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Abstract— This paper is concerned with the investigation of
the effects that the presence of degree correlation has on the
synchronization of a network of coupled nonlinear oscillator.
The main result is that disassortative networks are found to
synchronize better. Specifically, synchronizability is enhanced
in networks with various degree distribution, when nodes
characterised by low degree are more likely to be connected to
nodes with higher degree.

I. INTRODUCTION

Recently, much research effort has been spent to char-
acterise the synchronizability of networks of nonlinear os-
cillators [1], [2], [3]. Typically, a network is considered
consisting of N identical oscillators coupled through the
edges of the network itself. Each oscillator {xi, i = 1...N} is
characterized by its own dynamics described by a nonlinear
vector field, say f = f(x), and is influenced by the output
function of its neighbors represented by another nonlinear
term, say h = h(x). Thus the equations of motion are the
following:

dxi

dt
= f(xi) − σ

N∑
j=1

Lijh(xj), i = 1, 2, ...N, (1)

where σ is the overall coupling strength, and L = {Lij} is
the Laplacian associated to the network topology [4]. This
model has been shown to be representative of interactions
that frequently occur in many different application areas, as
biology, sociology and more importantly technological and
communication systems.

Recent years have witnessed a great interest in the observa-
tion and in the study of the structure of real-world networks,
as the Internet, electrical power-grids, biological and social
networks and food webs. The availability of new databases
containing huge amounts of data on these networks has led
researchers from many fields to study which are the more
important statistical features characterizing the structure of
real world networks. The most important discovery in this
context has been that the degree distribution of almost all the
analyzed networks, follows a power law, i.e. the probability
of having a node of degree k, scales as k−γ where γ is a
network dependent constant, [5], [6], [7]. What is particularly
surprising is that this property was observed to be practically
a universal feature, being common to various networks in
very different contexts, ranging from social environments to
technology and biology.
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Thus, an immediate question arises on whether the net-
work structure can have any influence on its synchronizabil-
ity properties. Many recent studies have shown that some
topological features can indeed have such an effect, focusing
in particular on the heterogeneity in the degree distribution
[2], [3], particular forms of ordering at the nodes [8] and
opportune weighting of the connections among the oscillators
[9].

For instance, as recently discussed in [2] (see sec. 2 below
for further details), scale free networks were found to show
better synchronizability for increasing value of the power law
exponent γ [2], [3].

Another important topological property of physical net-
works is that often their nodes show preferential attachment
to other nodes in the network according to their degree [10],
[11]. According to this property, networks are said to exhibit
assortative mixing (or positive correlation) if nodes of a
given degree tend to be attached with higher likelihood to
nodes with similar degree. (Similarly disassortative networks
are those with nodes of higher degree more likely to be
connected with nodes of lower degree.)

The presence of correlation has been detected experimen-
tally in many real-world networks.

The main aim of this paper is to investigate the relationship
between degree correlation and network synchronizability.
Our main finding is that disassortative networks (i.e. net-
works where nodes with low degree are more likely to be
connected to nodes of high degree) synchronize better.

II. SCALE FREE NETWORKS AND SYNCHRONIZABILITY

As mentioned above, the main feature of scale free net-
works (typical of real world networks), is an high heterogene-
ity in the degree distribution (higher than in purely random
networks). In [2] the relationship between network structure
and synchronizability was analyzed and an interesting phe-
nomenon was observed, which was termed ”the paradox of
heterogeneity”; that is, although heterogeneity in the degree
distribution, leads to a reduction in the average distance
between nodes (the so called small world effect [12]), it may
suppress synchronization.

Interestingly in [2], the transition of the underlying net-
work from scale free (power law distributed) to random
(poisson distributed) was shown to have a big impact on
the eigenratio R of the Laplacian eigenvalues. Namely, a
decrease of the heterogeneous nature of the network was
discovered to yield, as a result, a reduction of R, thus
increasing the synchronizability properties of the network
itself.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeA14.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 4616



In order to explain the effect of network degree distribution
on synchronizability (the so called ”paradox of heterogene-
ity” [3]), the following relationship was found in [2] that is
valid for any connected network. Specifically, it was shown
that

(1 − 1
N

)
kmax

kmin
≤ R ≤ (N − 1)kmax�e

maxDmaxD, (2)

where kmin and kmax are the minimum and maximum node
degrees; D and Dmax are the graph characteristic path length
and diameter; �e

max is the maximum of the normalized load
on the links [13].

