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Abstract— A pair of spins is the most simple quantum system
that can possess entanglement, a non-classical property playing
an essential role in quantum information technologies. In this
paper, feedback control problems of the two-spin system condi-
tioned on a continuous measurement are considered. In order to
make some useful formulas in stochastic control theory directly
applicable, we first derive a two-dimensional description of the
system. We then prove that a feedback controller stabilizes an
entangled state of the two spins almost globally with probability
one. Furthermore, it is shown that another entangled state,
which corresponds to a non-equilibrium point of the dynamics,
is stabilized via feedback in the sense that the expectation of
the distance from the target can be made arbitrarily small.

I. INTRODUCTION

The methodologies to manipulate quantum systems have
been rapidly progressed owing to the development of the
quantum filtering theory [1] based on the scheme of a
continuous measurement [2], which realizes feedback control
of quantum systems. A quantum state subject to a perfect
continuous measurement obeys a nonlinear stochastic dif-
ferential equation called the stochastic Schrödinger equation
(SSE) [3], [4], and many important issues in quantum theory
have been formulated as control problems of the SSE and
solved. For example, stabilization of a single-spin system
under the noisy environment [5] and continuous quantum
error-correction via feedback control [6].

The above-mentioned feedback control scheme also has
shed a new light on many important subjects associated with
entanglement. The entanglement is a specific property that
represents a correlation between quantum states, and it can be
used to construct non-classical information processing, e.g.,
quantum computations [7], [8] and the quantum teleportation
[9]. Now we consider a typical control problem of entan-
glement; for a spin system, which is the most major finite-
dimensional quantum system, stabilize an entangled state
corresponding to the equilibrium points of the SSE. Stockton
[10] has considered a symmetric multi-spin system and
developed two general feedback controllers; however, it was
numerically shown that they do not achieve the deterministic
convergence into target entangled states. Nevertheless, owing
to the investigations in [10], van Handel [11] has found a
feedback controller stabilizing an equilibrium point globally
and deterministically for the single-spin system, although in
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this case the system is composed of only one spin and does
not possess entanglement.

Therefore in this paper, we consider a two-spin system as
the first step toward the perfect stabilization of the entangled
state in the multi-spin system. We should note that the two-
spin system itself is a fundamental element to create the
highly-entangled states. Actually, in quantum computing all
the (unitary) entangle operations on arbitrarily many spins
can be expressed as compositions of those on the two spins,
which is known as universality of quantum circuit [8], [12].
Hence the stabilization of the entangled state in the two-spin
system is of great significance for the design of several kinds
of quantum devices.

The contributions of this paper are the following. (i) Un-
der an assumption, we derive a two-dimensional description
of the SSE, which can make some useful formulas in
stochastic control theory directly applicable. (ii) We exploit
a controller which attains almost global convergence into
an entangled state of the two spins with probability one.
(iii) The controller given in (ii) cannot change the degree
of the entanglement. Therefore we propose a stabilizing
controller of a non-equilibrium state with maximal degree
of entanglement in the following sense: the controller can
decreases arbitrarily the mean value of a positive function
which can be regarded as the distance from the target.

II. PRELIMINARIES

A. Quantum state

The quantum state of an n-dimensional system is repre-
sented by a complex vector φ ∈ C

n such that φ and −φ are
identified, and ‖φ‖ :=

√
φ∗φ = 1 holds 1. Here the asterisk

∗ denotes the complex conjugate. Roughly speaking, the
dimension of the quantum state corresponds to the number of
possible ways in which the associated classical phenomenon
occurs. For example, for a single-spin system there are two
possible ways: the spin-up and the spin-down states along
an axis (we here call it the z-axis). That is, the dimension
of the single-spin system is two. A typical selection of the
two vectors representing up and down states are respectively
taken as

φu = [1 0]T , φd = [0 1]T .

