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Abstract— This paper is concerned with obtaining necessary
and sufficient conditions for fulfilling specified state and control
pointwise-in-time constraints against a certain class of nonlinear
dynamics. The results are generalizations of the maximal output
admissible set theory to the case of nonlinear systems. Main
contribution of the present paper is that explicit algorithmic
procedures to determine the maximal output admissible set
are proposed. Another contribution is that we discuss on a
finite determinability of the maximal output admissible set
for nonlinear systems. Some relations between observability of
nonlinear systems and finite characterizations of the maximal
output admissible set are clarified.

I. INTRODUCTION

This paper considers necessary and sufficient conditions
for fulfilling the specified state and control constraints against
nonlinear dynamics. Constraints on actuators and often also
on the states are present inherently in all real physical
systems. They can lead performance deterioration and even
instability if not properly accounted for in design stages [8].

An invariance property of a certain subset of the state
space plays fundamentally important role in analysis and
design of constrained systems [4]. The concept of maximal
output admissible sets, especially, delivers necessary and
sufficient conditions to fulfill the specified constraints [8],
[14], [16]. The maximal output admissible set is the largest
constraint admissible positively invariant set or, in other
word, the set of all initial conditions such that resulting
trajectories never exceed the specified constraints.

The maximal output admissible set has been well studied
especially for linear systems with state and control con-
straints [8], [14], [16]. The concept of maximal output ad-
missible sets makes it possible to insight into analysis of con-
strained control systems, and it is also true that the maximal
output admissible set is used extensively throughout control
system design methods [2], [3], [5], [7], [10], [11], [12],
[17], [23], [25]. Among them multimode controller switch-
ing strategies and reference management problems have
interesting separation or hierarchical features in constrained
control system designs. Theses control design techniques
allow us to ignore the effects of constraints on design of
the primal feedback control system. The effect of constraints
are maintained by introducing additional controller switching
or reference management mechanisms. The maximal output
admissible set is an essential tool to realize these hierarchical
control design strategies.
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The problems consider in the present paper are motivated
by controlling nonlinear systems with state and control con-
straints. Although there are variety of methods for designing
feedback controllers for nonlinear plants, it is difficult to
handle directly the effects of state and control constraints.
Thus there is a good reason to ignore, at least in primal
feedback control design stages, the effects of state and
control constraints on design of closed-loop systems. The
maximal output admissible set for nonlinear systems could be
an essential tool to realize separation or hierarchical control
design approaches for nonlinear systems. Actually it is also
true that separation approaches to nonlinear constrained
systems are utilized in literatures [1], [6], [20], [21]. However
there exist no results to exactly determine the maximal
output admissible set for nonlinear systems, therefore certain
subsets of the maximal output admissible set, i.e., sublevel
sets of Lyapunov functions or simulation based estimations
of constrains admissible regions have been employed. Exact
characterizations of the maximal output admissible set could
be utilized in theses control strategies.

This paper considers generalization of the concept of
maximal output admissible sets for nonlinear systems and is
concerned with obtaining necessary and sufficient conditions
for constraint fulfillments. Nonlinear dynamics considered in
this paper are represented as polynomial functions of state
variables. We propose a procedure to exactly determine the
maximal output admissible set. Specific numerical compu-
tations required by the propose procedure can be reduced
to certain nonlinear optimization problems, and recent de-
velopments of so called polynomial optimization techniques
make it possible to obtain globally optimal solutions to the
problem [15], [18], [19], [22]. Another contribution of this
paper is deriving sufficient conditions which assure finite
characterizations of the maximal output admissible set for
nonlinear systems. For liner systems with constraints, basi-
cally observability assumptions assure finite characterizations
of the maximal output admissible set. We discuss nonlinear
generalizations for this finite characterization problem and
show that observability assumptions with some additional
conditions assure finite determinations of the maximal output
admissible set. Due to the limitation of space, some numeri-
cal examples and proofs are omitted. Detailed version of this
paper are available for an interested reader [13] .
Notation: The set of nonnegative integers is denoted by Z+.
For x ∈ Rn, let xk denote the kth component of x. For M ∈
Rm×n, let M(k,:) denote the kth row of M . For A ⊂ Rn,
let intA and clA denote interior and closure of the subset A,
respectively.
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II. A CLASS OF NONLINEAR SYSTEMS