Equation (2) was derived assuming the absence of any
degree correlation on the network. In what follows, we
shall seek to analyze both the effects of heterogeneity and
correlation in the degree distribution on the network synchro-
nizability.

A. Correlation measures

Following [2], we will take as the starting point to our
study the analysis of networks with an assigned degree distri-
bution. In fact, as widely shown in the literature on complex
network [14], the degree distribution can be considered one
of the most relevant features characterizing the structure
of graphs in dynamical terms. On the other hand, many
important properties have been discovered to characterize in
more detail the networks structure, other than the degree
distribution. These are mostly due to particular forms of
correlation or mixing among the network vertices.

Note that, once assigned the degree distribution, one usu-
ally has many remaining degrees of freedom on how coupling
the vertices among them to form a network. Sometimes,
the way in which vertices are coupled among themselves
is influenced by some properties at the vertices, leading to
various forms of mixing, according to the way nodes choose
their neighbors.

Degree correlation is probably the simplest case of mixing
among the network vertices one can imagine, since it can be
defined by the knowledge of only the degree at the vertices
(which is probably the most trivial information about the
nodes one can have).

In [10], this property has been conveniently measured by
means of a single normalized index, the Pearson statistic r
defined as follows:

r =
1
σ2

q

∑
ij

ij(eij − qiqj), (3)

where qk is the probability that a randomly chosen edge is
connected to a node having remaining degree k (the remain-
ing degree is given by the actual degree minus 1, since we are
excluding the starting edge); σq is the standard deviation of
the distribution qk and eij represents the probability that two
vertices at the endpoints of a generic edge have degree i and
j respectively. Thus the correlation measure, r, as defined by
(3), is given by the average distance between the effective
distribution, eij , of links between nodes of degrees i and
j and the theoretical distribution that would be observed in

the case the network were uncorrelated, i.e. qiqj . Positive
values of r indicate assortative mixing, while negative values
characterize disassortatively mixed networks.

Moreover, a strategy was devised in [11] to generate
networks with a given degree distribution and a desired corre-
lation coefficient r. This strategy is based on a Monte Carlo
method to change the combination of connections among
vertices according to their degree in order to guarantee the
network to exhibit the desired correlation properties at the
end of the process (see [11] for further details).

For the sake of simplicity, in what follows, we will
consider a simpler form of degree correlation where vertices
are not characterized by their specific degree, but are shared
in two archetypical classes, that is one, say L, containing
low degree nodes and another, say H , containing high degree
ones. In so doing, we will introduce an alternative measure
of degree correlation, say r̂, to estimate the assortativity
or disassortativity of a given network with respect to the
considered subdivision in two sole classes. Then using a
technique analogous to that presented in [11], we will be
able to generate networks with a desired value of the degree
correlation index r̂.

Note that, however, all the results derived in the following,
could be generalized to an increasing number of considered
classes, including the limiting case where each class con-
tains exactly all and only the vertices with a given degree.
Nonetheless showing what happens for a generic number of
considered classes is beyond the scope of this paper and will
be the object of a forthcoming publication.

Let us now partition the network vertices as follows: we
include in class L, all the vertices with degree k less than or
equal to some threshold value k̂ and in the other one, H , all
the vertices with degree higher than k̂ (note that essentially,
what does really matter in the way we partition the vertices,
is that the average degree of nodes in L, say kL is lower
than kH the average degree of nodes in class H . Also, let
us term as nL and nH the number of vertices in L and H .)

According to this construction the probability of having a
vertex in L and in H is equal to p(kL) = nL

N , p(kH) = nH

N .
Thus, the probability, say qi, i ∈ {L,H}, of finding a

vertex of remaining degree equal to kL or kH respectively, at
the endpoint of a generic edge picked up randomly within the
network, is given by qL = nLkL

nLkL+nHkH
, qH = nHkH

nLkL+nHkH
.