An important fact is that the system can take any superposi-
tion of states, which is called the superposition principle in
quantum theory. For the single-spin system, the superposition

1Through this paper, we consider so-called pure states. If there is a lack
of information about the quantum state, it must be represented by a positive
semidefi nite matrix P ≥ 0 satisfying trP = 1, instead of a vector x. This
is called a mixed state.
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of φu and φd is of the form φ = aφu+bφd = [a b]T , where
the complex coefficients a, b ∈ C satisfy |a|2+|b|2 = 1. For
instance, the quantum state φx = (1/

√
2)[1 1]T represents a

spin state pointing the x-axis.
In this paper, we focus on a system composed of two

spins. The two-spin system is described in the product space
of the single-spin, i.e., C

4 = C
2 ⊗ C

2. The four basis can
be taken as up-up, up-down, down-up and down-down states.
For example, the up-up state is given in C

4 by

φu ⊗ φu =

[
1
0

]
⊗

[
1
0

]
= [1 0 0 0]T

where ⊗ denotes Kronecker’s product. By the analogous
way, we obtain four basis as follows:

{ φu ⊗ φu, φu ⊗ φd, φd ⊗ φu, φd ⊗ φd }

=
{

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

}
.

Any quantum state of the two-spin system is described
by a superposition of the above four basis, i.e., φ =
[a1 a2 a3 a4]

T (
∑

i |ai|2 = 1). We here mention about a
non-classical correlation between the spins. When the two-
spin state takes a special form:

φ = φ1 ⊗ φ2 =

[
a
b

]
⊗

[
c
d

]
= [ac ad bc bd]T , (1)

there is no correlation between the spins. On the other hand,
a quantum state that cannot be expressed by a product state
as shown in Eq. (1) has a specific quantum correlation called
entanglement [8]. For example, an entangled state

φ = aφu⊗φd +bφd⊗φu = [0 a b 0]T , a �= 0, b �= 0 (2)

cannot be written by a product form φ = φ1 ⊗ φ2. In
particular, there are some quantum states whose entangle-
ment has the maximum degree in which case many quantum
information processing achieve their highest performances.
This paper focuses on the following two maximally entangled
states [8]:

Ψ =
1√
2
(xu−d + xd−u) =

1√
2
[0 1 1 0]T , (3)

Φ =
1√
2
(xu−u + xd−d) =

1√
2
[1 0 0 1]T . (4)

B. The stochastic Schrödinger equation

The SSE describes the time-evolution of a quantum system
subject to a continuous measurement. In quantum theory,
a physical property that in principle can be measured is
represented by a self-adjoint operator, especially an Hermite
matrix when considering finite-dimensional systems. Now
we focus on an open system in contact with the electro-
magnetic field; then, measuring the field continuously and
obtaining information on the system, we can keep track
the best estimate of the system’s quantum state. When the

measurement is perfect, the estimated quantum state x(t)
obeys the SSE of the form;

dx =
[
− iu(t)H − 1

2
(C − 〈C〉I)2

]
xdt

+ (dy − 〈C〉dt)(C − 〈C〉I)x, (5)

where C is the measured observable associated with the
system. We here defined 〈C〉 := x∗Cx. Also, u(t) ∈ R

denotes the control input, and H is an Hermite matrix
called the Hamiltonian. The measurement data y(t) ∈ R

is associated with the standard Wiener process [13];

dy − 〈C〉dt = dW, E[dW (t)] = 0, E[dW (t)2] = dt,

where E denotes the expectation. Hence if we know the
initial value x(0), updating the filtering equation (5) with
the data y(t), we can obtain a perfect knowledge about the
time-dependent series of x(t), which eventually enables us
to control the quantum system via state-feedback. That is,
the objective is to control the SSE of the form

dx =
[
− iu(t)H − 1

2
(C − 〈C〉I)2

]
xdt + (C − 〈C〉I)xdW

(6)
with the state-dependent feedback law u(t) = u(x(t)).