AND PROBLEM DESCRIPTIONS

A. Constrained Nonlinear Systems

The system dynamics under consideration are

x(t + 1) = f(x) (1a)

z0(t) = h(x) (1b)

The vector signals are defined as follows: x ∈ Rn denotes
the state, z0 ∈ Rp denotes constrained output which are
subject to specified pointwise-in-time constraints z0(t) ∈
Z ⊂ Rp for all t ∈ Z+. The vector valued functions f(·)
and h(·) are assumed to be polynomial functions of xk,
k = 1, 2, . . . , n. The subset Z is a convex polyhedral set
in the following form:

Z = {z0 ∈ Rp| MZz0 ≤ mZ}

where MZ ∈ RsZ×p and mZ ∈ RsZ describe linear
constraints which specify Z .

Remark 1: Constraints considered here are not explicit
output constraints, and the definition can handle any state
and control constraints. Descriptions of systems with state
and control constraints mentioned above are quiet realistic
in practical applications. Certainly they apply to systems
involve actuator saturations [2], [3], [5], [7], [8], [10], [11],
[12], [14], [16], [17], [25].

B. The Maximal Output Admissible Set

The definition of the maximal output admissible set is
stated as follows:

Definition 1: Let z0(t; x(0)) denote the output (1b) for the
initial condition x(0). Define the maximal output admissible
set by

O∞ = {x(0) ∈ Rn| z0(t; x(0)) ∈ Z for all t ∈ Z+}
Because of the definition, the condition x(0) ∈ O∞ is

equivalent to constraints fulfillments for nonlinear systems
(1). Note here that constraints considered here are not explicit
output constraints. The definition can handle any state and
control constraints. From this point of view, the subset O∞

may also be called the maximal positively invariant set which
might be a more classic and widely used term [4]. In this
paper, we employ a notion of the maximal output admissible
set following the definition in [8].

Explicit procedures to determine O∞ will be proposed
in Section IV. An important property of the maximal output
admissible set for linear systems is that finite characterization
is possible (see Section III). Discussions in Section V include
some conditions which assure finite determinations of O∞

for nonlinear system.

III. REVIEW OF RESULTS FOR LINEAR SYSTEMS

This section briefly reviews results for linear systems. The
contents of this section focus on the issue of algorithmic
determinations of the maximal output admissible set. A key
observation in algorithmic determinations is summarized in
the following Remark 2. A corresponding observation in
nonlinear case is stated in Remark 3.

The system dynamics considered in this section are

x(t + 1) = Ax(t) (2a)

z0(t) = C0x(t) (2b)

The vector signals are defined as similar to that for (1).
The maximal output admissible set is defined as fol-

lows [8], [16]:
Definition 2: Let z0(t; x(0)) denote the output (2b) for the

initial condition x(0). Define the maximal output admissible
set by

OL
∞ = {x(0) ∈ Rn| z0(t; x(0)) ∈ Z for all t ∈ Z+}

Necessary and sufficient conditions for constraint fulfill-
ments are an initial condition satisfies x(0) ∈ OL

∞. The basic
idea for algorithmic determinations of OL

∞ is to construct the
following j-steps constraint admissible sets KL

j , j = 0, 1, . . .

KL
j = {x(0) ∈ Rn| z0(t; x(0)) ∈ Z t = 0, 1, . . . , j}

Each KL
j consists of all initial conditions which at least

assure j-steps constraint fulfillments. The following recursive
descriptions of KL

j , j = 1, 2, . . . will be useful.