Now, we propose that the presence of degree correlation
in the network can be estimated by using a new coefficient,
r̂ defined as:

r̂ =

∑
i∈{L,H},j∈{L,H} kikj(eij − qiqj)

σq
2

, (4)

where ei,j (i, j = {L,H}) is the probability of finding an
edge connecting nodes belonging to L or H to nodes in L
or H respectively (e.g. eLH is the probability that an edge
connects a node belonging to the class of low-degree nodes
to one belonging to the class of high-degree ones).

Note that σ2
q can be recast in terms of kL and kH , after

simple algebraic manipulations, as σ2
q = (qLk2

L + qHk2
H) −

(qLkL+qHkH)2 = nLkLnHkH(kL−kH)2

(nLkL+nHkH)2 = qLqH(kL−kH)2.
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Also, r̂ can be expressed alternatively as:

r̂ =
1
σ2

q

kT
(
E − qqT

)
k (5)

where

k =
(

kL

kH

)
, E =

(
eLL eLH

eHL eHH

)
, q =

(
qL

qH

)
It is worth mentioning here that this measure provides

an estimate of the correlation degree of the network but
differs from the correlation index (3) defined in [10], [11].
In particular, (3) is based on the exact degree of the vertices
at each of the link endpoints in the network. The quantity
defined in (4), instead, accounts only for whether connections
in the networks are between low degree nodes (belonging to
the set L) and high degree ones (belonging to the set H).

Nonetheless, we found the new coefficient to be easier to
compute in applications and to be conceptually equivalent to
the one in [10], [11] in the sense that it provides a reliable
indication of the assortative - disassortative nature of the
network under investigation.

Now using the new coefficient r̂, it is possible to derive
an expression for the coefficients of the matrix E associated
to a network with a given value of r̂. From (5), we have that
kT

(
E − qqT

)
k = σ2

q r̂,.
So, if a symmetric matrix M exists such that kT Mk = 1,

we have kT Ek = kT qqT k + kT r̂σ2
qMk, and thus, E =

qqT + r̂σ2
qM.

Note that, as pointed out in [11], M can be computed
using the fact that it must be symmetric, it must satisfy
kT Mk = 1 and moreover must not vary the total amount of
links connecting the nodes belonging to each class.

Specifically in our case, it is straightforward to show that
there is a unique matrix M satisfying these constraints:

M = {mij} =

(
1

(kL−kH)2
−1

(kL−kH)2
−1

(kL−kH)2
1

(kL−kH)2

)
(6)

Thus E = {eLH} can be rewritten as follows:

E =
(

q2
L + r̂qLqH qLqH − r̂qLqH

qLqH − r̂qLqH q2
H + r̂qLqH

)
(7)

We can now use the new coefficient r̂ and the matrix
E associated to a desired value of r̂ to generate networks
with a given degree distribution and a desired value of the
correlation coefficient r̂.

To start with, we will use the network building model
presented in [15], analogous to the one analyzed in [2].
Firstly, assigned a degree distribution of the form p(k) ∼
k−γ , we generate a sequence of numbers ki ≥ kmin drawn
from the given distribution (the random configuration can be
recovered in the limit of γ = ∞). Each number represents
the degree of a node in the network. Then, we choose pairs of
nodes at random and connect them, avoiding repeated links
and self-connections.

The next stage is to perform a series of moves on the
network edges in order for the resulting network to exhibit
the desired value of the correlation index r̂. To this aim,

Fig. 1. Synchronizability of degree correlated networks of size 103

nodes, kmin = 5. Behavior of the eigenratio λN/λ2 (a), of the
second lowest eigenvalue λ2 (b) and of the highest one λN (c), as
functions of the correlation coefficient r̂, for γ varying from 2 (blue
line) to 5 (red line) in steps of 0.2. (d) The eigenratio as function of
γ as varying the correlation coefficient r̂ from −0.3 (bottom line)
to 0.3 (top line) in steps of 0.1. All the plots are averaged over 102

realizations.

given r̂, we partition the network nodes in the two sets L
and H according to their degree and compute the average
node degrees, kL and kH , of nodes belonging to the two
classes respectively. Using these quantities we then compute
the probability matrix E using (7).