It is readily seen that the variable x(t) obeying the SSE
satisfies d‖x‖2 = 2〈C〉(1−‖x‖2)dW , which implies that the
condition of quantum states always holds: ‖x(t)‖ = 1 ∀t ≥ 0
if ‖x(0)‖ = 1. Also, the stochastic evolution (6) has an
important property as follows. Let us consider a non-negative
function V (x) = 〈C2〉− 〈C〉2 = x∗C2x− (x∗Cx)2, which
becomes zero if and only if x is an eigenvector of C. When
u(t) = 0, a lengthy calculation yields LV = −4V 2 ≤ 0.
Hence from Lemma 2 in Appendix, we have limt→∞ LV =
0. This means that x(∞) must be one of the eigenvectors
of C. This phenomenon is called quantum state reduction,
and a numerical simulation provided in the next section will
show us an actual stochastic evolution of the state reduction.

III. THE STOCHASTIC DYNAMICS OF THE TWO-SPIN

SYSTEM

Let us firstly explain the standard measurement process of
a single-spin in terms of the Stern-Gerlach device [14]. The
Stern-Gerlach device consists of a particle beam traveling
a region with a spatially non-uniform transverse magnetic
field. The effect of this non-uniformity causes a transverse
magnetic force on the particle, which will depend on the
particle’s magnetic moment. When the device is set up to
measure the {x, y, z}-axis of the (single) particle, the corre-
sponding quantum observables are respectively represented
by the Pauli matrices;

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

Note that both xup and xdown are an eigenvector of σz .
We now measure the two spins along each z-axis si-

multaneously, which correspond to the measurement of an
observable

C =

√
γ

2
(σz ⊗ I + I ⊗ σz) =

√
γdiag{1, 0, 0,−1}, (7)
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where I = diag{1, 1} and the positive parameter γ repre-
sents the measurement strength. Without the control term,
the SSE describing the two-spin system turns out to be

d

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

1

2

⎡
⎢⎢⎣

−(
√

γ − 〈C〉)2x1

−〈C〉2x2

−〈C〉2x3

−(
√

γ + 〈C〉)2x4

⎤
⎥⎥⎦ dt

+

⎡
⎢⎢⎣

(
√

γ − 〈C〉)x1

−〈C〉x2

−〈C〉x3

−(
√

γ + 〈C〉)x4

⎤
⎥⎥⎦ dW.

A remarkable fact is that the above dynamics has an in-
variant quantity x2(t)/x3(t) = x2(0)/x3(0) since a relation
d(x2/x3) = 0 always holds. Therefore, we introduce a
constant value k in order to denote the ratio of the initial
points x2(0) and x3(0), i.e.,

k := x2(0)/x3(0) (x3(0) �= 0).

When x3(0) = 0, we always have x3(t) = 0, ∀t > 0. Here
we assume that the initial state x(0) is real;

x(0) ∈ R
4.

This is a practical assumption because a number of typical
initial states satisfy this condition. In this case, xi(t) (i =
1, . . . , 4) are obviously real for all t ≥ 0, and consequently,
the dynamics can be written by only two real parameters due
to the invariant quantities x2(t) = kx3(t) and ‖x(t)‖ = 1.
Therefore, we parameterize the state x by

x(θ, φ) =

⎡
⎢⎢⎣

sin(θ/2) cos(φ/2)√
k2/(1 + k2) cos(θ/2)√
1/(1 + k2) cos(θ/2)
sin(θ/2) sin(φ/2)

⎤
⎥⎥⎦ . (8)

Through lengthy calculations we have

dθ = −γ

2
sin θ cos θ cos2 φdt +

√
γ sin θ cos φdW, (9)

dφ = 2γ cos θ sin φ cos φdt − 2
√

γ sin φdW. (10)

Now the totality of the quantum states (8) constructs the
sphere S2. Then, it follows from the identification of any
antipodal points on S2 that the range of the parameters are
limited to 0 ≤ θ < 2π and 0 ≤ φ < 2π. The equilibrium
points of the dynamics are given by

(θ, φ) = (0, 0), (0, π), (π, 0), (π, π),

which respectively correspond to

{Ψk, Ψk, xu−u, xd−d},
where

Ψk :=
1√

1 + k2
[0 k 1 0]T .