KL
j = {x ∈ KL

j−1| Ax ∈ KL
j−1} j ≥ 1

KL
0 = {x ∈ Rn| C0x ∈ Z}

Although, from the definition of KL
j , we have OL

∞ =⋂
j∈Z+ KL

j , it might not make it possible to construct
OL

∞ since infinitely many recursive computations may be
required. However, a finite characterization of OL

∞ is actually
possible. We start with the following definition.

Definition 3: The maximal output admissible set, OL
∞, is

said to be fi nitely determined if there exists an index j such
that KL

j = KL
j−1.

Suppose OL
∞ is finitely determined with an index j. It is

clear that OL
∞ = KL

j−1. Under the following Assumption 1,
finite determinability of OL

∞ can be summarized as in
Theorem 1 stated below [8].

Assumption 1:
1. Z is bounded and satisfies 0 ∈ intZ .
2. The eigenvalues of A satisfy |λj(A)| < 1.
3. (C0, A) is an observable pair.
Theorem 1: The maximal output admissible set, OL

∞, is
finitely determined.

Algorithmic procedures for computing OL
∞ can be sum-

marized as follows:
step 1) Set KL

0 = {x ∈ Rn| N0x ≤ n0} and j = 1 where

N0 = MZC0 n0 = mZ

step 2) Set KL
j = {x ∈ Rn| Njx ≤ nj} where

Nj =

[
N0A

j

Nj−1

]
nj =

[
n0

nj−1

]

if KL
j = KL

j−1

OL
∞ = KL

j−1 and stop.

else

set j = j + 1 and goto step 2).
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Remark 2: In step 2), the procedure requires to check
whether KL

j = KL
j−1 or not. Since KL

j has an explicit rep-
resentation KL

j = {x ∈ KL
j−1| N0A

jx ≤ n0}, the condition
KL

j = KL
j−1 indicate that all of new constraints N0A

jx ≤ n0

which are added to represent KL
j are redundant. Therefore

the condition KL
j = KL

j−1 is equivalent to the following
inequality constraints

max
x∈KL

j−1

(N0)(k,:)A
jx < (n0)k for all k = 1, 2, · · · , sZ

Maximizing the left hand side is a standard linear pro-
gramming problem, and it can be handled in a numerically
efficient way.

IV. ALGORITHMIC DETERMINATION OF THE MAXIMAL

OUTPUT ADMISSIBLE SET

This section proposes explicit algorithmic procedures to
determine the maximal output admissible set for nonlinear
dynamics (1). Main observation in this aspect will be sum-
marized in Remark 3.

We first define j-steps constraint admissible sets

Kj = {x(0) ∈ Rn| z0(t; x(0)) ∈ Z t = 0, 1, . . . , j}

The subsets Kj , j = 0, 1, . . . consists of all initial conditions
which at least assure j-steps constraint fulfillments. The
following recursive descriptions are also valid even for
nonlinear case.

Kj = {x ∈ Kj−1| f(x) ∈ Kj−1} j ≥ 1

K0 = {x ∈ Rn| h(x) ∈ Z}

= {x ∈ Rn| M0(x) ≤ m0}

M0(·) = MZh(·) m0 = mZ

Finite determinability of O∞ is defined as follows:
Definition 4: Suppose O∞ �= ∅

1. The maximal output
admissible set, O∞, is said to be fi nitely determined if there
exists an index j such that Kj = Kj−1.

The remainder of this section considers explicit descrip-
tions of Kj and O∞. Let us denote f 1(x) = f(x) and
f j+1(x) = f1(f j(x)), j ≥ 1. From the definition of K1,
we have

K1 = {x ∈ K0| f1(x) ∈ K0}

= {x ∈ Rn| M1(x) ≤ m1}

M1(·) =

[
M0(f

1(·))
M0(·)

]
m1 =

[
m0

m0

]

Similarly, definition of K2 allows us the following possible
representation

K2 = {x ∈ K1| f1(x) ∈ K1}

= {x ∈ Rn|

⎡
⎢⎢⎣
M0(f

2(x))
M0(f

1(x))
M0(f

1(x))
M0(x)

⎤
⎥⎥⎦ ≤

⎡
⎢⎢⎣

m0

m0

m0

m0

⎤
⎥⎥⎦}

1O∞ is not empty in general. See Lemma 2 in Section V.