Then, in order to achieve the desired correlation, we apply
a procedure similar to the one presented in [10], [11]. Specif-
ically, we choose two links connecting pairs of nodes and
evaluate to which groups the nodes at their endpoints belong;
for each edge we enumerate four different possibilities: L-
L, L-H, H-L, H-H. Then we consider a possible rewiring of
this two edges. For example suppose to have selected two
edges of types L − L, H − H and to examine a rewiring
yielding to replace these connections with two new ones:
L − H , H − L. Then we make the move with probability

(see [11],[16] for more details)P = min
(

eLHeHL

eLLeHH
, 1

)
.

Note that each move affects eij (i, j = {L,H}) and thus
the correlation parameter r̂, while it does not modify the
degree distribution, which was fixed at the beginning of the
rewiring procedure. Therefore, this procedure is an excellent
method to investigate the effects of varying correlation on
the network, without interfering with the degree distribution.

B. Effects of correlation on synchronizability

Equipped with a method to generate networks with the
same degree distribution but different correlation proper-
ties, we can now explore the effects that the presence of
correlation has on the network synchronizability. Here, we
investigate these effects numerically. Analytical bounds to
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Fig. 2. Left side panels: behavior of the second lowest eigenvalue λ2

(a) and of the highest one λN (b) as varying the degree correlation
index r̂ in Erdos Renyi random graphs with 103 nodes, 2 · 103

edges. In the left side inset is also reported the behavior of the
related eigenratio λn/λ2. Right side panels: behavior of the second
lowest eigenvalue λ2 (c), of the highest one λN (d) and of the
eigenratio (in the inset) as varying the degree correlation index r̂
in Barabasi-Albert scale free graphs with 103 nodes, 2 · 103 edges.

explain the numerical observations will be given in the next
section.

Fig. 1(a) shows the effects of varying the degree cor-
relation on the Laplacian eigenratio R for different values
of the degree distribution exponent γ. For all values of γ,
we observe a reduction of R for decreasing values of the
correlation. This means that disassortative mixing enhances
the network synchronizability. Interestingly, as depicted in
Fig. 1(b) and Fig. 1(c), we observe that, under variations of
the correlation parameter, the changes in R seem to be due
only to variations of λ2 while λN , the largest eigenvalue of
the Laplacian, is found to be practically independent from
r̂. Fig. 1(d) shows the evolution of R under variations of
γ for different values of the correlation coefficient r. As
discussed in [2], in the case of uncorrelated networks (r̂ = 0),
synchronizability improves for increasing values of γ. We
find that, as shown in Fig. 1(d), this is still the case when
degree correlation is introduced. A consistent decrease of the
values of R for the same value of γ is observed when the
network is disassortative, i.e. r̂ < 0.

So far, we have applied our numerical simulations to scale
free networks, reproduced by the algorithm introduced in
[15], the so-called configuration model (see also [17]). In
order to give evidence of the broad scope of the results
presented in this paper, in Fig. 2, we have shown the behavior
of the highest and the lowest eigenvalue of the Laplacian
as varying the correlation index r̂ (according to the method
proposed above) in Erdös − Renyi random graphs [18],
and in Barabasi-Albert scale free networks (with γ = 3) [5].
Note that in all the different cases considered, λ2 is found

Fig. 3. Plots of the upper and lower bounds on the eigenratio λN/λ2

as functions of r̂ for different values of γ = [2, 3, 4, 5]. The figure
shows the comparison between the bounds given by (2) (on the left
panels) and those (18) (on the right panels). The inset shows the
observed behavior of the eigenratio. N = 103, kmin = 5.

to decrease as increasing the degree of assortativity in the
network, while λN is found to be practically independent
from it.

In what follows, we propose a way of estimating analyt-
ical bounds on the Laplacian eigenvalues which provide a
theoretical explanation for the numerical results presented in
this section.

III. ANALYTICAL BOUNDS ON THE LAPLACIAN

EIGENVALUES

Analytical estimates of the Laplacian eigenvalues have
been already used in the literature to explain the effects
of the network topological features on its synchronizability
properties. In [1] it was shown that the eigenratio R = λN

λ2
between the highest eigenvalue λN and the lowest eigenvalue
λ2 of the Laplacian associated to the network structure is
an essential measure of the network synchronizability, i.e.
the smaller the eigenratio, the larger the interval of the
values of the coupling gain σ, for which the stability of the
synchronous state is achieved. It is therefore important to
characterise how the network topological features affect the
Laplacian eigenratio.