These are just the eigenvectors of the matrix (7). Note that
Ψk is an entangled state when k �= 0, whereas the other
equilibrium points correspond to non-entangled states.
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Fig. 1. Time dependence of the variable v2(θ, φ) for the autonomous SSE.
The measurement strength is γ = 2.

Now let us see the stochastic behavior of the autonomous
dynamics (9) and (10) in a numerical simulation. As ex-
plained in the previous section, the quantum state obeying
the SSE exhibits the state reduction into the eigenvectors of
C. We consider a function

v2(θ, φ) =
〈C〉√

γ
= x2

1 − x2
4 = sin2 θ

2
cos φ, (11)

where the convergences x(θ, φ) → Ψk,xu−u,xd−d respec-
tively represent v2 → 0,+1,−1. The initial state is set on
the following non-entangled state:

x(0) =

[
1/
√

2

1/
√

2

]
⊗

[
1/
√

2

1/
√

2

]
=

1

2
[1 1 1 1]T , (12)

which is equivalent to (θ(0), φ(0)) = (π/2, π/2) and k =
1. Figure 1 shows sample paths of the state reduction. In
the subsequent section we aim to control this probabilistic
bifurcation via feedback.

IV. FEEDBACK CONTROL OF THE TWO-SPIN SYSTEM

A. The controlled SSE

In this paper we consider two kinds of control inputs u1(t)
and u2(t) associated with the following Hamiltonians:

H1 = −(1 + k)(σy ⊗ I + I ⊗ σy)/2

− (1 − k)(σy ⊗ σz − σz ⊗ σy)/2

= i

⎡
⎢⎢⎣

0 −k −1 0
k 0 0 −k
1 0 0 −1
0 k 1 0

⎤
⎥⎥⎦ ,

H2 = −1

2
(σy ⊗ σx + σx ⊗ σy) =

⎡
⎢⎢⎣

0 0 0 i
0 0 0 0
0 0 0 0
−i 0 0 0

⎤
⎥⎥⎦ .

Recall that the constant term k is determined from x2(0) =
kx3(0). These Hamiltonians are physically realizable [15].
They allow us to take the same parametrization of x by
(θ, φ) discussed in the previous section since x still satisfies
the relation x2(t) = kx3(t) and ‖x(t)‖ = 1. The controlled
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SSE with the Hamiltonian u1(t)H1 is given by

dθ = u′
1(t)

√
1 + k2

2
sin

θ

2
sin

(φ

2
− π

4

)
dt,

− γ

2
sin θ cos θ cos2φdt +

√
γ sin θ cos φdW,

dφ = u′
1(t)

√
1 + k2

2
cos

θ

2
sin

(φ

2
+

π

4

)
dt

+ 2γ cos θ sin φ cos φdt − 2
√

γ sinφdW, (13)

where the input u′
1(t) is defined as

u1(t) =
1

4

(
sin

θ

2

)
u′

1(t). (14)

In the case of the second Hamiltonian u2(t)H2, the corre-
sponding SSE is given by

dθ = −γ

2
sin θ cos θ cos2φdt +

√
γ sin θ cos φdW,

dφ = [u2(t) + 2γ cos θ sinφ cos φ]dt − 2
√

γ sinφdW. (15)

These controlled dynamics are completely characterized in
0 ≤ θ, φ ≤ 2π by taking the control inputs u′

1(t) and u2(t)
appropriately.

B. Deterministic state preparation via feedback

In Section III we have seen that the quantum state obeying
the SSE converges into one of the eigenvectors of C proba-
bilistically. One of our objectives is to control the bifurcation
of the trajectories by using the measurement data and render
them deterministically and almost globally converge into a
desired state, e.g., x → Ψk. This control problem called
the deterministic state preparation (DSP) has been studied
for a multi-spin case [10] and for a single-spin case [11].
As mentioned in Introduction, the DSP problem has been
solved so far only for the single-spin system, although it has
stated in [11] that for the spin-1 system, which is regarded
as the two-spin system with k = 1, a stabilizing controller
was found numerically for a fixed γ.