Clearly, the second row block of the above inequality con-
straints are redundant to describe K2. Thus, we have

K2 = {x ∈ Rn| M2(x) ≤ m2}

M2(·) =

[
M0(f

2(·))
M1(·)

]
m2 =

[
m0

m1

]

It is exactly same for all j ≥ 1, by removing the redundant
constraints, we have the following explicit representation of
Kj

Kj = {x ∈ Rn| Mj(x) ≤ mj} j ≥ 1

Mj(·) =

[
M0(f

j(·))
Mj−1(·)

]
mj =

[
m0

mj−1

]

Algorithmic procedures for computing O∞ can be sum-
marized as follows:
step 1) Set K0 = {x ∈ Rn| M0(x) ≤ m0} and j = 1
where

M0(·) = MZh(·) m0 = mZ

step 2) Set Kj = {x ∈ Rn| Mj(x) ≤ mj} where

Mj(·) =

[
M0(f

j(·))
Mj−1(·)

]
mj =

[
m0

mj−1

]

if Kj = Kj−1

O∞ = Kj−1 and stop.

else

set j = j + 1 and goto step 2).

Remark 3: In step 2), the procedure requires to check
whether Kj = Kj−1 or not. Since Kj has an explicit
representation Kj = {x ∈ Kj−1| M0(f

j(x)) ≤ m0}, the
condition Kj = Kj−1 indicate that all of new constraints
M0(f

j(x)) ≤ m0 which are added to represent Kj are
redundant. Therefore the condition Kj = Kj−1 is equivalent
to the following inequality constraints (see Remark 2).

max
x∈Kj−1

(M0(f
j(x)))k < (m0)k for all k = 1, . . . , sZ

The left hand side of the above inequality is a maximization
problem of a polynomial objective function over a feasible
region described by semidefinite constraints of multi-variate
polynomials [15]. Recent developments of so called polyno-
mial optimization techniques make it possible to solve this
class of optimization problems [15], [22], [26], [27]. Some
techniques can actually obtain globally optimal solutions for
polynomial optimizations [9], [18], [19]. Therefore, checking
the condition Kj = Kj−1 can be handled by utilizing
these polynomial optimization techniques. In the following
Example 1, we use the results in [9], [24] to show a numerical
example of exact computation of O∞.

Example 1: Consider the following nonlinear (quadratic)
system [28] with input constraints −5 ≤ z0 = −u ≤ 5

x(t + 1) = Ax(t) + Bu(t) + ∆(x(t))Hx(t)

z0(t) = −u(t) = C0x(t)
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where the matrices A, B and C0 are given by

A =

[
0.1 2
−0.8 2

]
B =

[
2
1

]
C0 =

[
0.2 0.5

]

The quadratic term is defined by ∆(x) = diag[ xT xT ]
and H = [ HT

1 HT
2 ]T where

H1 =

[
0.01 0.01
0.01 0.02

]
H2 =

[
0.02 0.05
0.005 0.01

]

O∞ is finitely determined as O∞ = K3 = K4. Fig. 1
shows K0 (dashed lines) and K1. In Fig. 1, each ‘◦’ indicate
the region of K1 as ‘◦ ∈ K1’. Similarly, each ‘◦’ in Fig. 2
indicate the region of O∞ = K3.
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Fig. 1. K0 (dashed line) and K1. ‘◦’ indicates a subset K1 such as
‘◦ ∈ K1’.
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Fig. 2. K0 (dashed line) and O∞ = K3. ‘◦’ indicates a subset O∞ such
as ‘◦ ∈ O∞’.