For example, the analytical bounds given by (2), were
used in [2] to explain the changes observed in the eigenratio
R as the parameter γ was varied in a scale-free network
topology. We found that, although these bounds should
hold for any generic network topology, they seem to be
inappropriate to account for the changes in R observed in the
network when degree correlation is introduced. In particular,
as shown in Fig. 3, the values of the upper bounds on
R computed according to (2) give estimates which (i) are
further away from the observed values of the eigenratio and
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more importantly (ii) do not reproduce the behavior of the
eigenratio under variation of the network degree correlation.

Therefore, in order to explain what happens physically
when changing the correlation and why it affects the mea-
sures of networks synchronizability, we shall seek to define
new analytical bounds based on the mathematical theory of
graph spectra. In particular we will focus on estimating the
effects of correlation on the eigenvalue λ2, the parameter
known as algebraic connectivity of graphs [4]. In so doing,
we will make use of some fundamental results in the field
of algebraic graph theory. Specifically, we will use the so-
called Cheeger inequalities that find application in the solu-
tion of isoperimetric problems [19], [20]. Before presenting
the derivation of the new bounds on λ2, we recall briefly in
what follows the main aspects of such inequalities.

A. Cheeger Inequalities: an overview

Given a graph, consider a subset of edges which dis-
connects the graph in two parts, also termed as a cut.
Isoperimetric problems examine optimal relations between
the size of the cut and the size of the separated parts. For
a given subset of vertices, say S, we define hG(S) as the
quantity given by:

hG(S) =
D(S)N

|S|(N − |S|) , (8)

where D(S) is the number of edges in the boundary of S
and |S| < N

2 is the number of vertices in S. The Cheeger
constant of a graph is defined as follows:

hG = min
S

hG(S), (9)

Remarkably, it can be shown that the following Cheeger
inequality holds [19]. Namely, we have:

λ2 ≤ hG. (10)

Note that finding the subset S such as to achieve the
minimization of hG(S) is known to be an NP-hard problem
[21]. We will show below that this problem can be overcome
to compute the bounds of interest.

Another interesting inequality in spectral geometry is due
to Mohar [20]:

λ2 ≥ kmax −
√

kmax
2 − h′

G
2, (11)

where h′
G = minS

D(S)
|S| .

We will show next how inequalities (10) and (11) can be
used to estimate more accurate upper and lower bounds on
λ2.

B. Estimating bounds on λ2

We propose to obtain an upper bound on λ2 by using
(10). To overcome the limitations due to the computation
of the subset S that minimizes hG(S), we will follow a
stochastic approach in order to estimate hG(S), starting
from the available information we have on the network.
We will assume, using similar assumptions to those taken
to generate a network with a given degree correlation, that

the network presents as noticeable features only the degree
distribution and the correlation specified; all other aspects
being completely random.

Then, having fixed the degree sequence, we would be
able to give a full characterization of a randomly chosen
subset S in terms of the number of nodes N = |S| in it,
the number of nodes, say NH , among them belonging to
the group of nodes H with high degree, and the network
correlation measure r̂. Notice that, under these conditions,
the number of nodes in the low degree set, L, is given by
NL = N − NH , that is, we have completely defined the
degree distribution of S. Moreover it is worth noting that the
subset S is not supposed to satisfy any particular condition,
not even of being connected.

Let us introduce xL = NL
nL

and xH = NH
nH

, the fraction
of nodes in S drawn from each of the two class. Now, we
observe that the number of edges in D(S) is given by the
total number of edges starting from the vertices in S, less the
ones, say I, that are contained in S, i.e. connecting endpoints
both belonging to S.