Hence our next subject is to solve the DSP problem for
the two-spin system with arbitrary parameters γ and k. We
firstly provide the DSP formula of the entangled state Ψk:

Theorem 1: For the controlled two-spin system (13),
the feedback law

u′
1(t) = −M1 cos

θ

2
sin

(φ

2
− π

4

)
(M1 ≥ 8

√
2γ) (16)

attains the global convergence θ(t) → 0, or equivalently
x(t) → Ψk, with probability one if θ(0) �= π.

Proof: Consider the Lyapunov function V (θ) = 1 − cos θ,
which satisfies V (0) = 0, V (θ �= 0) > 0. Noting that the
function V is independent of φ, we have

LV =
[
u′

1(t)

√
1 + k2

2
sin

θ

2
sin

(φ

2
− π

4

)

− γ

2
sin θ cos θ cos2φ

]∂V

∂θ
+

1

2
(
√

γ sin θ cos φ)2
∂2V

∂θ2

= −M1

4

√
1 + k2

2
sin2θ(1 − sinφ) ≤ 0.
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Fig. 2. Deterministic state convergence into Ψ1, shown by v2(θ, φ) with
the initial state (12).

Hence from Lemma 1 in Appendix, θ = 0 is asymptotic
stable. Also, from Lemma 2 we obtain θ → {0, π} a.s., since
the equality in LV ≤ 0 is attained if and only if θ = 0, π.
Note that φ = π/2 is not an equilibrium point. We next see
that the function Ṽ (θ) = − log(1 + cos θ), which satisfies
limθ→π Ṽ (θ) = +∞, leads to

LṼ =
1

4
(1 − cos θ)(1 − sin φ)

×
[
M1

√
1 + k2

2
− 2γ(1 − cos θ)(1 + sinφ)

]
≤ 0,

where we have used the assumption M1 ≥ 8
√

2γ. Therefore
LṼ (θ) < 0 holds if θ ∈ (0, 2π)\{π} and φ ∈ [0, 2π)\{π/2},
which implies from Lemma 3

Prob
[
sup
t>0

|θ(t) − π| < π
]

= 0 if θ(0) ∈ (0, 2π)\{π}.

That is, for any initial state θ(0) ∈ (0, 2π)\{π} the state
shows θ(t) → 0 a.s.. �

In the numerical simulation, we take an initial state
as the non-entangled state (12), and the parameters as γ = 2
and M1 = 32

√
2. Figure 2 shows the deterministic and

almost global convergence into the maximally entangled
state Ψ1 = Ψ. A remarkable fact is that this control process
creates a stable maximally entangled spin pair from the
non-entangled one deterministically. This entanglement
creation is one of the most essential subjects in quantum
information technologies. For example, the CNOT gate [7],
[8], which is a well-known entangler machine in two spins,
composes the quantum computer. However, the CNOT gate
is a static manipulator of quantum states and does not create
“stable” entangled states unlike our method.

Now we must note as well that in our formulation the
excellent preparation of the maximally entangled state is only
limited to the case of k = 1, and if k �= 1 we obtain the non-
maximally entangled state Ψk. Therefore, we instead aim
to stabilize the other maximally entangled state Φ without
respect to the initial condition. It will be shown in the next
section that the above control objective is attained within the
framework of approximate state preparation. The key idea
is the direct use of the counterpart of Theorem 1: the DSP
of xu−u (or xd−d).
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Fig. 3. State convergences into xu−u or xd−d, shown by v2(θ, φ) with
the initial state (12). The parameters are γ = 2 and M1 = 32

√
2.