Fig. 3 shows sample state trajectories. Note here that
z0(τ) ∈ Z is equivalent to x(τ) ∈ K0 for each time instance
τ ∈ Z+, and it can be seen that trajectories starting from the
inside of O∞ never exceed the specified constraints. On the
other hand, trajectories with x(0) �∈ O∞ necessarily violate
the specified constraints.
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Fig. 3. O∞ = K3, K0 and sample state trajectories. Trajectories starting
from x(0) �∈ O∞ necessarily violate the specifi ed input constraints.

V. FINITE DETERMINATIONS OF THE MAXIMAL OUTPUT

ADMISSIBLE SETS

This section discusses finite determinability of the max-
imal output admissible set for nonlinear systems. In Sec-
tion IV, we propose numerically tractable recursive pro-
cedures to determine O∞. However, a finite termination
of the procedure or, in other word, a finite determination
of O∞ is not clear yet. We will show that observability
assumptions and some additional conditions can assure finite
determinations of O∞.

The following SectionV-A shows some basic conditions
which assure finite determinations of O∞. Section V-B con-
siders observability and some related properties of nonlinear
systems. Finally, Section V-C discusses relation between the
condition derived in SectionV-A and the properties related to
observability of nonlinear systems. In the remainder of this
paper the following assumptions are considered to investigate
finite determinability of O∞.

Assumption 2:
1. Z is bounded and satisfies 0 ∈ intZ .
2. f(0) = 0 and h(0) = 0, i.e., x = 0 is an

equilibrium point of (1).
Due to the limitation of space, proofs of all lemmas in

this section are omitted. Those are available in [13].

A. Basic Conditions for Finite Determinations

This section describes some basic conditions which assure
finite determinations of O∞. Observations from an engineer-
ing point of view on the conditions considered here are stated
in Remark 4.

We first state the following Lemma 1 and 2 which sum-
marize some important properties of Kj and O∞.

Lemma 1: The subsets Kj , j = 0, 1, 2, . . . and O∞ are
closed.

Lemma 2: Suppose the equilibrium point x = 0 of (1) is
stable. The subsets Kj , j = 0, 1, . . . and O∞ contain x = 0
in its interior.

The following Lemma 3 and 4 clarify basic mechanisms
which assure finite determinations of O∞. In the remainder
of this paper we consider the following assumption:

Assumption 3: The equilibrium point x = 0 of (1) is
asymptotically stable.

Lemma 3: O∞ is finitely determined if there exists a T ∈
Z+ such that KT−1 is bounded.

We need to introduce some notations to state Lemma 4.
For t ∈ Z+ \ {0} and x(0) ∈ Rn, let us define the mapping
Ht−1 as follows:⎡

⎢⎢⎢⎣
z0(0)
z0(1)

...
z0(t − 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h(x(0))
h(f1(x(0)))

...
h(f t−1(x(0)))

⎤
⎥⎥⎥⎦ = Ht−1(x(0))

The mapping Ht−1 : Rn → Rpt is continuously differen-
tiable on Rn. Note here that, by using Hj−1, the subset
Kj−1 has the following representation:

Kj−1 = {x ∈ Rn| Hj−1(x) ∈ Zj}
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Lemma 4: O∞ is finitely determined if there exists a
T ∈ Z+ such that HT−1 : KT−1 → HT−1(KT−1) is a
homeomorphism.

Remark 4: The mapping HT−1 is injective indicate that
the initial condition x(0) and the resulting output z0(·; x(0))
have one-to-one correspondence. This is a necessary re-
quirement from a basic concept of observability such that
knowledge of the output suffices to uniquely determine the
initial state (see the following Definition 5, 6 and 8). On the
other hand, continuity of the inverse mapping FT−1 of HT−1

gets rid of small fluctuations of the output observations
result in large differences of the initial state. Arbitrary small
observation noises may cause extremely large changes in
estimated initial state for system without this continuity
properties, thus mechanisms so called observers may not
work well. From an engineering pint of view, systems to
be called observable should hold this continuity properties.
Actually standard results of nonlinear system theory require
this continuity property at least locally (see Definition 6 and
Lemma 5). Lemma 4 states that natural requirements from
an engineering point of view assure finite determinations of
O∞.