Thus we can estimate I(S) and D(S) as follows:

I(S) = I(xL, xH , r̂) (12)

=
(kL + kH)N

2
(eHHx2

H + 2eHLxLxH + eLLx2
L),

D(S) = D(xL, xH , r̂) = xLnLkL + xHnHkH − 2I(S).
(13)

Then, hG(S) can be computed using (8). Note that, using
(12) and (13), hG(S) can be thought of as a function
hG(xL, xH , r̂). Hence, assigned a certain correlation r̂, a
numerical optimization technique can be used to solve the
problem of finding hG such that

hG = min
xL,xH

hG(xL, xH , r̂), (14)

under the constraints that 0 ≤ xL, xH ≤ 1 and xLnL +
xHnH < N

2 .
Therefore, the minimum value hG, can be found that

according to (10) provides an upper bound for λ2.
Moreover, after some algebraic manipulations, we also

find that
∂hG(S)

∂r̂
∝ ∂D(S)

∂r̂
= −2qLqH(xL − xH)2 ≤ 0 (15)

Since, for all xL and xH , ∂hG(xL,xH ,r̂)
∂r̂ ≤ 0, then we have

that
∂(minxL,xH

hG(xL,xH ,r̂))

∂r̂ ≤ 0, and thus:

∂hG

∂r̂
≤ 0. (16)

Therefore, we can predict analytically that hG, which
represents an higher bound on λ2, will decrease as the degree
correlation is increased.

Using (11), we can also derive the following relationship
for the lower bound on λ2:

∂(kmax − √
k2

max − h′2
G)

∂r̂
= (

h′
G√

k2
max − h′

G
2
)
∂h′

G

∂r̂
, (17)
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where the first term in the product is a quantity intrin-
sically positive (note also that when making the correlation
change, the degree distribution is fixed and thus, kmax cannot
vary with r̂). Then following an approach similar to the one
used above to compute the upper bound, it is easy to show
that the lower bound in (11) has to decrease with r̂. Then
since both the upper and the lower bounds have to decrease
with r̂, also λ2 is expected to have the same trend.

On the other hand, from graph theoretical results (see for
example [21]), it can be shown that the following relationship
on λN holds: N

N−1kmax ≤ λN ≤ 2kmax.
This confirms our numerical finding that λN is only

dependent on the network maximum degree kmax, and thus
independent from r̂ (see Fig. 1). Therefore we have that, as
a consequence, the eigenratio λN

λ2
will increase for higher

values of the correlation coefficient. As shown in Fig. 3, this
is indeed what is observed with the new bound on λ2 giving
a much better estimate of the behavior of the eigenratio with
respect to both changes in the degree distribution and the
degree correlation. (In Fig. 3 the bound is computed taking
the minimum of hG(r̂) on both xL and xH ).

Note that these estimates do not take into account higher
order effects, such as the clustering and the formation of
closed loops within the subset S, that are known to be more
frequent in assortative mixed networks [22] [23]. Indeed,
considering also these in the computation of the upper and
lower bounds (10) (11), would yield as a result a steeper
slope of the trend of hG vs. r̂ (and hence to a higher slope
of the bounds on λN

λ2
in Fig.3).

Interestingly, fixing xL and xH , the slope ∂hG(xL,xH ,r̂)
∂r̂ is

proportional to1 qLqH that analogously to ∂λ2
∂r is a quantity

decreasing with γ.

C. Estimating bounds on λN

λ2

In order to compare directly the bounds (2) with the ones
introduced in this paper, we will show how they differently
predict the behavior of the eigenratio R.

From the bounds on λN given above and the ones on λ2 in
(10) and (11) we easily get the following analytical bounds
on the Laplacian eigenratio:

N

N − 1
kmax

hG
≤ λN

λ2
≤ 2

1 −
√

1 − h′2
G

k2
max

. (18)

The comparison between these bounds computed as ex-
plained above and those proposed in (2) are shown in Fig.
3. We observe that the upper bounds in (18) provide better
estimates of changes in the eigenratio under variations of
γ and more importantly r̂ while the opposite happens in
most cases for the lower bounds. We wish to emphasize
that, when compared to the bounds given by (2), the novel
bounds computed according to (18) seem to better replicate
the observed behavior of the eigenratio under variations of
both r̂ and γ.

1Actually what we observe is that the minimum is always achieved either
for xL = 0 and xH = 1 or for xL = 1 and thus xH = 0

IV. CONCLUSION

In this paper we have studied the effect of degree correla-
tion on the eigenratio parameter defined in [1] as a measure
of the synchronizability of a network of coupled nonlinear
oscillators.

We have found that disassortative mixing, which is typical
of biological and technological networks, plays a positive
role in enhancing network synchronizability.
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