Proposition 2: For the controlled two-spin system (13), the
feedback law

u′
1(t) = M1 cos

θ

2
sin

(φ

2
− π

4

)
(M1 ≥ 8

√
2γ) (17)

attains the global convergence θ(t) → π with probability
one if θ(0) �= 0.

Proof: It is readily seen that a function V (θ) = 1 + cos θ
yields LV = −M1

√
(1 + k2)/32 sin2θ(1 − sin φ) ≤ 0,

which leads to θ → {0, π} a.s.. We next observe that a
function Ṽ (θ) = − log(1 + cos θ) satisfies

LṼ =
1

4
(1 − cos θ)(1 − sin φ)

×
[
M1

√
1 + k2

2
− 2γ(1 − cos θ)(1 + sinφ)

]
≤ 0.

Hence from Lemma 3, Prob[supt>0 |θ(t) − π| < π] = 0
holds if θ(0) ∈ (0, 2π)\{π}. Consequently, for any initial
state θ(0) ∈ (0, 2π)\{π} the state shows θ(t) → π a.s.. �

After the convergence θ(t) → π a.s., Eq. (15) reduces
to dφ = −2γ sin φ cos φdt − 2

√
γ sinφdW . Then, by the

analogous way in the above proof, it is easy to prove
that this dynamics shows φ → {0, π} a.s., or equivalently,
x(t) → {xu−u,xd−d} a.s., which is shown in Fig.3.

C. Approximate preparation of the maximally entangled
state

In this subsection, we aim to stabilize the other maximally
entangled state (4) without respect to the value of k. The rep-
resentation of Φ in the two-dimensional coordinate is given
by (θ, φ) = (π, π/2). Note that the strict convergence into Φ

is impossible because (θ, φ) = (π, π/2) is not an equilibrium
point of the dynamics. Therefore, the control objective will
be achieved in the following sense: the expectation value of
a function that represents the distance from Φ can be made
arbitrarily small by tuning the control gain.

We now note that a part of the above control subject has
already been attained; for the dynamics (13), the feedback
control law (17) leads to the almost global convergence
θ(t) → π with probability one. Hence, we can focus on
the control of the φ-variable by switching the Hamiltonian

from H1 to H2 after the convergence. Then, the controlled
dynamics (15) is reduced to

dφ = [u2 − 2γ sinφ cos φ]dt − 2
√

γ sinφdW. (18)

Then, the stabilizing controller is given in the following
theorem.

Theorem 3: For the dynamics (18) on φ ∈ [0, 2π),
consider the feedback law

u2(t) = −M sin
(φ(t)

2
− π

4

)
, (19)

which is discontinuous at φ = 0 (∼ 2π). Then, the positive
semidefinite function V (φ) = 1 − cos(φ/2 − π/4) satisfies

E

[
V (φ(t))

]
≤ V (φ(0))e−M̄t +

6γ

(2 −√
2)M

, (20)

where M̄ := (2 −√
2)M/4.

Proof: When we take φ′ = φ − π/2 for simplicity, the
derivative of the Lyapunov function V (φ′) = 1 − cos(φ′/2)
becomes

LV =
[
u2(t) + 2γ sinφ′ cos φ′

]1

2
sin

φ′

2

+
1

2
(−2

√
γ cos φ′)2

1

4
cos

φ′

2

< −M

2
sin2 φ′

2
+ γ +

γ

2

= −M

2

(
1 + cos

φ′

2

)(
1 − cos

φ′

2

)
+

3γ

2

Now due to −π/2 ≤ φ′ < 3π/2 we have (2 − √
2)/2 <

1 + cos(φ′/2), which leads to

LV < −
(2 −√

2

4
M

)(
1 − cos

φ′

2

)
+

3γ

2

= −
(2 −√

2

4
M

)
V +

3γ

2
.