B. Observability Assumptions and Related Properties

We will consider some properties of nonlinear systems de-
rived under observability assumptions. The results stated here
might be simple applications of standard results in nonlinear
system theories [29]. The relations to the conditions derived
in Section V-A will be discussed in the next Section V-C.

First, let us introduce a notation Gt−1, t ∈ Z+ \ {0}.

Gt−1 = {hj(f
k(·)) : Rn → R|

j = 1, 2, . . . , p k = 0, 1, . . . , t − 1}

Gt−1 is a set of all functions which are components of
Ht−1. Each element of Gt−1 is a continuously differentiable
function on Rn. We use dα to denote derivative of α ∈
Gt−1.

The following four definitions are standard in nonlinear
system theories.

Definition 5: Two states x0 and x1 are said to be distin-
guishable if z0(·; x0) �= z0(·; x1) where z0(·; xj), j = 0, 1
denotes the output of the system (1) corresponding to the
initial condition x(0) = xi.

Definition 6: The system (1) is said to be locally observ-
able at x0 ∈ Rn if there exists an open neighborhood U of
x0 such that every x ∈ U other than x0 is distinguishable
from x0.

Definition 7: Let X ⊂ Rn be an open set. The system (1)
is said to be locally observable in X if it is locally observable
at each x0 ∈ X .

Definition 8: Let X ⊂ Rn. The system (1) is said to be
observable in X if each x0 ∈ X is distinguishable from every
x ∈ X other than x0.

We introduce the following Condition 1 which are standard
requirements for nonlinear systems to be observable [29].

Condition 1: Suppose x ∈ Rn and T ∈ Z+ are given.
There exist n functions αk(·) ∈ GT−1, k = 1, 2, . . . , n

such that n row vectors dαk(x) evaluated at x are linearly
independent.

Lemma 5: Suppose x0 ∈ Rn is given. The system (1) is
locally observable at x0 if there exits a T ∈ Z+ that satisfies
Condition 1.

Corollary 1: Let X ⊂ Rn be an open set. The system
(1) is locally observable in X , if there exists a T ∈ Z+ that
satisfies Condition 1 for each x ∈ X .

Remark 5: As it is required in Corollary 1, even if the
conditions mentioned in Lemma 5 are satisfied for every
x ∈ X , there may exist indistinguishable initial conditions
and thus the mapping from the initial conditions to the
resulting outputs may not be injective. Therefore, a global
observability in the sense of Definition 8 is not assured. A
global observability in an open set X is important to derive
the following Lemma 6.

Lemma 6: Let X ⊂ Rn be an open set. Suppose the
system (1) is observable in X , i.e., there exists a T ∈ Z+

such that HT−1 : Rn → RpT is an one-to-one mapping
from X onto HT−1(X). Then the inverse mapping FT−1 :
HT−1(KT−1) → KT−1 of HT−1 is defined. Suppose that
T satisfies Condition 1 for each x ∈ X . Then the mapping
FT−1 is continuously differentiable.

C. Observability and Finite determinations of O∞

Sufficient conditions that assure finite determinability of
O∞ is derived by combining the results in Sections V-A and
V-B. The following Corollary 2 is immediate from Lemma 6.

Corollary 2: Suppose there exists a T ∈ Z+ such that
the system (1) is observable on KT−1 and Condition 1 is
satisfied for each x ∈ intKT−1. Then the inverse map-
ping FT−1 : HT−1(intKT−1) → intKT−1 of HT−1 :
intKT−1 → HT−1(intKT−1) is continuously differentiable
on HT−1(intKT−1).

