, 0, 0, 0, 0]. The tracking
controller gain is given by K = [−0.01,−0.01].

The result of the simulation are shown in Figures 1-5. The
value of the extended cost Jip is shown in Figure 1. The
results demonstrate that the real-time optimization scheme
converges quickly to the local optimum Jip = −1823. The
cumulative value of the nominal cost functional J(t), which
is indicative of the productivity of the batch reactor, is shown
in figure 2. The trajectory and the corresponding optimal
trajectory of the flat output x1 are shown in Figure 3. The
tracking controller implements the optimal trajectory effec-
tively for this simple problem. The substrate concentration,
x2, is shown in Figure 4. The corresponding input trajectories
are shown in 5. The tracking controller deviates slightly from
the optimal trajectory to compensate for the effect of the
initial adaptation that occurs at the beginning of the time
interval.

V. CONCLUSIONS

In this paper, we proposed and solved an extremum-
seeking control for the design of real-time dynamic optimiza-
tion problems for a class of nonlinear dynamical control sys-
tems. The approach provides a real-time trajectory generation
system that computes the optimal system trajectories while
a suitable tracking controller is used to regulate the process.
A simulation example considered to demonstrate the effec-
tiveness of the real-time optimization controller. Although
the current results is restricted to flat dynamical systems, the
technique developed in this paper is applicable to general
nonlinear systems assuming that a suitable parametrization
of the systems’ trajectories is available.
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Fig. 1. Cost functional Jip for the the real-time optimization scheme
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Fig. 2. Cost functional J for the the real-time optimization scheme
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Fig. 3. Closed-loop state variable x1 trajectories (full lines) and optimal
state trajectories (dashed lines) for the real-time optimization scheme.
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Fig. 4. Closed-loop state variable x2 trajectories for the real-time
optimization scheme.
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Fig. 5. Closed-loop input variable trajectories (full lines) and optimal input
trajectories (dashed lines) for the the real-time optimization scheme
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