Therefore from Lemma 4 we have the assertion. �

Clearly, the feedback controller with a large gain M � 1
makes the expectation of the distance function, E[V (φ)],
close to zero as t → ∞. This implies that we can stabilize
φ(t) globally and approximately at φ = π/2. Let us see
the degree of the approximation by a simulation. Take the
parameters as γ = 2,M = 32 and the initial condition
as φ(0) = π/2. A standard criterion which measures the
distance between two quantum states x1 and x2 is the
fidelity: f := |x∗

1x2|2, which is bounded by 0 ≤ f ≤ 1. The
fidelity becomes 1 if and only if x1 = x2. Now the fidelity
between the maximally entangled state Φ and our quantum
state x(π, φ) is given by

f = |x(π, φ)T
Φ|2 =

1

2
(1 + sinφ(t)).

Figure 5 shows the time-dependence of the fidelity f(t),
where we can see that the noise effect at φ = π/2 is well
suppressed, and the approximate state preparation of Φ is
realized.
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Fig. 4. Time-dependence of the fi delity between the maximally entangled
state Φ and our quantum state x(π, φ).

V. CONCLUSION

We have considered some feedback control problems
of the two-spin system subject to the perfect continuous
measurement. The dynamics has four equilibrium points
corresponding to the up-up, the down-down, and the mixing
of up-down (duplication) state, the last of which has a special
quantum correlation between spins, i.e., the entanglement.

Firstly, under the assumption that the initial state takes
a real vector, we have derived a two-dimensional descrip-
tion of the dynamics, which makes some useful formulas
in stochastic control theory directly applicable. Then, it
was proved that a feedback controller stabilizes the above-
mentioned entangled state almost globally and determinis-
tically. Moreover, we have provided a feedback controller
stabilizing the other entangled state, which corresponds to a
non-equilibrium point of the dynamics, in the sense that the
expectation value of the distance from the target state can be
made arbitrarily small by tuning the control gain.

All the facts obtained in this paper demonstrates that the
feedback control set-up is highly expected to be a robust
entangler machine for various kinds of quantum systems. In
particular, we now obtain a new conjecture that some type
of Hamiltonians have a possibility to achieve the global and
approximate preparation of a wide class of entangled states,
in addition to those corresponding to the eigenvectors of the
measured observable. For the future investigations, we have
to proceed into control problems of the multi-spin system
without assuming the perfect measurement, in which case
some computational approaches will be necessary.

APPENDIX

Consider an Ito SDE on R
n of the form

dx = f(x)dt + g(x)dW, (21)

where f(x) and g(x) are smooth vector fields. Suppose that
the system has an equilibrium point xo satisfying f(xo) =
g(xo) = 0. Define the infinitesimal generator of x as

L :=
∑

i

fi

∂

∂xi

+
1

2

∑
i,j

(ggT )ij

∂2

∂xi∂xj

.

Then, the following lemmas [16], [17] hold.
Lemma 1: Consider a ball Ur = {x | |x − xo| < r}.

Suppose there exists a function V : Ur → R+ such that
V (xo) = 0 and V (x) > 0 otherwise, and LV (x) ≤ 0 on Ur.
Then the equilibrium point xo is stable in probability, i.e.,

lim
x→xo

Prob
[
sup
t≥0

|x − xo| > ε
]

= 0. (22)

Lemma 2: Let G be a bounded invariant set with respect
to the solution of (21) and x(0) ∈ G. Suppose there exists
a function V : G → R+ such that LV (x) ≤ 0 holds for all
x ∈ G. Then we have limt→∞ LV (x) = 0 a.s..

Lemma 3: Suppose there exists a function V : Ur →
R such that limx→xo

V (x) = +∞ and LV (x) < 0 on
Ur\{xo}. Then we have

Prob
[
sup
t>0

|x − xo| < r
]

= 0, ∀x(0) ∈ Ur\{xo}. (23)

Lemma 4: Suppose there exist a C2 function V (x) ≥ 0,
constants α > 0 and β > 0 such that LV (x) ≤ −αV (x)+β
holds for all x ∈ R

n and t ≥ 0. Then, there is a unique
solution of (21) for each x(0) and it satisfies

E[V (x(t))] ≤ V (x(0))e−αt + β/α.
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