Observing Lemma 4, continuity of FT−1 on HT−1(KT−1)
rather than on HT−1(intKT−1) concludes finite determina-
tions of O∞. We have the following sufficient conditions.

Theorem 2: Suppose there exists a T ∈ Z+ that satisfies
conditions required in Corollary 2. Suppose that KT−1 =
cl(intKT−1), and there exists η > 0 such that

inf
v=1
v∈R

n

|
∂HT−1(x)

∂x
v| ≥ η|v|

is held for all x ∈ intKT−1. Suppose further, for any γ > 0,
there exists r > 0 such that

|FT−1(z̄) − FT−1(z) −
∂FT−1(z)

∂z
(z̄ − z)| ≤ γ|z̄ − z|

is satisfied for any z̄, z ∈ HT−1(intKT−1) with |z̄− z| ≤ r.
Then O∞ is finitely determined.

Proof: We have

HT−1(KT−1) ⊂ cl(HT−1(intKT−1)) (3)

since HT−1(KT−1) = HT−1(cl(intKT−1)).
Let {zn} be a sequence in HT−1(intKT−1) converges to

z0, i.e., z0 ∈ cl(HT−1(intKT−1)). Define a corresponding
sequence in intKT−1 by

{xn = FT−1(zn)} (4)
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Now suppose that the sequence {xn} is convergent, then we
have z0 = HT−1(x0) ∈ HT−1(KT−1) since xn → x0 ∈
KT−1. This implies

cl(HT−1(intKT−1)) ⊂ HT−1(KT−1)

Combining (3) and the above inclusion, we have

HK−1(K) = cl(HT−1(intKT−1))

Thus, the subset HT−1(KT−1) is closed. This also concludes
continuity of FT−1 on HT−1(KT−1) since F−1

T−1(KT−1) =
HT−1(KT−1) and both of KT−1 and HT−1(KT−1) are
closed. Therefore, Lemma 4 assures that O∞ is finitely
determined.

Now we investigate the convergence of the sequence {xn}

defined by (4). For x ∈ intKT−1, let ∂HT−1(x)
∂x

v = �. Since
∂FT−1(z)

∂z

∂HT−1(x)
∂x

= In, we have | ∂HT−1(x)
∂x

v| ≥ η|v| =

η| ∂FT−1(z)
∂z

�|, thus

|
∂FT−1(z)

∂z
�| ≤ M |�|

where z = HT−1(x) and M = 1/η. For any ε > 0, let
δ ≤ min( ε

M+γ
, r). Since {zn} is convergent, there exists N

such that |zn − zm| ≤ δ is held for any n, m ≥ N . Because
FT−1 is differentiable on HT−1(infKT−1), we have

xn − xm = FT−1(zn) − FT−1(zm)

=
∂FT−1(zm)

∂z
(zn − zm) + o(|zn − zm|)

where o(|zn − zm|) is any function that satisfies o(|zn −
zm|) → 0 when zm − zn → 0, and we further have |o(|zn −
zm|)| ≤ γ|zm − zn| since δ ≤ r. Finally we have

|xn − xm| ≤ |
∂FT−1(zm)

∂z
(zn − zm)| + |o(|zn − zm|)|

≤ M |zn − zm| + γ|zn − zm| ≤ ε

thus the sequence {xn} defined by (4) is convergent.

VI. CONCLUSIONS

This paper considers necessary and sufficient conditions
for fulfilling the specified state and control constraints against
the class of nonlinear dynamics. The results are generaliza-
tions of the maximal output admissible set theory to the case
of certain class of nonlinear systems. We propose a recursive
procedure to determine the maximal output admissible set
for nonlinear systems. We also discuss on issues of finite
determinations of the maximal output admissible set. Some
relations between observability of nonlinear systems and
finite characterizations of the maximal output admissible set
are clarified.
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